A novel circuit with a narrow pulse driving structure is proposed for enhancing the noise immunity and improving the performance of wide fan-in dynamic circuits. Also,an analytical mode that agrees well with simulatio...A novel circuit with a narrow pulse driving structure is proposed for enhancing the noise immunity and improving the performance of wide fan-in dynamic circuits. Also,an analytical mode that agrees well with simulations is presented for transistor sizing. Simulation results show that an improvement of up to 12% over the conventional technique at 1GHz is obtained with this circuit,which can run 1.6 times faster than the existing technique with the same noise immunity.展开更多
A new method for analyzing high-speed circuit systems is presented. The method adds transmission line end currents to the circuit variables of the classical modified nodal approach. Then the matrix equation describing...A new method for analyzing high-speed circuit systems is presented. The method adds transmission line end currents to the circuit variables of the classical modified nodal approach. Then the matrix equation describing high-speed circuit system can be formulated directly and analyzed conveniently for its normative form. A time-domain analysis method for transmission lines is also introduced. The two methods are combined together to efficiently analyze high-speed circuit systems having general transmission lines. Numerical experiment is presented and the results are compared with that calculated by Hspice.展开更多
When fault occurs on cross-coupling autotransformer(AT)power supply traction network,the up-line and down-line feeder circuit breakers in the traction substation trip at the same time without selectivity,which leads t...When fault occurs on cross-coupling autotransformer(AT)power supply traction network,the up-line and down-line feeder circuit breakers in the traction substation trip at the same time without selectivity,which leads to an extended power failure.Based on equivalent circuit and Kirchhoff’s current law,the feeder current characteristic in the substation,AT station and sectioning post when T-R fault,F-R fault,and T-F fault occur are analyzed and their expressions are obtained.When the traction power supply system is equipped with wide-area protection measurement and control system,the feeder protection device in each station collects the feeder currents in other two stations through the wide-area protection channel and a wide-area current differential protection scheme based on the feeder current characteristic is proposed.When a short-circuit fault occurs in the power supply arm,all the feeder protection devices in each station receive the feeder currents with time stamp in other two stations.After data synchronous processing and logic judgment,the fault line of the power supply arm can be identified and isolated quickly.The simulation result based on MATLAB/Simulink shows that the power supply arm protection scheme based on wide-area current differential has good fault discrimination ability under different fault positions,transition resistances,and fault types.The verification of measured data shows that the novel protection scheme will not be affected by the special working conditions of the electrical multiple unit(EMU),and reliability,selectivity,and rapidity of relay protection are all improved.展开更多
High speed maglev train has become a new non-contact transportation mode mainly studied in recent years because of its non-sticking and high speed characteristics.Firstly,the finite element model of the long stator li...High speed maglev train has become a new non-contact transportation mode mainly studied in recent years because of its non-sticking and high speed characteristics.Firstly,the finite element model of the long stator linear synchronous motor(LSM)is established based on the structure of the test prototype.After calculation,it is compared with the experimental data and verified.On this basis,a field-circuit coupling model based on inverter circuit is established,and the influence of carrier wave ratio change on the output characteristics of LSM is calculated and analyzed.Finally,the filter circuit is introduced into the field-circuit coupling model,and the influence of the filter circuit on the output characteristics of the LSM is compared and analyzed.展开更多
This paper presents an analysis method, based on MacCormack's technique, for the evaluation of the time domain sensitivity of distributed parameter elements in high-speed circuit networks. Sensitivities can be calcul...This paper presents an analysis method, based on MacCormack's technique, for the evaluation of the time domain sensitivity of distributed parameter elements in high-speed circuit networks. Sensitivities can be calculated from electrical and physical parameters of the distributed parameter elements. The proposed method is a direct numerical method of time-space discretization and does not require complicated mathematical deductive process. Therefore, it is very convenient to program this method. It can be applied to sensitivity analysis of general transmission lines in linear or nonlinear circuit networks. The proposed method is second-order-accurate. Numerical experiment is presented to demonstrate its accuracy and efficiency.展开更多
To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the ...To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the equivalent thermal circuit method and computational fluid dynamics.Also,a cooling strategy is proposed to solve the problem of temperature rise,which is expected to prolong the service life of these devices.First,the theoretical bases of the approaches used to study heat transfer and fluid mechanics are discussed,then the fluid flow for the considered motor is analyzed,and the equivalent thermal circuit method is introduced for the calculation of the temperature rise.Finally,the stator,rotor loss,motor temperature rise,and the proposed cooling method are also explored through experiments.According to the results,the stator temperature at 50,000 r/min and 60,000 r/min at no-load operation is 68℃ and 76℃,respectively.By monitoring the temperature of the air outlets inside and outside the motor at different speeds,it is also found that the motor reaches a stable temperature rise after 65 min of operation.Coupling of the thermal circuit method and computational fluid dynamics is a strategy that can provide the average temperature rise of each component and can also comprehensively calculate the temperature of each local point.We conclude that a hybrid cooling strategy based on axial air cooling of the inner air duct of the motor and water cooling of the stator can meet the design requirements for the ventilation and cooling of this type of motors.展开更多
The paper presents the design and implementation of LVDS (low-voltage differential signaling) receiver circuit, fully compatible with LVDS standard. The proposed circuit is composed of the telescopic amplifier and t...The paper presents the design and implementation of LVDS (low-voltage differential signaling) receiver circuit, fully compatible with LVDS standard. The proposed circuit is composed of the telescopic amplifier and the comparator with internal hysteresis. The receiver supports 3.5 Gbps data rate with 7.4 mA current at 1.8 V supply according to post-layout circuit simulations. The circuit has the power consumption of 13.1 MW. Comparing with the conventional circuit, the circuit is achieved to reduce the power consumption by 19.1% and the data rate by 14.3 %. The validity and effectiveness of the proposed circuit are verified through the circuit simulation with Samsung 0.18 μm CMOS (complementary metal-oxide-semiconductor) standard technology under the 1.8 V supply voltage.展开更多
Triple-threshold CMOS technique provides the transistors that have low-, normal-, and high-threshold voltage. This paper describes a low-power carry look-ahead adder with triple-threshold CMOS technique. While the low...Triple-threshold CMOS technique provides the transistors that have low-, normal-, and high-threshold voltage. This paper describes a low-power carry look-ahead adder with triple-threshold CMOS technique. While the low-threshold voltage transistors are used to reduce the propagation delay time in the critical path, the high-threshold voltage transistors are used to reduce the power consumption in the shortest path. Comparing with the conventional CMOS circuit, the circuit is achieved to reduce the power consumption by 14.71% and the power-delay-product by 16.11%. This circuit is designed with Samsung 0.35 um CMOS process. The validity and effectiveness are verified through the HSPICE simulation.展开更多
This paper proposes a low-power MOS current mode logic (MCML) circuit with sleep-transistor to reduce the leakage current. The sleep-transistor is used to high-threshold voltage transistor to minimize the leakage cu...This paper proposes a low-power MOS current mode logic (MCML) circuit with sleep-transistor to reduce the leakage current. The sleep-transistor is used to high-threshold voltage transistor to minimize the leakage current. The 16× 16 bit parallel multiplier is designed with the proposed technology. Comparing with the previous MCML circuit, the circuit achieves the reduction of the power consumption in sleep mode by 1/258. This circuit is designed with Samsung 0.35 um complementary metal oxide semiconductor (CMOS) process. The validity and effectiveness are verified through the HSPICE simulation.展开更多
This paper presents a method based on a sample-decision(SD) circuit to suppress crosstalk and noise for a high-speed and high-density bus system.A method to count the number of times of SD for different length of tran...This paper presents a method based on a sample-decision(SD) circuit to suppress crosstalk and noise for a high-speed and high-density bus system.A method to count the number of times of SD for different length of transmission lines is presented and a bit error rates(BERs) formula is given by the SD circuit.It is shown that for long transmission line systems,multiple SD circuits can improve the BERs significantly.Circuits simulation for single SD method is also done,it is found that when the amplitude peak values of the superposed crosstalk and noise are less than half of the corresponding signal ones,they will be eliminated completely for the cases investigated.展开更多
A compacted and low-offset low-power CMOS am- plifier for biosensor application is presented in this paper. It includes a low offset Op-Amp and a high precision current reference. With a novel continuous-time DC offse...A compacted and low-offset low-power CMOS am- plifier for biosensor application is presented in this paper. It includes a low offset Op-Amp and a high precision current reference. With a novel continuous-time DC offset rejection scheme, the IC achieves lower offset voltage and lower power consumption compared to previous designs. This configuration rejects large DC offset and drift that exist at the skin-electrode interface without the need of external components. The proposed amplifier has been implemented in SMIC 0.18-μm 1P6M CMOS technol-ogy, with an active silicon area of 100 μm by 120 μm. The back-annotated simulation results demonstrated the circuit features the systematic offset voltage less than 80 μV, the offset drift about 0.27 μV/℃ for temperature ranging from –30℃ to 100℃ and the total power dissipation consumed as low as 37.8 μW from a 1.8 V single supply. It dedicated to monitor low amplitude biomedical signals recording.展开更多
This paper describes the design and test of a novel custom driving circuit for multi-quantum-well (MQW) spatial light modulators(SLMs).Unlike previous solutions,we integrated all blocks in one chip to synchronize ...This paper describes the design and test of a novel custom driving circuit for multi-quantum-well (MQW) spatial light modulators(SLMs).Unlike previous solutions,we integrated all blocks in one chip to synchronize the control logic circuit and the driving circuits.Single-slope digital-to-analog converters(DACs) inside each pixel are not adopted because it is difficult to eliminate capacitor mismatch.64 column-shared 8-bit resistor-string DACs are utilized to provide programmable output voltages from 0.5 to 3.8 V.They are located on the top of 64×64 driving pixels tightly to match each other with several dummies.Each DAC performs its conversion in 280 ns and draws 80μA.For a high speed data transfer rate,the system adopts a 2-stage shift register that operates at 50 MHz and the modulating rate achieves 50 K frames/s while dissipating 302 mW from a 5-V supply.The die is fabricated in a 0.35 /μm CMOS process and its area is 5.5 x 7 mm^2.展开更多
New methodologies for l-Bit XOR-XNOR full- adder circuits are proposed to improve the speed and power as these circuits are basic building blocks for ALU circuit implementation. This paper presents comparative study o...New methodologies for l-Bit XOR-XNOR full- adder circuits are proposed to improve the speed and power as these circuits are basic building blocks for ALU circuit implementation. This paper presents comparative study of high-speed, low-power and low voltage full adder circuits. Simulation results illustrate the superiority of the proposed adder circuit against the conventional complementary metal-oxide-semiconductor (CMOS), complementary pass-transistor logic (CPL), TG, and Hybrid adder circuits in terms of delay, power and power delay product (PDP). Simulation results reveal that the proposed circuit exhibits lower PDP and is more power efficient and faster when compared with the best available 1-bit full adder circuits. The design is implemented on UMC 0.18 μm process models in Cadence Virtuoso Schematic Composer at 1.8 V single ended supply voltage and simulations are carried out on Spectre S.展开更多
The feasibility of using the SOI-MOSFET as a quasi-diode to replace the Schottky-barrier diode in the Schenkel circuit is examined by device simulations primarily and experiments partly. Practical expressions of boost...The feasibility of using the SOI-MOSFET as a quasi-diode to replace the Schottky-barrier diode in the Schenkel circuit is examined by device simulations primarily and experiments partly. Practical expressions of boost-up efficiency for d. c. condition and a. c. condition are proposed and are examined by simulations. It is shown that the SOI-MOSFET-based quasi-diode is a promising device for the Schenkel circuit because high boost-up efficiency can be gained easily. An a. c. analysis indicates that the fully-depleted condition should hold to suppress the floating-body effect for GHz-level RF applications of a quasi-diode.展开更多
A 500 kV high-voltage AC fault current limiter(FCL)based on a high coupled split reactor(HCSR)is pro-posed by the National key R&D project team.Low impedance under normal conditions and high impedance under short-...A 500 kV high-voltage AC fault current limiter(FCL)based on a high coupled split reactor(HCSR)is pro-posed by the National key R&D project team.Low impedance under normal conditions and high impedance under short-circuit conditions are accomplished by the cooperation of HCSR and high-speed switches.High-speed switches play an important role in current limiting processes,thus interruption characteristics of the high-speed switch in the 500 kV FCL are studied in this paper.The simulation model of the FCL and the external equivalent power grid are established.The short-circuit current and recovery voltage characteristics of the high-speed switch in FCL are simulated.The results show that maximum DC component of the short-circuit current of the high-speed switch reaches 91%,the maximum peak value is 118 kA,and the longest arcing time is 14.8 ms.There is a discontinuity in the curve of the short-circuit current peak and arcing time as a function of the short-circuit occurrence time;the peak recovery voltage of a single break of the high-speed switch has a maximum value of 87.5 kV under a three-phase ungrounded short-circuit condition,and the rate of rise of recovery voltage is o.22 kV/s.The recovery voltage peak shows a period change with the short-circuit occurrence time,and the period is 10 ms.The effects of the shunt capacitor value and short-circuit ground resistance on the recovery voltage of high-speed switching are also studied.The research can be used for reference by R&D personnel and testersof500kVFCLs.Index Terms-Fault current limiter(FCL),high coupled split reactor(HCSR),high-speed switch,interruption characteristics,short circuit current.展开更多
Achieving spatiotemporal control of light at high speeds presents immense possibilities for various applications in communication,computation,metrology,and sensing.The integration of subwavelength metasurfaces and opt...Achieving spatiotemporal control of light at high speeds presents immense possibilities for various applications in communication,computation,metrology,and sensing.The integration of subwavelength metasurfaces and optical waveguides offers a promising approach to manipulate light across multiple degrees of freedom at high speed in compact photonic integrated circuit(PIC)devices.Here,we demonstrate a gigahertz-rate-switchable wavefront shaping by integrating metasurface,lithium niobate on insulator photonic waveguides,and electrodes within a PIC device.As proofs of concept,we showcase the generation of a focus beam with reconfigurable arbitrary polarizations,switchable focusing with lateral focal positions and focal length,orbital angular momentum light beams as well as Bessel beams.Our measurements indicate modulation speeds of up to the gigahertz rate.This integrated platform offers a versatile and efficient means of controlling the light field at high speed within a compact system,paving the way for potential applications in optical communication,computation,sensing,and imaging.展开更多
为克服传统静态CMOS电路在高频工作时的缺陷,引入了MOS电流模逻辑(MOS Current Mode Logic,MCML)电路.MCML电路是一种差分对称结构逻辑电路,与传统的CMOS电路比较,在高频段工作时功耗相对较低,具有典型的高速低功耗特性.在对MCML电路的...为克服传统静态CMOS电路在高频工作时的缺陷,引入了MOS电流模逻辑(MOS Current Mode Logic,MCML)电路.MCML电路是一种差分对称结构逻辑电路,与传统的CMOS电路比较,在高频段工作时功耗相对较低,具有典型的高速低功耗特性.在对MCML电路的开关条件以及具有不同输入端的MCML逻辑门电路进行分析后,提出了实现MCML加法器的两种电路结构,并给出了不同结构的应用条件.仿真结果验证了电路结构设计的有效性.展开更多
文摘A novel circuit with a narrow pulse driving structure is proposed for enhancing the noise immunity and improving the performance of wide fan-in dynamic circuits. Also,an analytical mode that agrees well with simulations is presented for transistor sizing. Simulation results show that an improvement of up to 12% over the conventional technique at 1GHz is obtained with this circuit,which can run 1.6 times faster than the existing technique with the same noise immunity.
文摘A new method for analyzing high-speed circuit systems is presented. The method adds transmission line end currents to the circuit variables of the classical modified nodal approach. Then the matrix equation describing high-speed circuit system can be formulated directly and analyzed conveniently for its normative form. A time-domain analysis method for transmission lines is also introduced. The two methods are combined together to efficiently analyze high-speed circuit systems having general transmission lines. Numerical experiment is presented and the results are compared with that calculated by Hspice.
基金supported by the Natural Science Foundation of Sichuan Province(No.2022NSFSC0405).
文摘When fault occurs on cross-coupling autotransformer(AT)power supply traction network,the up-line and down-line feeder circuit breakers in the traction substation trip at the same time without selectivity,which leads to an extended power failure.Based on equivalent circuit and Kirchhoff’s current law,the feeder current characteristic in the substation,AT station and sectioning post when T-R fault,F-R fault,and T-F fault occur are analyzed and their expressions are obtained.When the traction power supply system is equipped with wide-area protection measurement and control system,the feeder protection device in each station collects the feeder currents in other two stations through the wide-area protection channel and a wide-area current differential protection scheme based on the feeder current characteristic is proposed.When a short-circuit fault occurs in the power supply arm,all the feeder protection devices in each station receive the feeder currents with time stamp in other two stations.After data synchronous processing and logic judgment,the fault line of the power supply arm can be identified and isolated quickly.The simulation result based on MATLAB/Simulink shows that the power supply arm protection scheme based on wide-area current differential has good fault discrimination ability under different fault positions,transition resistances,and fault types.The verification of measured data shows that the novel protection scheme will not be affected by the special working conditions of the electrical multiple unit(EMU),and reliability,selectivity,and rapidity of relay protection are all improved.
文摘High speed maglev train has become a new non-contact transportation mode mainly studied in recent years because of its non-sticking and high speed characteristics.Firstly,the finite element model of the long stator linear synchronous motor(LSM)is established based on the structure of the test prototype.After calculation,it is compared with the experimental data and verified.On this basis,a field-circuit coupling model based on inverter circuit is established,and the influence of carrier wave ratio change on the output characteristics of LSM is calculated and analyzed.Finally,the filter circuit is introduced into the field-circuit coupling model,and the influence of the filter circuit on the output characteristics of the LSM is compared and analyzed.
文摘This paper presents an analysis method, based on MacCormack's technique, for the evaluation of the time domain sensitivity of distributed parameter elements in high-speed circuit networks. Sensitivities can be calculated from electrical and physical parameters of the distributed parameter elements. The proposed method is a direct numerical method of time-space discretization and does not require complicated mathematical deductive process. Therefore, it is very convenient to program this method. It can be applied to sensitivity analysis of general transmission lines in linear or nonlinear circuit networks. The proposed method is second-order-accurate. Numerical experiment is presented to demonstrate its accuracy and efficiency.
文摘To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the equivalent thermal circuit method and computational fluid dynamics.Also,a cooling strategy is proposed to solve the problem of temperature rise,which is expected to prolong the service life of these devices.First,the theoretical bases of the approaches used to study heat transfer and fluid mechanics are discussed,then the fluid flow for the considered motor is analyzed,and the equivalent thermal circuit method is introduced for the calculation of the temperature rise.Finally,the stator,rotor loss,motor temperature rise,and the proposed cooling method are also explored through experiments.According to the results,the stator temperature at 50,000 r/min and 60,000 r/min at no-load operation is 68℃ and 76℃,respectively.By monitoring the temperature of the air outlets inside and outside the motor at different speeds,it is also found that the motor reaches a stable temperature rise after 65 min of operation.Coupling of the thermal circuit method and computational fluid dynamics is a strategy that can provide the average temperature rise of each component and can also comprehensively calculate the temperature of each local point.We conclude that a hybrid cooling strategy based on axial air cooling of the inner air duct of the motor and water cooling of the stator can meet the design requirements for the ventilation and cooling of this type of motors.
文摘The paper presents the design and implementation of LVDS (low-voltage differential signaling) receiver circuit, fully compatible with LVDS standard. The proposed circuit is composed of the telescopic amplifier and the comparator with internal hysteresis. The receiver supports 3.5 Gbps data rate with 7.4 mA current at 1.8 V supply according to post-layout circuit simulations. The circuit has the power consumption of 13.1 MW. Comparing with the conventional circuit, the circuit is achieved to reduce the power consumption by 19.1% and the data rate by 14.3 %. The validity and effectiveness of the proposed circuit are verified through the circuit simulation with Samsung 0.18 μm CMOS (complementary metal-oxide-semiconductor) standard technology under the 1.8 V supply voltage.
文摘Triple-threshold CMOS technique provides the transistors that have low-, normal-, and high-threshold voltage. This paper describes a low-power carry look-ahead adder with triple-threshold CMOS technique. While the low-threshold voltage transistors are used to reduce the propagation delay time in the critical path, the high-threshold voltage transistors are used to reduce the power consumption in the shortest path. Comparing with the conventional CMOS circuit, the circuit is achieved to reduce the power consumption by 14.71% and the power-delay-product by 16.11%. This circuit is designed with Samsung 0.35 um CMOS process. The validity and effectiveness are verified through the HSPICE simulation.
文摘This paper proposes a low-power MOS current mode logic (MCML) circuit with sleep-transistor to reduce the leakage current. The sleep-transistor is used to high-threshold voltage transistor to minimize the leakage current. The 16× 16 bit parallel multiplier is designed with the proposed technology. Comparing with the previous MCML circuit, the circuit achieves the reduction of the power consumption in sleep mode by 1/258. This circuit is designed with Samsung 0.35 um complementary metal oxide semiconductor (CMOS) process. The validity and effectiveness are verified through the HSPICE simulation.
基金Supported by the National Natural Science Foundation of China(No.61171039,61072059)
文摘This paper presents a method based on a sample-decision(SD) circuit to suppress crosstalk and noise for a high-speed and high-density bus system.A method to count the number of times of SD for different length of transmission lines is presented and a bit error rates(BERs) formula is given by the SD circuit.It is shown that for long transmission line systems,multiple SD circuits can improve the BERs significantly.Circuits simulation for single SD method is also done,it is found that when the amplitude peak values of the superposed crosstalk and noise are less than half of the corresponding signal ones,they will be eliminated completely for the cases investigated.
文摘A compacted and low-offset low-power CMOS am- plifier for biosensor application is presented in this paper. It includes a low offset Op-Amp and a high precision current reference. With a novel continuous-time DC offset rejection scheme, the IC achieves lower offset voltage and lower power consumption compared to previous designs. This configuration rejects large DC offset and drift that exist at the skin-electrode interface without the need of external components. The proposed amplifier has been implemented in SMIC 0.18-μm 1P6M CMOS technol-ogy, with an active silicon area of 100 μm by 120 μm. The back-annotated simulation results demonstrated the circuit features the systematic offset voltage less than 80 μV, the offset drift about 0.27 μV/℃ for temperature ranging from –30℃ to 100℃ and the total power dissipation consumed as low as 37.8 μW from a 1.8 V single supply. It dedicated to monitor low amplitude biomedical signals recording.
文摘This paper describes the design and test of a novel custom driving circuit for multi-quantum-well (MQW) spatial light modulators(SLMs).Unlike previous solutions,we integrated all blocks in one chip to synchronize the control logic circuit and the driving circuits.Single-slope digital-to-analog converters(DACs) inside each pixel are not adopted because it is difficult to eliminate capacitor mismatch.64 column-shared 8-bit resistor-string DACs are utilized to provide programmable output voltages from 0.5 to 3.8 V.They are located on the top of 64×64 driving pixels tightly to match each other with several dummies.Each DAC performs its conversion in 280 ns and draws 80μA.For a high speed data transfer rate,the system adopts a 2-stage shift register that operates at 50 MHz and the modulating rate achieves 50 K frames/s while dissipating 302 mW from a 5-V supply.The die is fabricated in a 0.35 /μm CMOS process and its area is 5.5 x 7 mm^2.
文摘New methodologies for l-Bit XOR-XNOR full- adder circuits are proposed to improve the speed and power as these circuits are basic building blocks for ALU circuit implementation. This paper presents comparative study of high-speed, low-power and low voltage full adder circuits. Simulation results illustrate the superiority of the proposed adder circuit against the conventional complementary metal-oxide-semiconductor (CMOS), complementary pass-transistor logic (CPL), TG, and Hybrid adder circuits in terms of delay, power and power delay product (PDP). Simulation results reveal that the proposed circuit exhibits lower PDP and is more power efficient and faster when compared with the best available 1-bit full adder circuits. The design is implemented on UMC 0.18 μm process models in Cadence Virtuoso Schematic Composer at 1.8 V single ended supply voltage and simulations are carried out on Spectre S.
文摘The feasibility of using the SOI-MOSFET as a quasi-diode to replace the Schottky-barrier diode in the Schenkel circuit is examined by device simulations primarily and experiments partly. Practical expressions of boost-up efficiency for d. c. condition and a. c. condition are proposed and are examined by simulations. It is shown that the SOI-MOSFET-based quasi-diode is a promising device for the Schenkel circuit because high boost-up efficiency can be gained easily. An a. c. analysis indicates that the fully-depleted condition should hold to suppress the floating-body effect for GHz-level RF applications of a quasi-diode.
基金supported by the National Key R&D Program of China(2018YFB0904300)。
文摘A 500 kV high-voltage AC fault current limiter(FCL)based on a high coupled split reactor(HCSR)is pro-posed by the National key R&D project team.Low impedance under normal conditions and high impedance under short-circuit conditions are accomplished by the cooperation of HCSR and high-speed switches.High-speed switches play an important role in current limiting processes,thus interruption characteristics of the high-speed switch in the 500 kV FCL are studied in this paper.The simulation model of the FCL and the external equivalent power grid are established.The short-circuit current and recovery voltage characteristics of the high-speed switch in FCL are simulated.The results show that maximum DC component of the short-circuit current of the high-speed switch reaches 91%,the maximum peak value is 118 kA,and the longest arcing time is 14.8 ms.There is a discontinuity in the curve of the short-circuit current peak and arcing time as a function of the short-circuit occurrence time;the peak recovery voltage of a single break of the high-speed switch has a maximum value of 87.5 kV under a three-phase ungrounded short-circuit condition,and the rate of rise of recovery voltage is o.22 kV/s.The recovery voltage peak shows a period change with the short-circuit occurrence time,and the period is 10 ms.The effects of the shunt capacitor value and short-circuit ground resistance on the recovery voltage of high-speed switching are also studied.The research can be used for reference by R&D personnel and testersof500kVFCLs.Index Terms-Fault current limiter(FCL),high coupled split reactor(HCSR),high-speed switch,interruption characteristics,short circuit current.
基金supported by the National Key R&D Program of China(Grant No.2019YFA0705000)the National Natural Science Foundation of China(Grant Nos.12192251,12274134,12174186,and 62288101)+2 种基金the Science and Technology Commission of Shanghai Municipality(Grant No.21DZ1101500)the Shanghai Municipal Education Commission(Grant No.2023ZKZD35)the Shanghai Pujiang Program(Grant No.20PJ1403400)
文摘Achieving spatiotemporal control of light at high speeds presents immense possibilities for various applications in communication,computation,metrology,and sensing.The integration of subwavelength metasurfaces and optical waveguides offers a promising approach to manipulate light across multiple degrees of freedom at high speed in compact photonic integrated circuit(PIC)devices.Here,we demonstrate a gigahertz-rate-switchable wavefront shaping by integrating metasurface,lithium niobate on insulator photonic waveguides,and electrodes within a PIC device.As proofs of concept,we showcase the generation of a focus beam with reconfigurable arbitrary polarizations,switchable focusing with lateral focal positions and focal length,orbital angular momentum light beams as well as Bessel beams.Our measurements indicate modulation speeds of up to the gigahertz rate.This integrated platform offers a versatile and efficient means of controlling the light field at high speed within a compact system,paving the way for potential applications in optical communication,computation,sensing,and imaging.
文摘为克服传统静态CMOS电路在高频工作时的缺陷,引入了MOS电流模逻辑(MOS Current Mode Logic,MCML)电路.MCML电路是一种差分对称结构逻辑电路,与传统的CMOS电路比较,在高频段工作时功耗相对较低,具有典型的高速低功耗特性.在对MCML电路的开关条件以及具有不同输入端的MCML逻辑门电路进行分析后,提出了实现MCML加法器的两种电路结构,并给出了不同结构的应用条件.仿真结果验证了电路结构设计的有效性.