A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation...A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.展开更多
Mobile edge computing(MEC)-enabled satellite-terrestrial networks(STNs)can provide Internet of Things(IoT)devices with global computing services.Sometimes,the network state information is uncertain or unknown.To deal ...Mobile edge computing(MEC)-enabled satellite-terrestrial networks(STNs)can provide Internet of Things(IoT)devices with global computing services.Sometimes,the network state information is uncertain or unknown.To deal with this situation,we investigate online learning-based offloading decision and resource allocation in MEC-enabled STNs in this paper.The problem of minimizing the average sum task completion delay of all IoT devices over all time periods is formulated.We decompose this optimization problem into a task offloading decision problem and a computing resource allocation problem.A joint optimization scheme of offloading decision and resource allocation is then proposed,which consists of a task offloading decision algorithm based on the devices cooperation aided upper confidence bound(UCB)algorithm and a computing resource allocation algorithm based on the Lagrange multiplier method.Simulation results validate that the proposed scheme performs better than other baseline schemes.展开更多
Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Ne...Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Networks(MANETs)based real-time prediction paradigm for urban traffic challenges.MANETs are wireless networks that are based on mobile devices and may self-organize.The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts.This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network(CSFPNN)technique to assess real-time data acquired from various sources within theMANETs.The framework uses the proposed approach to learn from the data and create predictionmodels to detect possible traffic problems and their severity in real time.Real-time traffic prediction allows for proactive actions like resource allocation,dynamic route advice,and traffic signal optimization to reduce congestion.The framework supports effective decision-making,decreases travel time,lowers fuel use,and enhances overall urban mobility by giving timely information to pedestrians,drivers,and urban planners.Extensive simulations and real-world datasets are used to test the proposed framework’s prediction accuracy,responsiveness,and scalability.Experimental results show that the suggested framework successfully anticipates urban traffic issues in real-time,enables proactive traffic management,and aids in creating smarter,more sustainable cities.展开更多
In an era where digital technology is paramount, higher education institutions like the University of Zambia (UNZA) are employing advanced computer networks to enhance their operational capacity and offer cutting-edge...In an era where digital technology is paramount, higher education institutions like the University of Zambia (UNZA) are employing advanced computer networks to enhance their operational capacity and offer cutting-edge services to their academic fraternity. Spanning across the Great East Road campus, UNZA has established one of the most extensive computer networks in Zambia, serving a burgeoning community of over 20,000 active users through a Metropolitan Area Network (MAN). However, as the digital landscape continues to evolve, it is besieged with burgeoning challenges that threaten the very fabric of network integrity—cyber security threats and the imperatives of maintaining high Quality of Service (QoS). In an effort to mitigate these threats and ensure network efficiency, the development of a mobile application to monitor temperatures in the server room was imperative. According to L. Wei, X. Zeng, and T. Shen, the use of wireless sensory networks to monitor the temperature of train switchgear contact points represents a cost-effective solution. The system is based on wireless communication technology and is detailed in their paper, “A wireless solution for train switchgear contact temperature monitoring and alarming system based on wireless communication technology”, published in the International Journal of Communications, Network and System Sciences, vol. 8, no. 4, pp. 79-87, 2015 [1]. Therefore, in this study, a mobile application technology was explored for monitoring of temperatures in the server room in order to aid Cisco device performance. Additionally, this paper also explores the hardening of Cisco device security and QoS which are the cornerstones of this study.展开更多
Mobile and Internet network coverage plays an important role in digital transformation and the exploitation of new services. The evolution of mobile networks from the first generation (1G) to the 5th generation is sti...Mobile and Internet network coverage plays an important role in digital transformation and the exploitation of new services. The evolution of mobile networks from the first generation (1G) to the 5th generation is still a long process. 2G networks have developed the messaging service, which complements the already operational voice service. 2G technology has rapidly progressed to the third generation (3G), incorporating multimedia data transmission techniques. It then progressed to fourth generation (4G) and LTE (Long Term Evolution), increasing the transmission speed to improve 3G. Currently, developed countries have already moved to 5G. In developing countries, including Burundi, a member of the East African Community (ECA) where more than 80% are connected to 2G technologies, 40% are connected to the 3G network and 25% to the 4G network and are not yet connected to the 5G network and then still a process. The objective of this article is to analyze the coverage of 2G, 3G and 4G networks in Burundi. This analysis will make it possible to identify possible deficits in order to reduce the digital divide between connected urban areas and remote rural areas. Furthermore, this analysis will draw the attention of decision-makers to the need to deploy networks and coverage to allow the population to access mobile and Internet services and thus enable the digitalization of the population. Finally, this article shows the level of coverage, the digital divide and an overview of the deployment of base stations (BTS) throughout the country to promote the transformation and digital inclusion of services.展开更多
Nowadays,high mobility scenarios have become increasingly common.The widespread adoption of High-speed Rail(HSR)in China exemplifies this trend,while more promising use cases,such as vehicle-to-everything,continue to ...Nowadays,high mobility scenarios have become increasingly common.The widespread adoption of High-speed Rail(HSR)in China exemplifies this trend,while more promising use cases,such as vehicle-to-everything,continue to emerge.However,the Internet access provided in high mobility environments stllstruggles to achieve seamless connectivity.The next generation of wireless cellular technology 5 G further poses more requirements on the endto-end evolution to fully utilize its ultra-high band-width,while existing network diagnostic tools focus on above-IP layers or below-IP layers only.We then propose HiMoDiag,which enables flexible online analysis of the network performance in a cross-layer manner,i.e.,from the top(application layer)to the bottom(physical layer).We believe HiMoDiag could greatly simplify the process of pinpointing the deficiencies of the Internet access delivery on HSR,lead to more timely optimization and ultimately help to improve the network performance.展开更多
Purpose-In an increasingly interconnected world,transportation infrastructure has emerged as a critical determinant of economic growth and global competitiveness.High-speed rail(HSR),characterized by its exceptional s...Purpose-In an increasingly interconnected world,transportation infrastructure has emerged as a critical determinant of economic growth and global competitiveness.High-speed rail(HSR),characterized by its exceptional speed and efficiency,has garnered widespread attention as a transformative mode of transportation that transcends borders and fosters economic development.The Kuala Lumpur-Singapore(KL-SG)HSR project stands as a prominent exemplar of this paradigm,symbolizing the potential of HSR to serve as a catalyst for national economic advancement.Design/methodologylapproach-This paper is prepared to provide an insight into the benefits and advantages of HSR based on proven case studies and references from global HSRs,including China,Spain,France and Japan.Findings-The findings that have been obtained focus on enhanced connectivity and accessibility,attracting foreign direct investment,revitalizing regional economies,urban development and city regeneration,boosting tourism and cultural exchange,human capital development,regionai integration and environmental and sustainability benefits.Originality/value-The KL-SG HSR,linking Kuala Lumpur and Singapore,epitomizes the potential for HSR to be a transformative agent in the realm of economic development.This project encapsulates the aspirations of two dynamic Southeast Asian economies,united in their pursuit of sustainable growth,enhanced connectivity and global competitiveness.By scrutinizing the KLSG High-Speed Rail through the lens of economic benchmarking,a deeper understanding emerges of how such projects can drive progress in areas such as cross-border trade,tourism,urban development and technological innovation.展开更多
Autonomous navigation of mobile robots is a challenging task that requires them to travel from their initial position to their destination without collision in an environment.Reinforcement Learning methods enable a st...Autonomous navigation of mobile robots is a challenging task that requires them to travel from their initial position to their destination without collision in an environment.Reinforcement Learning methods enable a state action function in mobile robots suited to their environment.During trial-and-error interaction with its surroundings,it helps a robot tofind an ideal behavior on its own.The Deep Q Network(DQN)algorithm is used in TurtleBot 3(TB3)to achieve the goal by successfully avoiding the obstacles.But it requires a large number of training iterations.This research mainly focuses on a mobility robot’s best path prediction utilizing DQN and the Artificial Potential Field(APF)algorithms.First,a TB3 Waffle Pi DQN is built and trained to reach the goal.Then the APF shortest path algorithm is incorporated into the DQN algorithm.The proposed planning approach is compared with the standard DQN method in a virtual environment based on the Robot Operation System(ROS).The results from the simulation show that the combination is effective for DQN and APF gives a better optimal path and takes less time when compared to the conventional DQN algo-rithm.The performance improvement rate of the proposed DQN+APF in comparison with DQN in terms of the number of successful targets is attained by 88%.The performance of the proposed DQN+APF in comparison with DQN in terms of average time is achieved by 0.331 s.The performance of the proposed DQN+APF in comparison with DQN average rewards in which the positive goal is attained by 85%and the negative goal is attained by-90%.展开更多
This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing singl...This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.展开更多
In coded caching,users cache pieces of files under a specific arrangement so that the server can satisfy their requests simultaneously in the broadcast scenario via e Xclusive OR(XOR)operation and therefore reduce the...In coded caching,users cache pieces of files under a specific arrangement so that the server can satisfy their requests simultaneously in the broadcast scenario via e Xclusive OR(XOR)operation and therefore reduce the amount of transmission data.However,when users’locations are changing,the uploading of caching information is frequent and extensive that the traffic increase outweighed the traffic reduction that the traditional coded caching achieved.In this paper,we propose mobile coded caching schemes to reduce network traffic in mobility scenarios,which achieve a lower cost on caching information uploading.In the cache placement phase,the proposed scheme first constructs caching patterns,and then assigns the caching patterns to users according to the graph coloring method and four color theorem in our centralized cache placement algorithm or randomly in our decentralized cache placement algorithm.Then users are divided into groups based on their caching patterns.As a benefit,when user movements occur,the types of caching pattern,rather than the whole caching information of which file pieces are cached,are uploaded.In the content delivery phase,XOR coded caching messages are reconstructed.Transmission data volume is derived to measure the performance of the proposed schemes.Numerical results show that the proposed schemes achieve great improvement in traffic offloading.展开更多
The evolution of smart mobile devices has significantly impacted the way we generate and share contents and introduced a huge volume of Internet traffic.To address this issue and take advantage of the short-range comm...The evolution of smart mobile devices has significantly impacted the way we generate and share contents and introduced a huge volume of Internet traffic.To address this issue and take advantage of the short-range communication capabilities of smart mobile devices,the decentralized content sharing approach has emerged as a suitable and promising alternative.Decentralized content sharing uses a peer-to-peer network among colocated smart mobile device users to fulfil content requests.Several articles have been published to date to address its different aspects including group management,interest extraction,message forwarding,participation incentive,and content replication.This survey paper summarizes and critically analyzes recent advancements in decentralized content sharing and highlights potential research issues that need further consideration.展开更多
A large number of Web APIs have been released as services in mobile communications,but the service provided by a single Web API is usually limited.To enrich the services in mobile communications,developers have combin...A large number of Web APIs have been released as services in mobile communications,but the service provided by a single Web API is usually limited.To enrich the services in mobile communications,developers have combined Web APIs and developed a new service,which is known as a mashup.The emergence of mashups greatly increases the number of services in mobile communications,especially in mobile networks and the Internet-of-Things(IoT),and has encouraged companies and individuals to develop even more mashups,which has led to the dramatic increase in the number of mashups.Such a trend brings with it big data,such as the massive text data from the mashups themselves and continually-generated usage data.Thus,the question of how to determine the most suitable mashups from big data has become a challenging problem.In this paper,we propose a mashup recommendation framework from big data in mobile networks and the IoT.The proposed framework is driven by machine learning techniques,including neural embedding,clustering,and matrix factorization.We employ neural embedding to learn the distributed representation of mashups and propose to use cluster analysis to learn the relationship among the mashups.We also develop a novel Joint Matrix Factorization(JMF)model to complete the mashup recommendation task,where we design a new objective function and an optimization algorithm.We then crawl through a real-world large mashup dataset and perform experiments.The experimental results demonstrate that our framework achieves high accuracy in mashup recommendation and performs better than all compared baselines.展开更多
Accurate traffic pattern prediction in largescale networks is of great importance for intelligent system management and automatic resource allocation.System-level mobile traffic forecasting has significant challenges ...Accurate traffic pattern prediction in largescale networks is of great importance for intelligent system management and automatic resource allocation.System-level mobile traffic forecasting has significant challenges due to the tremendous temporal and spatial dynamics introduced by diverse Internet user behaviors and frequent traffic migration.Spatialtemporal graph modeling is an efficient approach for analyzing the spatial relations and temporal trends of mobile traffic in a large system.Previous research may not reflect the optimal dependency by ignoring inter-base station dependency or pre-determining the explicit geological distance as the interrelationship of base stations.To overcome the limitations of graph structure,this study proposes an adaptive graph convolutional network(AGCN)that captures the latent spatial dependency by developing self-adaptive dependency matrices and acquires temporal dependency using recurrent neural networks.Evaluated on two mobile network datasets,the experimental results demonstrate that this method outperforms other baselines and reduces the mean absolute error by 3.7%and 5.6%compared to time-series based approaches.展开更多
Cognitive Radio Networks(CRNs)have become a successful platform in recent years for a diverse range of future systems,in particularly,industrial internet of things(IIoT)applications.In order to provide an efficient co...Cognitive Radio Networks(CRNs)have become a successful platform in recent years for a diverse range of future systems,in particularly,industrial internet of things(IIoT)applications.In order to provide an efficient connection among IIoT devices,CRNs enhance spectrum utilization by using licensed spectrum.However,the routing protocol in these networks is considered one of the main problems due to node mobility and time-variant channel selection.Specifically,the channel selection for routing protocol is indispensable in CRNs to provide an adequate adaptation to the Primary User(PU)activity and create a robust routing path.This study aims to construct a robust routing path by minimizing PU interference and routing delay to maximize throughput within the IIoT domain.Thus,a generic routing framework from a cross-layer perspective is investigated that intends to share the information resources by exploiting a recently proposed method,namely,Channel Availability Probability.Moreover,a novel cross-layer-oriented routing protocol is proposed by using a time-variant channel estimation technique.This protocol combines lower layer(Physical layer and Data Link layer)sensing that is derived from the channel estimation model.Also,it periodically updates and stores the routing table for optimal route decision-making.Moreover,in order to achieve higher throughput and lower delay,a new routing metric is presented.To evaluate the performance of the proposed protocol,network simulations have been conducted and also compared to the widely used routing protocols,as a benchmark.The simulation results of different routing scenarios demonstrate that our proposed solution outperforms the existing protocols in terms of the standard network performance metrics involving packet delivery ratio(with an improved margin of around 5–20%approximately)under varying numbers of PUs and cognitive users in Mobile Cognitive Radio Networks(MCRNs).Moreover,the cross-layer routing protocol successfully achieves high routing performance in finding a robust route,selecting the high channel stability,and reducing the probability of PU interference for continued communication.展开更多
Mobile Industrial Internet of Things(IIoT)applications have achieved the explosive growth in recent years.The mobile IIoT has flourished and become the backbone of the industry,laying a solid foundation for the interc...Mobile Industrial Internet of Things(IIoT)applications have achieved the explosive growth in recent years.The mobile IIoT has flourished and become the backbone of the industry,laying a solid foundation for the interconnection of all things.The variety of application scenarios has brought serious challenges to mobile IIoT networks,which face complex and changeable communication environments.Ensuring data secure transmission is critical for mobile IIoT networks.This paper investigates the data secure transmission performance prediction of mobile IIoT networks.To cut down computational complexity,we propose a data secure transmission scheme employing Transmit Antenna Selection(TAS).The novel secrecy performance expressions are first derived.Then,to realize real-time secrecy analysis,we design an improved Convolutional Neural Network(CNN)model,and propose an intelligent data secure transmission performance prediction algorithm.For mobile signals,the important features may be removed by the pooling layers.This will lead to negative effects on the secrecy performance prediction.A novel nine-layer improved CNN model is designed.Out of the input and output layers,it removes the pooling layer and contains six convolution layers.Elman,Back-Propagation(BP)and LeNet methods are employed to compare with the proposed algorithm.Through simulation analysis,good prediction accuracy is achieved by the CNN algorithm.The prediction accuracy obtains a 59%increase.展开更多
Mobile computing is the most powerful application for network com-munication and connectivity,given recent breakthroughs in thefield of wireless networks or Mobile Ad-hoc networks(MANETs).There are several obstacles th...Mobile computing is the most powerful application for network com-munication and connectivity,given recent breakthroughs in thefield of wireless networks or Mobile Ad-hoc networks(MANETs).There are several obstacles that effective networks confront and the networks must be able to transport data from one system to another with adequate precision.For most applications,a frame-work must ensure that the retrieved data reflects the transmitted data.Before driv-ing to other nodes,if the frame between the two nodes is deformed in the data-link layer,it must be repaired.Most link-layer protocols immediately disregard the frame and enable the high-layer protocols to transmit it down.In other words,because of asset information must be secured from threats,information is a valu-able resource.In MANETs,some applications necessitate the use of a network method for detecting and blocking these assaults.Building a secure intrusion detection system in the network,which provides security to the nodes and route paths in the network,is a major difficulty in MANET.Attacks on the network can jeopardize security issues discovered by the intrusion detection system engine,which are then blocked by the network’s intrusion prevention engine.By bringing the Secure Intrusion Detection System(S-IDS)into the network,a new technique for implementing security goals and preventing attacks will be developed.The Secure Energy Routing(SER)protocol for MANETs is introduced in this study.The protocol addresses the issue of network security by detecting and preventing attacks in the network.The data transmission in the MANET is forwarded using Elliptical Curve Cryptography(ECC)with an objective to improve the level of security.Network Simulator–2 is used to simulate the network and experiments are compared with existing methods.展开更多
Financing of the African Integrated High-Speed Railway Network (AIHSRN) through Standard Gauge Railway (SGR) Projects is very expensive. As a result, most of the African countries seek financial supports from the Inte...Financing of the African Integrated High-Speed Railway Network (AIHSRN) through Standard Gauge Railway (SGR) Projects is very expensive. As a result, most of the African countries seek financial supports from the International Financial Institutions (IFIs). However, conditions provided by the IFIs through the Performance Standards (PS) of the International Financial Corporation (IFC) increase cost of the projects and thus, it becomes a burden to most of the African countries. This study aimed to explore the causes of IFC-PS through the SGR Projects that escalate costs and how to address them. The Tanzania SGR Lot 1 Project that covered 205 km from Dar es Salaam to Morogoro was selected as a case study. The methods used for data collection involved literature review, focus group discussions and interviews. The results and findings show a gap between the IFC-PS and the National Laws and Regulations that escalates costs of the projects if funds from the IFIs were to be secured. To bridge the gap, it is recommended that the African countries should engage into negotiations with the IFIs to agree to waive IFC-PS conditions that escalate costs provided they are adequately covered in the national laws and regulations;engagement of locally established national and regional financial institutions;and the responsible government institutions in the African countries should sit together for assessment and review of the IFC-PS against the national laws and regulations.展开更多
The efficient manufacture technique involves a high-speed control of platform mobile system. A linear acutor is presented in this paper. The linear acutor is constructed as a linear stepper motor. However, to sustain ...The efficient manufacture technique involves a high-speed control of platform mobile system. A linear acutor is presented in this paper. The linear acutor is constructed as a linear stepper motor. However, to sustain both high accuracy and high speed for the position and speed control, A single-stack computer system is constructed and a special control algorithm is prescribed to controled the linear actuator continuously. In this paper, the nonlinear errors resulted from the magnetic saturation and the hysteresis is anaysis and discussed. In the view of electromagnetic propotional control, the actuator is a stage proportional magnet, because the driving current to the linear acuator changes for a number of cycles and a series of reset points will occur as the current undergoes cyclic changes. At each reset point the original starting characteristics of the system are re-established. A large number of reset points across the full stroke of the platform results in a significant reduction in the nonlinear behavior. The stage control is first discussed. Experiments carried out to obtain the characteristics of the mobile platform control system. It is demonstrated that with the introduction of stage control, nonlinearities, such as saturation and hysteresis, are greatly reduced, system stiffness is increased, and the positioning accuracy and resolution are improved. The effect of dither due to a "digital fragment" signal is also examined and found to be crucial in reducing the hysteresis and in improving the resolution accuracy.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 62073172)the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20221329)。
文摘A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.
基金supported by National Key Research and Development Program of China(2018YFC1504502).
文摘Mobile edge computing(MEC)-enabled satellite-terrestrial networks(STNs)can provide Internet of Things(IoT)devices with global computing services.Sometimes,the network state information is uncertain or unknown.To deal with this situation,we investigate online learning-based offloading decision and resource allocation in MEC-enabled STNs in this paper.The problem of minimizing the average sum task completion delay of all IoT devices over all time periods is formulated.We decompose this optimization problem into a task offloading decision problem and a computing resource allocation problem.A joint optimization scheme of offloading decision and resource allocation is then proposed,which consists of a task offloading decision algorithm based on the devices cooperation aided upper confidence bound(UCB)algorithm and a computing resource allocation algorithm based on the Lagrange multiplier method.Simulation results validate that the proposed scheme performs better than other baseline schemes.
基金the Deanship of Scientific Research at Majmaah University for supporting this work under Project No.R-2024-1008.
文摘Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Networks(MANETs)based real-time prediction paradigm for urban traffic challenges.MANETs are wireless networks that are based on mobile devices and may self-organize.The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts.This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network(CSFPNN)technique to assess real-time data acquired from various sources within theMANETs.The framework uses the proposed approach to learn from the data and create predictionmodels to detect possible traffic problems and their severity in real time.Real-time traffic prediction allows for proactive actions like resource allocation,dynamic route advice,and traffic signal optimization to reduce congestion.The framework supports effective decision-making,decreases travel time,lowers fuel use,and enhances overall urban mobility by giving timely information to pedestrians,drivers,and urban planners.Extensive simulations and real-world datasets are used to test the proposed framework’s prediction accuracy,responsiveness,and scalability.Experimental results show that the suggested framework successfully anticipates urban traffic issues in real-time,enables proactive traffic management,and aids in creating smarter,more sustainable cities.
文摘In an era where digital technology is paramount, higher education institutions like the University of Zambia (UNZA) are employing advanced computer networks to enhance their operational capacity and offer cutting-edge services to their academic fraternity. Spanning across the Great East Road campus, UNZA has established one of the most extensive computer networks in Zambia, serving a burgeoning community of over 20,000 active users through a Metropolitan Area Network (MAN). However, as the digital landscape continues to evolve, it is besieged with burgeoning challenges that threaten the very fabric of network integrity—cyber security threats and the imperatives of maintaining high Quality of Service (QoS). In an effort to mitigate these threats and ensure network efficiency, the development of a mobile application to monitor temperatures in the server room was imperative. According to L. Wei, X. Zeng, and T. Shen, the use of wireless sensory networks to monitor the temperature of train switchgear contact points represents a cost-effective solution. The system is based on wireless communication technology and is detailed in their paper, “A wireless solution for train switchgear contact temperature monitoring and alarming system based on wireless communication technology”, published in the International Journal of Communications, Network and System Sciences, vol. 8, no. 4, pp. 79-87, 2015 [1]. Therefore, in this study, a mobile application technology was explored for monitoring of temperatures in the server room in order to aid Cisco device performance. Additionally, this paper also explores the hardening of Cisco device security and QoS which are the cornerstones of this study.
文摘Mobile and Internet network coverage plays an important role in digital transformation and the exploitation of new services. The evolution of mobile networks from the first generation (1G) to the 5th generation is still a long process. 2G networks have developed the messaging service, which complements the already operational voice service. 2G technology has rapidly progressed to the third generation (3G), incorporating multimedia data transmission techniques. It then progressed to fourth generation (4G) and LTE (Long Term Evolution), increasing the transmission speed to improve 3G. Currently, developed countries have already moved to 5G. In developing countries, including Burundi, a member of the East African Community (ECA) where more than 80% are connected to 2G technologies, 40% are connected to the 3G network and 25% to the 4G network and are not yet connected to the 5G network and then still a process. The objective of this article is to analyze the coverage of 2G, 3G and 4G networks in Burundi. This analysis will make it possible to identify possible deficits in order to reduce the digital divide between connected urban areas and remote rural areas. Furthermore, this analysis will draw the attention of decision-makers to the need to deploy networks and coverage to allow the population to access mobile and Internet services and thus enable the digitalization of the population. Finally, this article shows the level of coverage, the digital divide and an overview of the deployment of base stations (BTS) throughout the country to promote the transformation and digital inclusion of services.
基金supported by National Key Research and Development Plan,China(Grant No.2020YFB1710900)National Natural Science Foundation of China(Grant No.62022005 and 62172008).
文摘Nowadays,high mobility scenarios have become increasingly common.The widespread adoption of High-speed Rail(HSR)in China exemplifies this trend,while more promising use cases,such as vehicle-to-everything,continue to emerge.However,the Internet access provided in high mobility environments stllstruggles to achieve seamless connectivity.The next generation of wireless cellular technology 5 G further poses more requirements on the endto-end evolution to fully utilize its ultra-high band-width,while existing network diagnostic tools focus on above-IP layers or below-IP layers only.We then propose HiMoDiag,which enables flexible online analysis of the network performance in a cross-layer manner,i.e.,from the top(application layer)to the bottom(physical layer).We believe HiMoDiag could greatly simplify the process of pinpointing the deficiencies of the Internet access delivery on HSR,lead to more timely optimization and ultimately help to improve the network performance.
基金Universiti Tun Hussein Onn Malaysia(UTHM)through Tier 1(Vot H936).
文摘Purpose-In an increasingly interconnected world,transportation infrastructure has emerged as a critical determinant of economic growth and global competitiveness.High-speed rail(HSR),characterized by its exceptional speed and efficiency,has garnered widespread attention as a transformative mode of transportation that transcends borders and fosters economic development.The Kuala Lumpur-Singapore(KL-SG)HSR project stands as a prominent exemplar of this paradigm,symbolizing the potential of HSR to serve as a catalyst for national economic advancement.Design/methodologylapproach-This paper is prepared to provide an insight into the benefits and advantages of HSR based on proven case studies and references from global HSRs,including China,Spain,France and Japan.Findings-The findings that have been obtained focus on enhanced connectivity and accessibility,attracting foreign direct investment,revitalizing regional economies,urban development and city regeneration,boosting tourism and cultural exchange,human capital development,regionai integration and environmental and sustainability benefits.Originality/value-The KL-SG HSR,linking Kuala Lumpur and Singapore,epitomizes the potential for HSR to be a transformative agent in the realm of economic development.This project encapsulates the aspirations of two dynamic Southeast Asian economies,united in their pursuit of sustainable growth,enhanced connectivity and global competitiveness.By scrutinizing the KLSG High-Speed Rail through the lens of economic benchmarking,a deeper understanding emerges of how such projects can drive progress in areas such as cross-border trade,tourism,urban development and technological innovation.
文摘Autonomous navigation of mobile robots is a challenging task that requires them to travel from their initial position to their destination without collision in an environment.Reinforcement Learning methods enable a state action function in mobile robots suited to their environment.During trial-and-error interaction with its surroundings,it helps a robot tofind an ideal behavior on its own.The Deep Q Network(DQN)algorithm is used in TurtleBot 3(TB3)to achieve the goal by successfully avoiding the obstacles.But it requires a large number of training iterations.This research mainly focuses on a mobility robot’s best path prediction utilizing DQN and the Artificial Potential Field(APF)algorithms.First,a TB3 Waffle Pi DQN is built and trained to reach the goal.Then the APF shortest path algorithm is incorporated into the DQN algorithm.The proposed planning approach is compared with the standard DQN method in a virtual environment based on the Robot Operation System(ROS).The results from the simulation show that the combination is effective for DQN and APF gives a better optimal path and takes less time when compared to the conventional DQN algo-rithm.The performance improvement rate of the proposed DQN+APF in comparison with DQN in terms of the number of successful targets is attained by 88%.The performance of the proposed DQN+APF in comparison with DQN in terms of average time is achieved by 0.331 s.The performance of the proposed DQN+APF in comparison with DQN average rewards in which the positive goal is attained by 85%and the negative goal is attained by-90%.
基金supported in part by the National Natural Science Foundation of China (62373065,61873304,62173048,62106023)the Innovation and Entrepreneurship Talent funding Project of Jilin Province(2022QN04)+1 种基金the Changchun Science and Technology Project (21ZY41)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University (2024D09)。
文摘This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.
基金supported by National Natural Science Foundation of China(No.61971060)。
文摘In coded caching,users cache pieces of files under a specific arrangement so that the server can satisfy their requests simultaneously in the broadcast scenario via e Xclusive OR(XOR)operation and therefore reduce the amount of transmission data.However,when users’locations are changing,the uploading of caching information is frequent and extensive that the traffic increase outweighed the traffic reduction that the traditional coded caching achieved.In this paper,we propose mobile coded caching schemes to reduce network traffic in mobility scenarios,which achieve a lower cost on caching information uploading.In the cache placement phase,the proposed scheme first constructs caching patterns,and then assigns the caching patterns to users according to the graph coloring method and four color theorem in our centralized cache placement algorithm or randomly in our decentralized cache placement algorithm.Then users are divided into groups based on their caching patterns.As a benefit,when user movements occur,the types of caching pattern,rather than the whole caching information of which file pieces are cached,are uploaded.In the content delivery phase,XOR coded caching messages are reconstructed.Transmission data volume is derived to measure the performance of the proposed schemes.Numerical results show that the proposed schemes achieve great improvement in traffic offloading.
文摘The evolution of smart mobile devices has significantly impacted the way we generate and share contents and introduced a huge volume of Internet traffic.To address this issue and take advantage of the short-range communication capabilities of smart mobile devices,the decentralized content sharing approach has emerged as a suitable and promising alternative.Decentralized content sharing uses a peer-to-peer network among colocated smart mobile device users to fulfil content requests.Several articles have been published to date to address its different aspects including group management,interest extraction,message forwarding,participation incentive,and content replication.This survey paper summarizes and critically analyzes recent advancements in decentralized content sharing and highlights potential research issues that need further consideration.
基金supported by the National Key R&D Program of China (No.2021YFF0901002)the National Natural Science Foundation of China (No.61802291)+1 种基金Fundamental Research Funds for the Provincial Universities of Zhejiang (GK199900299012-025)Fundamental Research Funds for the Central Universities (No.JB210311).
文摘A large number of Web APIs have been released as services in mobile communications,but the service provided by a single Web API is usually limited.To enrich the services in mobile communications,developers have combined Web APIs and developed a new service,which is known as a mashup.The emergence of mashups greatly increases the number of services in mobile communications,especially in mobile networks and the Internet-of-Things(IoT),and has encouraged companies and individuals to develop even more mashups,which has led to the dramatic increase in the number of mashups.Such a trend brings with it big data,such as the massive text data from the mashups themselves and continually-generated usage data.Thus,the question of how to determine the most suitable mashups from big data has become a challenging problem.In this paper,we propose a mashup recommendation framework from big data in mobile networks and the IoT.The proposed framework is driven by machine learning techniques,including neural embedding,clustering,and matrix factorization.We employ neural embedding to learn the distributed representation of mashups and propose to use cluster analysis to learn the relationship among the mashups.We also develop a novel Joint Matrix Factorization(JMF)model to complete the mashup recommendation task,where we design a new objective function and an optimization algorithm.We then crawl through a real-world large mashup dataset and perform experiments.The experimental results demonstrate that our framework achieves high accuracy in mashup recommendation and performs better than all compared baselines.
基金supported by the National Natural Science Foundation of China(61975020,62171053)。
文摘Accurate traffic pattern prediction in largescale networks is of great importance for intelligent system management and automatic resource allocation.System-level mobile traffic forecasting has significant challenges due to the tremendous temporal and spatial dynamics introduced by diverse Internet user behaviors and frequent traffic migration.Spatialtemporal graph modeling is an efficient approach for analyzing the spatial relations and temporal trends of mobile traffic in a large system.Previous research may not reflect the optimal dependency by ignoring inter-base station dependency or pre-determining the explicit geological distance as the interrelationship of base stations.To overcome the limitations of graph structure,this study proposes an adaptive graph convolutional network(AGCN)that captures the latent spatial dependency by developing self-adaptive dependency matrices and acquires temporal dependency using recurrent neural networks.Evaluated on two mobile network datasets,the experimental results demonstrate that this method outperforms other baselines and reduces the mean absolute error by 3.7%and 5.6%compared to time-series based approaches.
文摘Cognitive Radio Networks(CRNs)have become a successful platform in recent years for a diverse range of future systems,in particularly,industrial internet of things(IIoT)applications.In order to provide an efficient connection among IIoT devices,CRNs enhance spectrum utilization by using licensed spectrum.However,the routing protocol in these networks is considered one of the main problems due to node mobility and time-variant channel selection.Specifically,the channel selection for routing protocol is indispensable in CRNs to provide an adequate adaptation to the Primary User(PU)activity and create a robust routing path.This study aims to construct a robust routing path by minimizing PU interference and routing delay to maximize throughput within the IIoT domain.Thus,a generic routing framework from a cross-layer perspective is investigated that intends to share the information resources by exploiting a recently proposed method,namely,Channel Availability Probability.Moreover,a novel cross-layer-oriented routing protocol is proposed by using a time-variant channel estimation technique.This protocol combines lower layer(Physical layer and Data Link layer)sensing that is derived from the channel estimation model.Also,it periodically updates and stores the routing table for optimal route decision-making.Moreover,in order to achieve higher throughput and lower delay,a new routing metric is presented.To evaluate the performance of the proposed protocol,network simulations have been conducted and also compared to the widely used routing protocols,as a benchmark.The simulation results of different routing scenarios demonstrate that our proposed solution outperforms the existing protocols in terms of the standard network performance metrics involving packet delivery ratio(with an improved margin of around 5–20%approximately)under varying numbers of PUs and cognitive users in Mobile Cognitive Radio Networks(MCRNs).Moreover,the cross-layer routing protocol successfully achieves high routing performance in finding a robust route,selecting the high channel stability,and reducing the probability of PU interference for continued communication.
基金supported by the National Natural Science Foundation of China(No.62201313)the Opening Foundation of Fujian Key Laboratory of Sensing and Computing for Smart Cities(Xiamen University)(No.SCSCKF202101)the Open Project of Fujian Provincial Key Laboratory of Information Processing and Intelligent Control(Minjiang University)(No.MJUKF-IPIC202206).
文摘Mobile Industrial Internet of Things(IIoT)applications have achieved the explosive growth in recent years.The mobile IIoT has flourished and become the backbone of the industry,laying a solid foundation for the interconnection of all things.The variety of application scenarios has brought serious challenges to mobile IIoT networks,which face complex and changeable communication environments.Ensuring data secure transmission is critical for mobile IIoT networks.This paper investigates the data secure transmission performance prediction of mobile IIoT networks.To cut down computational complexity,we propose a data secure transmission scheme employing Transmit Antenna Selection(TAS).The novel secrecy performance expressions are first derived.Then,to realize real-time secrecy analysis,we design an improved Convolutional Neural Network(CNN)model,and propose an intelligent data secure transmission performance prediction algorithm.For mobile signals,the important features may be removed by the pooling layers.This will lead to negative effects on the secrecy performance prediction.A novel nine-layer improved CNN model is designed.Out of the input and output layers,it removes the pooling layer and contains six convolution layers.Elman,Back-Propagation(BP)and LeNet methods are employed to compare with the proposed algorithm.Through simulation analysis,good prediction accuracy is achieved by the CNN algorithm.The prediction accuracy obtains a 59%increase.
文摘Mobile computing is the most powerful application for network com-munication and connectivity,given recent breakthroughs in thefield of wireless networks or Mobile Ad-hoc networks(MANETs).There are several obstacles that effective networks confront and the networks must be able to transport data from one system to another with adequate precision.For most applications,a frame-work must ensure that the retrieved data reflects the transmitted data.Before driv-ing to other nodes,if the frame between the two nodes is deformed in the data-link layer,it must be repaired.Most link-layer protocols immediately disregard the frame and enable the high-layer protocols to transmit it down.In other words,because of asset information must be secured from threats,information is a valu-able resource.In MANETs,some applications necessitate the use of a network method for detecting and blocking these assaults.Building a secure intrusion detection system in the network,which provides security to the nodes and route paths in the network,is a major difficulty in MANET.Attacks on the network can jeopardize security issues discovered by the intrusion detection system engine,which are then blocked by the network’s intrusion prevention engine.By bringing the Secure Intrusion Detection System(S-IDS)into the network,a new technique for implementing security goals and preventing attacks will be developed.The Secure Energy Routing(SER)protocol for MANETs is introduced in this study.The protocol addresses the issue of network security by detecting and preventing attacks in the network.The data transmission in the MANET is forwarded using Elliptical Curve Cryptography(ECC)with an objective to improve the level of security.Network Simulator–2 is used to simulate the network and experiments are compared with existing methods.
文摘Financing of the African Integrated High-Speed Railway Network (AIHSRN) through Standard Gauge Railway (SGR) Projects is very expensive. As a result, most of the African countries seek financial supports from the International Financial Institutions (IFIs). However, conditions provided by the IFIs through the Performance Standards (PS) of the International Financial Corporation (IFC) increase cost of the projects and thus, it becomes a burden to most of the African countries. This study aimed to explore the causes of IFC-PS through the SGR Projects that escalate costs and how to address them. The Tanzania SGR Lot 1 Project that covered 205 km from Dar es Salaam to Morogoro was selected as a case study. The methods used for data collection involved literature review, focus group discussions and interviews. The results and findings show a gap between the IFC-PS and the National Laws and Regulations that escalates costs of the projects if funds from the IFIs were to be secured. To bridge the gap, it is recommended that the African countries should engage into negotiations with the IFIs to agree to waive IFC-PS conditions that escalate costs provided they are adequately covered in the national laws and regulations;engagement of locally established national and regional financial institutions;and the responsible government institutions in the African countries should sit together for assessment and review of the IFC-PS against the national laws and regulations.
文摘The efficient manufacture technique involves a high-speed control of platform mobile system. A linear acutor is presented in this paper. The linear acutor is constructed as a linear stepper motor. However, to sustain both high accuracy and high speed for the position and speed control, A single-stack computer system is constructed and a special control algorithm is prescribed to controled the linear actuator continuously. In this paper, the nonlinear errors resulted from the magnetic saturation and the hysteresis is anaysis and discussed. In the view of electromagnetic propotional control, the actuator is a stage proportional magnet, because the driving current to the linear acuator changes for a number of cycles and a series of reset points will occur as the current undergoes cyclic changes. At each reset point the original starting characteristics of the system are re-established. A large number of reset points across the full stroke of the platform results in a significant reduction in the nonlinear behavior. The stage control is first discussed. Experiments carried out to obtain the characteristics of the mobile platform control system. It is demonstrated that with the introduction of stage control, nonlinearities, such as saturation and hysteresis, are greatly reduced, system stiffness is increased, and the positioning accuracy and resolution are improved. The effect of dither due to a "digital fragment" signal is also examined and found to be crucial in reducing the hysteresis and in improving the resolution accuracy.