期刊文献+
共找到19,210篇文章
< 1 2 250 >
每页显示 20 50 100
Flow characteristics and hot workability of a typical low-alloy high-strength steel during multi-pass deformation
1
作者 Mingjie Zhao Lihong Jiang +4 位作者 Changmin Li Liang Huang Chaoyuan Sun Jianjun Li Zhenghua Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期323-336,共14页
Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging... Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging process, which is beneficial to the formulation of actual processing parameters. In the study, the multi-pass hot compression experiments of a typical LAHS steel are carried out at a wide range of deformation temperatures and strain rates. It is found that the work hardening rate of the experimental material depends on deformation parameters and deformation passes, which is ascribed to the impacts of static and dynamic softening behaviors. A new model is established to describe the flow characteristics at various deformation passes. Compared to the classical Arrhenius model and modified Zerilli and Armstrong model, the newly proposed model shows higher prediction accuracy with a confidence level of 0.98565. Furthermore, the connection between power dissipation efficiency(PDE) and deformation parameters is revealed by analyzing the microstructures. The PDE cannot be utilized to reflect the efficiency of energy dissipation for microstructure evolution during the entire deformation process, but only to assess the efficiency of energy dissipation for microstructure evolution in a specific deformation parameter state.As a result, an integrated processing map is proposed to better study the hot workability of the LAHS steel, which considers the effects of instability factor(IF), PDE, and distribution and size of grains. The optimized processing parameters for the multi-pass deformation process are the deformation parameters of 1223–1318 K and 0.01–0.08 s^(-1). Complete dynamic recrystallization occurs within the optimized processing parameters with an average grain size of 18.36–42.3 μm. This study will guide the optimization of the forging process of heavy components. 展开更多
关键词 low-alloy high-strength steel work hardening rate constitutive model hot workability multi-pass deformation
下载PDF
Hot deformation behavior of novel high-strength Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy
2
作者 Hao Chen Yanmei Yang +7 位作者 Conglin Hu Gang Zhou Hui Shi Genzhi Jiang Yuanding Huang Norbert Hort Weidong Xie Guobing Wei 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2397-2410,共14页
The hot compression behavior of as-extruded Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy was studied on a Gleeble-3500 thermal simulation machine.Experiments were conducted at temperatures ranging from 523 to 673 K and strain rat... The hot compression behavior of as-extruded Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy was studied on a Gleeble-3500 thermal simulation machine.Experiments were conducted at temperatures ranging from 523 to 673 K and strain rates ranging from 0.001 to 1 s^(-1).Results showed that an increase in the strain rate or a decrease in deformation temperature led to an increase in true stress.The constitutive equation and processing maps of the alloy were obtained and analyzed.The influence of deformation temperatures and strain rates on microstructural evolution and texture was studied with the assistance of electron backscatter diffraction(EBSD).The as-extruded alloy exhibited a bimodal structure that consisted of deformed coarse grains and fine equiaxed recrystallized structures(approximately 1.57μm).The EBSD results of deformed alloy samples revealed that the recrystallization degree and average grain size increased as the deformation temperature increased.By contrast,dislocation density and texture intensity decreased.Compressive texture weakened with the increase in the deformation temperature at the strain rate of 0.01 s-1.Most grains with{0001}planes tilted away from the compression direction(CD)gradually.In addition,when the strain rate decreased,the recrystallization degree and average grain size increased.Meanwhile,the dislocation density decreased.Texture appeared to be insensitive to the strain rate.These findings provide valuable insights into the hot compression behavior,microstructural evolution,and texture changes in the Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy,contributing to the understanding of its processing-microstructure-property relationships. 展开更多
关键词 high-strength Mg alloy conventional extrusion fine grains hot deformation behavior constitutive relationship microstructural evolution
下载PDF
Effect of traveling-wave magnetic field on dendrite growth of high-strength steel slab: Industrial trials and numerical simulation
3
作者 Cheng Yao Min Wang +5 位作者 Youjin Ni Dazhi Wang Haibo Zhang Lidong Xing Jian Gong Yanping Bao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1716-1728,共13页
The dendrite growth behavior of high-strength steel during slab continuous casting with a traveling-wave magnetic field was studied in this paper. The morphology of the solidification structure and composition distrib... The dendrite growth behavior of high-strength steel during slab continuous casting with a traveling-wave magnetic field was studied in this paper. The morphology of the solidification structure and composition distribution were analyzed. Results showed that the columnar crystals could deflect and break when the traveling-wave magnetic field had low current intensity. With the increase in current intensity, the secondary dendrite arm spacing and solute permeability decreased, and the columnar crystal transformed into an equiaxed crystal. The electromagnetic force caused by the traveling-wave magnetic field changed the temperature gradient and velocity magnitude and promoted the breaking and fusing of dendrites. Dendrite compactness and composition uniformity were arranged in descending order as follows:columnar-toequiaxed transition (high current intensity), columnar crystal zone (low current intensity), columnar-to-equiaxed transition (low current intensity), and equiaxed crystal zone (high current intensity). Verified numerical simulation results combined with the boundary layer theory of solidification front and dendrite breaking–fusing model revealed the dendrite deflection mechanism and growth process. When thermal stress is not considered, and no narrow segment can be found in the dendrite, the velocity magnitude on the solidification front of liquid steel can reach up to 0.041 m/s before the dendrites break. 展开更多
关键词 high-strength steel traveling-wave magnetic field dendrite growth numerical simulation
下载PDF
Development of high-strength magnesium alloys with excellent ignition-proof performance based on the oxidation and ignition mechanisms: A review
4
作者 Jing Ni Li Jin +5 位作者 Jian Zeng Jing Li Fulin Wang Fenghua Wang Shuai Dong Jie Dong 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期1-14,共14页
High reactivity and ease of ignition are the major obstacles for the application of Mg alloys in aerospace.Thus,the ignition mechanisms of Mg alloys should be investigated systematically,which can guide the ignition-p... High reactivity and ease of ignition are the major obstacles for the application of Mg alloys in aerospace.Thus,the ignition mechanisms of Mg alloys should be investigated systematically,which can guide the ignition-proof alloy design.This article concludes the factors influencing the ignition resistance of Mg alloys from oxide film and substrate microstructure,and also the mechanisms of alloying elements improving the ignition resistance.The low strength is another reason restricting the development of Mg alloys.Therefore,at the last section,Mg alloys with the combination of high strength and good ignition-proof performance are summarized,including Mg-Al-Ca based alloys,SEN(Mg-Al-Zn-Ca-Y)alloys as well as Mg-Y and Mg-Gd based alloys.Besides,the shortages and the future focus of theses alloys are also reviewed.The aim of this article is to promote the understanding of oxidation and ignition mechanisms of Mg alloys and to provide reference for the development of Mg alloys with high strength and excellent ignition-proof performance at the same time. 展开更多
关键词 high-strength and ignition-proof Mg alloys High temperature oxidation Oxide film Second phases ALLOYING
下载PDF
Microstructure Distribution Characteristics of High-Strength Aluminum Alloy Thin-Walled Tubes during Multi-Passes Hot Power Backward Spinning Process
5
作者 Yuan Tian Ranyang Zhang +1 位作者 Gangyao Zhao Zhenghua Guo 《Journal of Materials Science and Chemical Engineering》 2023年第7期114-121,共8页
The microstructure of the thin-walled tubes with high-strength aluminum alloy determines their final forming quality and performance. This type of tube can be manufactured by multi-pass hot power backward spinning pro... The microstructure of the thin-walled tubes with high-strength aluminum alloy determines their final forming quality and performance. This type of tube can be manufactured by multi-pass hot power backward spinning process as it can eliminate casting defects, refine microstructure and improve the plasticity of the tube. To analyze the microstructure distribution characteristics of the tube during the spinning process, a 3D coupled thermo-mechanical FE model coupled with the microstructure evolution model of the process was established under the ABAQUS environment. The microstructure evolution characteristics and laws of the tube for the whole spinning process were analyzed. The results show that the dynamic recrystallization is mainly produced in the spinning deformation zone and root area of the tube. In the first pass, the dynamic recrystallization phenomenon is not obvious in the tube. With the pass increasing, the trend of dynamic recrystallization volume percentage gradually increases and extends from the outer surface of the tube to the inner surface. The fine-grained area shows the states of concentration, dispersion, and re-concentration as the pass number increases. . 展开更多
关键词 Cast high-strength Aluminum Alloy Tube Multi-Pass Hot Power Backward Spinning FE Simulation Microstructure Evolution
下载PDF
Corrosion behavior of high-strength spring steel for high-speed railway 被引量:4
6
作者 Gang Niu Yin-li Chen +2 位作者 Hui-bin Wu Xuan Wang Di Tang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第5期527-535,共9页
The corrosion resistance and evolution of corrosion products in medium-carbon high-strength spring steels were investigated in a neutral salt spray(5 wt% Na Cl solution). A formation model of γ-Fe OOH and a transform... The corrosion resistance and evolution of corrosion products in medium-carbon high-strength spring steels were investigated in a neutral salt spray(5 wt% Na Cl solution). A formation model of γ-Fe OOH and a transformation model describing the conversion of γ-Fe OOH to α-Fe OOH were constructed. The results indicated that, at the initial corrosion stage, the corrosion resistance was gradually improved with the addition of Cr; however, with the addition of alloying element V, the corrosion resistance decreased. These results were attributed mainly to the initial corrosion stage being closely related to the matrix microstructure parameters such as grain-boundary character and dislocation density. After the rust layer was formed at a later corrosion stage, the corrosion resistance was reinforced with the addition of Cr and V because Cr strongly influenced the composition, structure, and morphology of the corrosion products. The results presented herein show that Cr was conducive to the transformation of γ-Fe OOH into α-Fe OOH. Moreover, V and Cr exhibited obvious synergy and were enriched in the inner layer of the corrosion products. 展开更多
关键词 high-strength spring steel corrosion resistance ALLOYING elements RUST LAYERS evolution model
下载PDF
In-depth analysis of the fatigue mechanism induced by inclusions for high-strength bearing steels 被引量:7
7
作者 Chao Gu Wen-qi Liu +1 位作者 Jun-he Lian Yan-ping Bao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期826-834,共9页
A numerical study of stress distribution and fatigue behavior in terms of the effect of voids adjacent to inclusions was conducted with finite element modeling simulations under different assumptions.Fatigue mechanism... A numerical study of stress distribution and fatigue behavior in terms of the effect of voids adjacent to inclusions was conducted with finite element modeling simulations under different assumptions.Fatigue mechanisms were also analyzed accordingly.The results showed that the effects of inclusions on fatigue life will distinctly decrease if the mechanical properties are close to those of the steel matrix.For the inclusions,which are tightly bonded with the steel matrix,when the Young’s modulus is larger than that of the steel matrix,the stress will concentrate inside the inclusion;otherwise,the stress will concentrate in the steel matrix.If voids exist on the interface between inclusions and the steel matrix,their effects on the fatigue process differ with their positions relative to the inclusions.The void on one side of an inclusion perpendicular to the fatigue loading direction will aggravate the effect of inclusions on fatigue behavior and lead to a sharp stress concentration.The void on the top of inclusion along the fatigue loading direction will accelerate the debonding between the inclusion and steel matrix. 展开更多
关键词 INCLUSION high-strength bearing steel FATIGUE numerical study stress distribution
下载PDF
Formation Mechanism and Microstructure of High-Strength Gypsum 被引量:4
8
作者 王超 高贺凤 +5 位作者 聂继红 郑雪萍 李树华 付国芬 丁玉 殷彤 《International Journal of Mining Science and Technology》 SCIE EI 1998年第1期50-54,共5页
The microstructure, phase composition, and thermal characteristics of various natural gypsums and the high-strength gypsum──the converted product of natural one are analysed.The formation mecbanism of high-strength ... The microstructure, phase composition, and thermal characteristics of various natural gypsums and the high-strength gypsum──the converted product of natural one are analysed.The formation mecbanism of high-strength gypsum is further discussed. It is found that the high-streugth gypsum is of hollow irregular hexagonal prism structure, which is almost free from tbe (010) and (100) cleavages and can form clustered fibrous crystals with high-strength. 展开更多
关键词 high-strength GYPSUM MICROSTRUCTURE FORMATION MECHANISM
下载PDF
Anisotropy of the crystallographic orientation and corrosion performance of high-strength AZ80 Mg alloy 被引量:5
9
作者 Quantong Jiang Xiumin Ma +5 位作者 Kui Zhang Yantao Li Xinggang Li Yongjun Li Minglong Ma Baorong Hou 《Journal of Magnesium and Alloys》 SCIE EI CAS 2015年第4期309-314,共6页
A high-strength AZ80 Mg alloy was prepared through multi-direction forging,thermal extrusion,and peak-aged heat treatment.The microstructure,crystallographic orientation and corrosion performance of extrusion-directio... A high-strength AZ80 Mg alloy was prepared through multi-direction forging,thermal extrusion,and peak-aged heat treatment.The microstructure,crystallographic orientation and corrosion performance of extrusion-direction,transverse-direction,and normal-direction specimens were investigated using scanning electron microscopy,electron backscatter diffraction,and atomic force microscopy,respectively.Experimental results showed that crystallographic orientation significantly influenced the corrosion performance of AZ80 Mg alloy.Corrosion rates largely increased with decreased(0001)crystallographic plane intensity,whereas the(10−10)and(2−1−10)crystallographic plane intensities increased.This study showed that the corrosion rates of alloy can be modified to some extent by controlling texture,thereby promoting the applications of high-strength AZ80 Mg alloys in the aerospace and national-defense fields. 展开更多
关键词 high-strength AZ80 Mg alloy ANISOTROPY WROUGHT Crystallographic orientation Corrosion performance Surface energy
下载PDF
Experiment Study on Self-stress of High-strength, Low-heat and Micro-expansion Concrete-filled Steel Tube 被引量:2
10
作者 卢哲安 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2001年第2期83-86,共4页
The self-stress trial of the fifteen high-strength, low-heat and micro-expansion concrete-filled steel tube( CFST) is introduced, and the generating and distributing features of pre-stress and its relation to adding q... The self-stress trial of the fifteen high-strength, low-heat and micro-expansion concrete-filled steel tube( CFST) is introduced, and the generating and distributing features of pre-stress and its relation to adding quantity of expansive agent, which provides persuasive dependences for optimal design of high-strength, low-heat and micro-expansion CFST were investigated, especially for the design of added quantity of expansive agent. 展开更多
关键词 high-strength low-heat and MICRO-EXPANSION CFST expansion agent SELF-STRESS
下载PDF
Seismic Performance of High-Strength Short Concrete Column with High-Strength Stirrups Constraints 被引量:2
11
作者 Hongyan Ding Yuan Liu +1 位作者 Chao Han Yaohua Guo 《Transactions of Tianjin University》 EI CAS 2017年第4期360-369,共10页
The seismic performance of four short concrete columns was investigated under low cycle and repeated loads, including the failure characteristics, hysteretic behavior, rigidity degeneracy and steel-bar stress. The inf... The seismic performance of four short concrete columns was investigated under low cycle and repeated loads, including the failure characteristics, hysteretic behavior, rigidity degeneracy and steel-bar stress. The influences of reinforcement strength, stirrup ratio and shear span ratio were also compared. Test results reveal that the restriction effect of stirrups can improve the peak stress, so the bearing capacity of specimen can be improved; for the high-strength short concrete column with high-strength stirrups, it was more reasonable to use ultimate displacement angle to reflect the ductility of the specimen, and the yield strength of high-strength stirrups should be devalued when calculating the stirrup characteristic value; the seismic performance of short column would be improved with the increase of volume–stirrup ratio and shear span ratio;the high-strength stirrups and high-strength longitudinal reinforcements did not yield when the load acting on the specimen reached the peak value, which brought adequate safety stock to these short columns. 展开更多
关键词 high-strength STIRRUP high-strength longitudinal REINFORCEMENT high-strength SHORT concrete COLUMN SEISMIC performance
下载PDF
Effect of in-situ nanoparticles on the mechanical properties and hydrogen embrittlement of high-strength steel 被引量:2
12
作者 Rong-jian Shi Zi-dong Wang +1 位作者 Li-jie Qiao Xiao-lu Pang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第4期644-656,共13页
We investigated the critical influence of in-situ nanoparticles on the mechanical properties and hydrogen embrittlement(HE)of high-strength steel.The results reveal that the mechanical strength and elongation of quenc... We investigated the critical influence of in-situ nanoparticles on the mechanical properties and hydrogen embrittlement(HE)of high-strength steel.The results reveal that the mechanical strength and elongation of quenched and tempered steel(919 MPa yield strength,17.11%elongation)are greater than those of hot-rolled steel(690 MPa yield strength,16.81%elongation)due to the strengthening effect of insitu Ti_(3)O_(5)–Nb(C,N)nanoparticles.In addition,the HE susceptibility is substantially mitigated to 55.52%,approximately 30%lower than that of steels without in-situ nanoparticles(84.04%),which we attribute to the heterogeneous nucleation of the Ti_(3)O_5 nanoparticles increasing the density of the carbides.Compared with hard TiN inclusions,the spherical and soft Al_(2)O_(3)–MnS core–shell inclusions that nucleate on in-situ Al_(2)O_(3) particles could also suppress HE.In-situ nanoparticles generated by the regional trace-element supply have strong potential for the development of high-strength and hydrogen-resistant steels. 展开更多
关键词 in-situ nanoparticles hydrogen embrittlement high-strength steel mechanical properties MICROSTRUCTURE
下载PDF
High-strength and self-degradable sodium alginate/polyacrylamide preformed particle gels for conformance control to enhance oil recovery 被引量:2
13
作者 Xiao Zhang Jia-Nan Deng +11 位作者 Kai Yang Qian Li Sen-Yao Meng Xiu-Xia Sun Zhao-Zheng Song Yong-Dong Tian Sui-An Zhang Xin-Jia Liu Zhan-Yi Wang Xin-Yu Liu Gui-Wu Lu Zi-Long Liu 《Petroleum Science》 SCIE CAS CSCD 2022年第6期3149-3158,共10页
Excess water production has become an important issue in the oil and gas extraction process.Preformed particle gels(PPGs),show the capability to control the conformance and reduce excess water cut.However,conventional... Excess water production has become an important issue in the oil and gas extraction process.Preformed particle gels(PPGs),show the capability to control the conformance and reduce excess water cut.However,conventional PPGs have poor mechanical properties and their swollen particles are easily damaged by shearing force when passing through the fractures in formations,meanwhile PPGs can be also degraded into various byproducts,leading to permanent damage to the reservoir permeability after temporary plugging.Herein,a novel type of dual cross-linked PPGs(dPPGs)was designed and synthesized using sodium alginate(SA)and acrylamide(AAm),cross-linked with N,N’-methylenebisacrylamide(MBA)and Fe^(3+).Results show that dPPGs have excellent mechanical properties with a storage modulus up to 86,445 Pa,which is almost 20 times higher than other reported PPGs.Meanwhile,dPPGs can be completely degraded into liquid without any solid residues or byproducts and the viscosity of dPPGs degraded liquid was found to be lower than 5 mPa·s.A laboratory coreflooding test showed that the plugging efficiency of dPPGs was up to 99.83%on open fractures.The obtained results demonstrated that dPPGs could be used as economical and environment-friendly temporary plugging agent with high-strength,self-degradation,thermal stability,and salt stability,thus making it applicable to a wide range of conformance control to enhance oil recovery. 展开更多
关键词 Conformance control Sodium alginate Dual cross-linked Temporary plugging agent high-strength Self-degradation
下载PDF
DEVELOPMENT OF EFFECTIVE TECHNOLOGICAL PROCESSES OF HIGH-STRENGTH STEEL WELDING 被引量:1
14
作者 L.I.Mikhoduj (The E. O. Paton Electric Welding Institute, NAS of Ukraine,Kiev,Ukraine) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第1期6-11,共6页
Composition and service properties of high - strength low-alloyed steels with 590-980 MPa yield strength,which find an application in Russia, Belorus,Ukraine and other countries of the former USSR in manufacture of we... Composition and service properties of high - strength low-alloyed steels with 590-980 MPa yield strength,which find an application in Russia, Belorus,Ukraine and other countries of the former USSR in manufacture of welded structures of a powerful mining and transport machinery, are given. Electrodes and wires for main processes of arc welding of these steels have been devel- oped on the basis of a rational use of different systems of alloying (08KhN2GM,08KhNG2M, and also economical systems of type 10G25, ect. ). Main approaches to the technological provess- es of manufacture of structures of high - strength steels are formulated.They are mainly directed to the weakening of de offect of the factors which contribute to a delayed fracture of joints (diffusive hydrogen,unfavourable rates of cooling,level of residual stresses). When there are no stress concentrators (and at a low level of residual stresses) the welded joints of these steels have a good resistance to fatigue and brittle fractures.As a rule, they are prevented with the help of the known approaches.It is shown that in addition to them and due to a proper selection of conditions of welding the life of welded joints of the high - strength steels can be 1. 2 - 1. 4 times in- creased. 展开更多
关键词 high-strength steel ALLOYING of WELD DELAYED FRACTURE strength of joint
下载PDF
Effect of nanosized NbC precipitates on hydrogen-induced cracking of high-strength low-alloy steel 被引量:2
15
作者 En-dian Fan Shi-qi Zhang +3 位作者 Dong-han Xie Qi-yue Zhao Xiao-gang Li Yun-hua Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第2期249-256,共8页
We investigated the effect of nanosized NbC precipitates on hydrogen-induced cracking(HIC)of high-strength low-alloy steel by conducting slow-strain-rate tensile tests(SSRT)and performing continuous hydrogen charging ... We investigated the effect of nanosized NbC precipitates on hydrogen-induced cracking(HIC)of high-strength low-alloy steel by conducting slow-strain-rate tensile tests(SSRT)and performing continuous hydrogen charging and fracture analysis.The results reveal that the HIC resistance of Nb-bearing steel is obviously superior to that of Nb-free steel,with the fractured Nb-bearing steel in the SSRT exhibiting a smaller ratio of elongation reduction(Iδ).However,as the hydrogen traps induced by NbC precipitates approach hydrogen saturation,the effect of the precipitates on the HIC resistance attenuate.We speculate that the highly dispersed nanosized NbC precipitates act as irreversible hydrogen traps that hinder the accumulation of hydrogen at potential crack nucleation sites.In addition,much like Nb-free steel,the Nb-bearing steel exhibits both H-solution strengthening and the resistance to HIC. 展开更多
关键词 nanosized NbC precipitates high-strength low-alloy steel hydrogen-induced cracking slow-strain-rate tensile hydrogen charging
下载PDF
Highly integrated sulfur cathodes with strong sulfur/high-strength binder interactions enabling durable high-loading lithium-sulfur batteries 被引量:2
16
作者 Arif Rashid Xingyu Zhu +6 位作者 Gulian Wang Chengzhi Ke Sha Li Pengfei Sun Zhongli Hu Qiaobao Zhang Li Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期71-79,共9页
The development of high-sulfur-loading Li-S batteries is a key prerequisite for their commercial applications.This requires to surmount the huge polarization,severe polysulfide shuttling and drastic volume change caus... The development of high-sulfur-loading Li-S batteries is a key prerequisite for their commercial applications.This requires to surmount the huge polarization,severe polysulfide shuttling and drastic volume change caused by electrode thickening.High-strength polar binders are ideal for constructing robust and long-life high-loading sulfur cathodes but show very weak interfacial interaction with non-polar sulfur materials.To address this issue,this work devises a highly integrated sulfur@polydopamine/highstrength binder composite cathodes,targeting long-lasting and high-sulfur-loading Li-S batteries.The super-adhesion polydopamine(PD)can form a uniform nano-coating over the graphene/sulfur(G-S)surface and provide strong affinity to the cross-linked polyacrylamide(c-PAM)binder,thus tightly integrating sulfur with the binder network and greatly boosting the overall mechanical strength/conductivity of the electrode.Moreover,the PD coating and c-PAM binder rich in polar groups can form two effective blockades against the effusion of soluble polysulfides.As such,the 4.5 mg cm−2 sulfur-loaded G-S@PD-c-PAM cathode achieves a capacity of 480 mAh g−1 after 300 cycles at 1 C,while maintaining a capacity of 396 mAh g−1 after 50 cycles at 0.2 C when the sulfur loading rises to 9.1 mg cm−2.This work provides a system-wide concept for constructing high-loading sulfur cathodes through integrated structural design. 展开更多
关键词 Cross-linked high-strength polar binder Highly integrated electrode structure High-sulfur-loading Li-S battery Polydopamine nano-bonding layer Strong sulfur/binder interaction
下载PDF
Experimental and Numerical Analysis of High-Strength Concrete Beams Including Steel Fibers and Large-Particle Recycled Coarse Aggregates 被引量:2
17
作者 Chunyang Liu Yangyang Wu +1 位作者 Yingqi Gao Zhenyun Tang 《Fluid Dynamics & Materials Processing》 EI 2021年第5期947-958,共12页
In order to study the performances of high-strength concrete beams including steel fibers and large-particle recycled aggregates,four different beams have been designed,tested experimentally and simulated numerically.... In order to study the performances of high-strength concrete beams including steel fibers and large-particle recycled aggregates,four different beams have been designed,tested experimentally and simulated numerically.As varying parameters,the replacement rates of recycled coarse aggregates and CFRP(carbon fiber reinforced polymer)sheets have been considered.The failure mode of these beams,related load deflection curves,stirrup strain and shear capacity have been determined through monotonic loading tests.The simulations have been conducted using the ABAQUS finite element software.The results show that the shear failure mode of recycled concrete beams is similar to that of ordinary concrete beams.The shear carrying capacity of high-strength concrete beams including steel fibers and large-particle recycled coarse aggregates grows with an increase in the replacement rate of recycled coarse aggregates.Reinforcement with CFRP sheets can significantly improve the beam’s shear carrying capacity and overall resistance to deformation. 展开更多
关键词 high-strength recycled concrete beam steel fiber large-particle recycled aggregates pre-damage reinforcement numerical simulation carrying capacity calculation
下载PDF
New high-strength Ti–Al–V–Mo alloy: from high-throughput composition design to mechanical properties 被引量:1
18
作者 Di Wu Wan-lin Wang +3 位作者 Li-gang Zhang Zhen-yu Wang Ke-chao Zhou Li-bin Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第9期1151-1165,共15页
The high-throughput diffusion-multiple technique and thermodynamics databases were used to design new high-strength Ti alloys. The composition–microstructure–property relationships of the Ti64–xMo alloys were obtai... The high-throughput diffusion-multiple technique and thermodynamics databases were used to design new high-strength Ti alloys. The composition–microstructure–property relationships of the Ti64–xMo alloys were obtained. The phase fraction and composition of the α and β phases of the Ti64–xMo alloys were calculated using the Thermo-Calc software. After aging at 600℃, the Ti64–6 Mo alloy precipitated ultrafine α phases. This phenomenon was explained on the basis of the pseudo-spinodal mechanism by calculating the Gibbs energy curves of the α and β phases of the Ti64–xMo alloys at 600℃. Bulk forged Ti64–6 Mo alloy exhibited high strength and moderate plasticity after α/β-phase-field solution treatment plus aging. The tensile properties of the alloy were determined by the size and morphology of the primary and secondary α phases and by the β grain size. 展开更多
关键词 high-strength TITANIUM ALLOY Ti–6Al–4V–xMo diffusion multiple THERMO-CALC microstructure and mechanical properties
下载PDF
Residual Mechanical Properties and Explosive Spalling Behavior of Ultra-High-Strength Concrete Exposed to High Temperature 被引量:2
19
作者 Gaifei Peng Juan Yang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2017年第4期62-70,共9页
In order to explore the characteristics of ultra-high-strength concrete exposed to high temperature,residual mechanical properties and explosive spalling behavior of ultra-high-strength concrete( UHSC) and high streng... In order to explore the characteristics of ultra-high-strength concrete exposed to high temperature,residual mechanical properties and explosive spalling behavior of ultra-high-strength concrete( UHSC) and high strength concrete( HSC) exposed to high temperatures ranging from 20 ℃ to 800 ℃ were determined. The microstructure of the specimens after exposure to elevated temperature was analyzed by means of scanning electron microscope( SEM) and mercury intrusion porosimetry( MIP). The residual compressive strengths of UHSC and HSC were first increased and then decreased as temperature increased. After exposure to 800 ℃,the compressive strengths of UHSC and HSC were 24. 2 % and 22. 3 % of their original strengths at 20 ℃,respectively. The residual splitting tensile strengths of both UHSC and HSC were consistently decreased with the temperature increasing and were approximately 20% of their original strengths after 800 ℃. However,the residual fracture energies of both concretes tended to ascend even at 600 ℃. The explosive spalling of UHSC was more serious than that of HSC. Moisture content of the specimens governs the explosive spalling of both concretes with a positive correlations,and it is more pronounced in UHSC. These results suggest that UHSC suffers a substantial loss in load-bearing capacity and is highly prone to explosive spalling due to high temperature. The changes in compressive strength are due to the changes in the density and the pore structure of concrete. The probability and severity of explosive spalling of UHSC are much higher than those of HSC due to the higher pore volume in HSC. 展开更多
关键词 ultra-high-strength CONCRETE high strength CONCRETE RESIDUAL mechanical properties EXPLOSIVE SPALLING
下载PDF
Deformation-softening behaviors of high-strength and high-toughness steels used for rock bolts 被引量:1
20
作者 Ding Wang Manchao He +2 位作者 Zhigang Tao Aipeng Guo Xuchun Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第6期1872-1884,共13页
In deep ground engineering,the use of high-strength and high-toughness steels for rock bolt can significantly improve its energy absorption capacity.However,the mechanisms and effects of rock loading conditions on thi... In deep ground engineering,the use of high-strength and high-toughness steels for rock bolt can significantly improve its energy absorption capacity.However,the mechanisms and effects of rock loading conditions on this kind of high energy-absorbing steel for rock bolt remain immature.In this study,taking Muzhailing highway tunnel as the background,physically based crystal plasticity simulations were performed to understand the effect of rock loading rate and pretension on the deformation behaviors of twinning induced plasticity(TWIP)steel used for rock bolt.The material physical connecting to the underlying microscopic mechanisms of dislocation glide and deformation twinning were incorporated in numerical modeling.The rock loading conditions were mimicked by the real-time field monitoring data of the NPR bolt/cable equipment installed on the tunnel surrounding rock surface.The results indicate that the bolt rod exhibits pronounced deformation-softening behavior with decrease of the loading rate.There is also a sound deformation-relaxation phenomenon induced by the dramatic decrease of loading rate after pre-tensioning.The high pretension(>600 MPa or 224 k N)can help bolt rod steel resist deformation-softening behavior,especially at low loading rate(<10~(-1)MPa/s or 10~(-2)kN/s).The loading rate was found to be a significant factor affecting deformation-softening behavior while the pretension was found to be the major parameter accounting for the deformation-relaxation scenario.The results provide the theoretical basis and technical support for practical applications. 展开更多
关键词 Rock bolt high-strength and high-toughness steels Loading rate PRETENSION Deformation-softening Crystal plasticity
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部