期刊文献+
共找到135篇文章
< 1 2 7 >
每页显示 20 50 100
Effect of nanosized NbC precipitates on hydrogen-induced cracking of high-strength low-alloy steel 被引量:5
1
作者 En-dian Fan Shi-qi Zhang +3 位作者 Dong-han Xie Qi-yue Zhao Xiao-gang Li Yun-hua Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第2期249-256,共8页
We investigated the effect of nanosized NbC precipitates on hydrogen-induced cracking(HIC)of high-strength low-alloy steel by conducting slow-strain-rate tensile tests(SSRT)and performing continuous hydrogen charging ... We investigated the effect of nanosized NbC precipitates on hydrogen-induced cracking(HIC)of high-strength low-alloy steel by conducting slow-strain-rate tensile tests(SSRT)and performing continuous hydrogen charging and fracture analysis.The results reveal that the HIC resistance of Nb-bearing steel is obviously superior to that of Nb-free steel,with the fractured Nb-bearing steel in the SSRT exhibiting a smaller ratio of elongation reduction(Iδ).However,as the hydrogen traps induced by NbC precipitates approach hydrogen saturation,the effect of the precipitates on the HIC resistance attenuate.We speculate that the highly dispersed nanosized NbC precipitates act as irreversible hydrogen traps that hinder the accumulation of hydrogen at potential crack nucleation sites.In addition,much like Nb-free steel,the Nb-bearing steel exhibits both H-solution strengthening and the resistance to HIC. 展开更多
关键词 nanosized NbC precipitates high-strength low-alloy steel hydrogen-induced cracking slow-strain-rate tensile hydrogen charging
下载PDF
Determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel 被引量:3
2
作者 Yi-shuang Yu Bin Hu +5 位作者 Min-liang Gao Zhen-jia Xie Xue-quan Rong Gang Han Hui Guo Cheng-jia Shang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期816-825,共10页
Here we present a novel approach of intercritical heat treatment for microstructure tailoring,in which intercritical annealing is introduced between conventional quenching and tempering.This induced a heterogeneous mi... Here we present a novel approach of intercritical heat treatment for microstructure tailoring,in which intercritical annealing is introduced between conventional quenching and tempering.This induced a heterogeneous microstructure consisting of soft intercritical ferrite and hard tempered martensite,resulting in a low yield ratio(YR)and high impact toughness in a high-strength low-alloy steel.The initial yielding and subsequent work hardening behavior of the steel during tensile deformation were modified by the presence of soft intercritical ferrite after intercritical annealing,in comparison to the steel with full martensitic microstructure.The increase in YR was related to the reduction in hardness difference between the soft and hard phases due to the precipitation of nano-carbides and the recovery of dislocations during tempering.The excellent low-temperature toughness was ascribed not only to the decrease in probability of microcrack initiation for the reduction of hardness difference between two phases,but also to the increase in resistance of microcrack propagation caused by the high density of high angle grain boundaries. 展开更多
关键词 heterogeneous microstructure yield ratio impact toughness intercritical heat treatment high-strength low-alloy steel
下载PDF
Effect of microstructure variation on the corrosion behavior of high-strength low-alloy steel in 3.5wt% NaCl solution 被引量:3
3
作者 Yu-bing Guo Chong Li +4 位作者 Yong-chang Liu Li-ming Yu Zong-qing Ma Chen-xi Liu Hui-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第6期604-612,共9页
The effect of microstructure variation on the corrosion behavior of high-strength low-alloy(HSLA) steel was investigated. The protective property of the corrosion product layer was also explored. Experimental result... The effect of microstructure variation on the corrosion behavior of high-strength low-alloy(HSLA) steel was investigated. The protective property of the corrosion product layer was also explored. Experimental results reveal that the type of microstructure has significant effect on the corrosion resistance of HSLA steel. The measurement results of weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy indicate that the steel with acicular ferrite microstructure exhibits the lowest corrosion rate. Martensite exhibits a reduced corrosion resistance compared with polygonal ferrite. It is found that the surface of the acicular ferrite specimen uniformly covered by corrosion products is seemingly denser and more compact than those of the other two microstructures, and can provide some amount of protection to the steel; thus, the charge transfer resistance and modulus values of the acicular ferrite specimen are the largest. However, corrosion products on martensite and polygonal ferrite are generally loose, porous, and defective, and can provide minor protectiveness; thus, the charge transfer resistance values for polygonal ferrite and martensite are lower. 展开更多
关键词 high-strength low-alloy steel microstructure corrosion sodium chloride solutions
下载PDF
Microstructure development in high-strength low-alloy steel welds
4
作者 Toshihiko KOSEKI 《Baosteel Technical Research》 CAS 2010年第S1期19-,共1页
The reliability of steel welds becomes more critical issue with increasing steel strength,because brittle phases are more likely to form in the weld metals and heat-affected zone(HAZ) and thereby the toughness and duc... The reliability of steel welds becomes more critical issue with increasing steel strength,because brittle phases are more likely to form in the weld metals and heat-affected zone(HAZ) and thereby the toughness and ductility of the welds are degraded.Therefore,refinement of microstructure and minimization of the brittle phases are necessary to improve the reliability of the high-strength steel welds.In this presentation,microstructure formation that controls the toughness of weld metals and HAZ in high-strength low-alloy(HSLA) steel welds is reviewed and possible routes to the improvement of the weld microstructure and weld toughness are discussed. 展开更多
关键词 high-strength steel WELD HAZ TOUGHNESS acicular ferrite MA constituent
下载PDF
Effect of oxide inclusions on MnS precipitates and tensile mechanical property of high-strength low-alloy steel
5
作者 Xiao-yong Gao Hong Wei Li-feng Zhang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2024年第5期1210-1220,共11页
The key role of oxide inclusions on the microstructure and mechanical property of a high-strength low-alloy steel was investigated.The field emission scanning electron microscope equipped with energy-dispersive spectr... The key role of oxide inclusions on the microstructure and mechanical property of a high-strength low-alloy steel was investigated.The field emission scanning electron microscope equipped with energy-dispersive spectrometry was used to characterize MnS precipitates.Oxide inclusions play an important role in the shape control of MnS precipitates.More oxides fovored to decrease the size and the aspect ratio of MnS precipitates.With less oxide inclusions in the steel,approximately over 16.7%MnS precipitates were with aspect ratio a>5 and pure MnS precipitates accounted for 75.9%in number.However,with more oxide inclusions in the steel,only 7.4%MnS precipitates were with a>5 and pure MnS precipitates accounted for 60.1%in number.Refinement of MnS by oxide inclusions improved the strength and inhibited the anisotropy.More oxide inclusions in the steel increased the yield strength and tensile strength of the steel in both longitudinal and transverse directions,and lowered the anisotropy of the mechanical property. 展开更多
关键词 high-strength low-alloy steel MNS Oxide inclusion Mechanical property ANISOTROPY
原文传递
Flow characteristics and hot workability of a typical low-alloy high-strength steel during multi-pass deformation
6
作者 Mingjie Zhao Lihong Jiang +4 位作者 Changmin Li Liang Huang Chaoyuan Sun Jianjun Li Zhenghua Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期323-336,共14页
Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging... Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging process, which is beneficial to the formulation of actual processing parameters. In the study, the multi-pass hot compression experiments of a typical LAHS steel are carried out at a wide range of deformation temperatures and strain rates. It is found that the work hardening rate of the experimental material depends on deformation parameters and deformation passes, which is ascribed to the impacts of static and dynamic softening behaviors. A new model is established to describe the flow characteristics at various deformation passes. Compared to the classical Arrhenius model and modified Zerilli and Armstrong model, the newly proposed model shows higher prediction accuracy with a confidence level of 0.98565. Furthermore, the connection between power dissipation efficiency(PDE) and deformation parameters is revealed by analyzing the microstructures. The PDE cannot be utilized to reflect the efficiency of energy dissipation for microstructure evolution during the entire deformation process, but only to assess the efficiency of energy dissipation for microstructure evolution in a specific deformation parameter state.As a result, an integrated processing map is proposed to better study the hot workability of the LAHS steel, which considers the effects of instability factor(IF), PDE, and distribution and size of grains. The optimized processing parameters for the multi-pass deformation process are the deformation parameters of 1223–1318 K and 0.01–0.08 s^(-1). Complete dynamic recrystallization occurs within the optimized processing parameters with an average grain size of 18.36–42.3 μm. This study will guide the optimization of the forging process of heavy components. 展开更多
关键词 low-alloy high-strength steel work hardening rate constitutive model hot workability multi-pass deformation
下载PDF
Development in oxide metallurgy for improving the weldability of high -strength low-alloy steel-Combined deoxidizers and microalloying elements
7
作者 Tingting Li Jian Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1263-1284,共22页
The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles du... The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles during welding.The chaotically oriented IAF and refined PAGs inhibit crack initiation and propagation in the steel,resulting in high impact toughness.This work summarizes the com-bined effect of deoxidizers and alloying elements,with the aim to provide a new perspective for the research and practice related to im-proving the impact toughness of the heat affected zone(HAZ)during the high heat input welding.Ti complex deoxidation with other strong deoxidants,such as Mg,Ca,Zr,and rare earth metals(REMs),can improve the toughness of the heat-affected zone(HAZ)by re-fining PAGs or increasing IAF contents.However,it is difficult to identify the specific phase responsible for IAF nucleation because ef-fective inclusions formed by complex deoxidation are usually multiphase.Increasing alloying elements,such as C,Si,Al,Nb,or Cr,con-tents can impair HAZ toughness.A high C content typically increases the number of coarse carbides and decreases the potency of IAF formation.Si,Cr,or Al addition leads to the formation of undesirable microstructures.Nb reduces the high-temperature stability of the precipitates.Mo,V,and B can enhance HAZ toughness.Mo-containing precipitates present good thermal stability.VN or V(C,N)is ef-fective in promoting IAF nucleation due to its good coherent crystallographic relationship with ferrite.The formation of the B-depleted zone around the inclusion promotes IAF formation.The interactions between alloying elements are complex,and the effect of adding dif-ferent alloying elements remains to be evaluated.In the future,the interactions between various alloying elements and their effects on ox-ide metallurgy,as well as the calculation of the nucleation effects of effective inclusions using first principles calculations will become the focus of oxide metallurgy. 展开更多
关键词 oxide metallurgy technology heat affected zone high-strength low-alloy steel intragranular acicular ferrite microalloying element
下载PDF
Effect of trace boron on corrosion resistance of rust layer of high-strength low-alloy steel in 3.5 wt.% NaCl solution
8
作者 Yan-hui Hou Ze-kun Xu Guang-qiang Li 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2023年第10期2080-2090,共11页
The influence mechanism of trace boron on the corrosion resistance of high-strength low-alloy(HSLA)steel in a simulated marine environment was studied by combining first-principles calculation with experiment.The effe... The influence mechanism of trace boron on the corrosion resistance of high-strength low-alloy(HSLA)steel in a simulated marine environment was studied by combining first-principles calculation with experiment.The effect of boron on the corrosion properties and corrosion morphology of the rust layer formed on the surface of HSLA steel was studied by means of corrosion weightlessness method,polarization curve,scanning electron microscopy(SEM)and X-ray diffraction(XRD)technique.The mass loss measurements and polarization curves revealed that the corrosion resistance of HSLA steel is improved by adding trace boron.XRD and SEM results show that the rust layer is produced byα-FeOOH(the main protective phase),Fe_(3)O_(4) andγ-FeOOH,and boron contributes to stability ofα-FeOOH.Based on the first-principles calculation,the solid solution of B atom in the corrosion product is beneficial to the fixation of Cl atom and to the reduction of the corrosion of Cl atom to the steel matrix. 展开更多
关键词 BORON high-strength low-alloy steel Corrosion resistance NaCl solution Rust layer First-principles calculation
原文传递
Recent progress in visualization and digitization of coherent transformation structures and application in high-strength steel
9
作者 Xuelin Wang Zhenjia Xie +1 位作者 Xiucheng Li Chengjia Shang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1298-1310,共13页
High-strength steels are mainly composed of medium-or low-temperature microstructures,such as bainite or martensite,with coherent transformation characteristics.This type of microstructure has a high density of disloc... High-strength steels are mainly composed of medium-or low-temperature microstructures,such as bainite or martensite,with coherent transformation characteristics.This type of microstructure has a high density of dislocations and fine crystallographic structural units,which ease the coordinated matching of high strength,toughness,and plasticity.Meanwhile,given its excellent welding perform-ance,high-strength steel has been widely used in major engineering constructions,such as pipelines,ships,and bridges.However,visual-ization and digitization of the effective units of these coherent transformation structures using traditional methods(optical microscopy and scanning electron microscopy)is difficult due to their complex morphology.Moreover,the establishment of quantitative relationships with macroscopic mechanical properties and key process parameters presents additional difficulty.This article reviews the latest progress in microstructural visualization and digitization of high-strength steel,with a focus on the application of crystallographic methods in the development of high-strength steel plates and welding.We obtained the crystallographic data(Euler angle)of the transformed microstruc-tures through electron back-scattering diffraction and combined them with the calculation of inverse transformation from bainite or martensite to austenite to determine the reconstruction of high-temperature parent austenite and orientation relationship(OR)during con-tinuous cooling transformation.Furthermore,visualization of crystallographic packets,blocks,and variants based on actual OR and digit-ization of various grain boundaries can be effectively completed to establish quantitative relationships with alloy composition and key process parameters,thereby providing reverse design guidance for the development of high-strength steel. 展开更多
关键词 high-strength steel MICROSTRUCTURE VISUALIZATION DIGITIZATION quantification mechanical properties
下载PDF
Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms
10
作者 Jingou Kuang Zhilin Long 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期337-350,共14页
This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while ... This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models. 展开更多
关键词 machine learning low-alloy steel atmospheric corrosion prediction corrosion rate feature fusion
下载PDF
Strengthening and toughening mechanism of a Cu-bearing high-strength low-alloy steel with refined tempered martensite/bainite(M/B)matrix and minor inter-critical ferrite 被引量:5
11
作者 Fei Zhu Feng Chai +2 位作者 Xiao-bing Luo Zheng-yan Zhang Cai-fu Yang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2021年第4期464-478,共15页
The microstructure–mechanical property relationship of a Cu-bearing low-carbon high-strength low-alloy steel,subjected to a novel multistage heat treatment including quenching(Q),lamellarization(L)and tempering(T),is... The microstructure–mechanical property relationship of a Cu-bearing low-carbon high-strength low-alloy steel,subjected to a novel multistage heat treatment including quenching(Q),lamellarization(L)and tempering(T),is presented.Yield strength of 989.5 MPa and average toughness at-80℃of 41 J were obtained in this steel after quenching and tempering(QT)heat treatments.Specimen QLT gained a little lower yield strength(982.5 MPa),but greatly enhanced average toughness at-80℃(137 J).To further clarify the strengthening and toughening mechanisms in specimen QLT,parameters of microstructural characteristic and crack propagation process were compared and analyzed for specimens Q,QL,QT and QLT.The microstructure of tempered martensite/bainite(M/B)in specimen QT changed to refined tempered M/B matrix mixed with minor IF(inter-critical ferrite)in specimen QLT.Cu-rich precipitates existed in tempered M/B for both specimens QT and QLT,as well as in IF.Compared with QT,adding a lamellarization step before tempering made the effective grains of specimen QLT refined and also led to coarser Cu-rich precipitates in tempered M/B matrix.The weaker strengthening effect of coarser Cu-rich precipitates should be a key reason for the slightly lower yield strength in specimen QLT than in specimen QT.No austenite was found in all specimens Q,QL,QT and QLT.Specimen QLT showed purely ductile fracture mode at-80℃due to the refined effective grains.The greatly improved toughness is mainly attributed to the enhanced energy of crack propagation.The combination of refined microstructure,softened matrix and deformation of minor'soft'IF during crack propagation led to the most superior toughness of specimen QLT among all specimens. 展开更多
关键词 high-strength low-alloy steel Multistage heat treatment Low-temperature toughness Strengthening mechanism Grain refinement Crack propagation
原文传递
Optimization of Calcium Addition to High-strength Low-alloy Steels 被引量:1
12
作者 Gu-jun CHEN Sheng-ping HE +3 位作者 Yin-tao GUO Bo-yi SHEN Shuo ZHAO Qian WANG 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2015年第7期590-597,共8页
Nozzle blockage is a common problem during continuous casting of Al-killed steel, and calcium treatment is widely used to resolve it. In consideration of the production costs, the technology of nonmetallic inclusion c... Nozzle blockage is a common problem during continuous casting of Al-killed steel, and calcium treatment is widely used to resolve it. In consideration of the production costs, the technology of nonmetallic inclusion control was studied to optimize the Ca consumption. The proposed process of slag washing was employed, and the refining slag composition, deoxidation conditions and alloying systems were optimized. Using these measures, the steel cleanliness before Ca addition was improved significantly, and the corresponding Ca consumption was reduced. More- over, the continuous casting could be conducted smoothly. 展开更多
关键词 nozzle blockage high-strength low-alloy steel calcium treatment slag washing steel cleanliness
原文传递
Visualization of microstructural factors resisting the crack propagation in mesosegregated high-strength low-alloy steel 被引量:1
13
作者 Shuxia Wang Chuanwei Li +2 位作者 Lizhan Han Haozhang Zhong Jianfeng Gu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第7期75-84,共10页
While relationship between fracture mechanism and homogeneous microstructures has been fully understood,relationship between fracture mechanism and inhomogeneous microstructures such as the mesosegregation receives le... While relationship between fracture mechanism and homogeneous microstructures has been fully understood,relationship between fracture mechanism and inhomogeneous microstructures such as the mesosegregation receives less attention as it deserves.Fracture mechanism of the high-strength low-alloy(HSLA)steel considering the mesosegregation was investigated and its corre s ponding micro structure was characterized in this paper.Mesosegregation re fers to the inhomogeneous distribution of alloy elements during casting solidification,and leads to the formation of positive segregation zones(PSZ)and negative segregation zones(NSZ)in ingots.The fracture surface of impact sample exhibits the quasi-cleavage fracture at-21℃,and is divided into ductile and brittle fracture zone.Meanwhile,the PSZ and NSZ spread across ductile and brittle fracture zone randomly.In ductile fracture zone,micro-voids fracture mechanism covers the PSZ and NSZ,and higher deformation degree is shown in the PSZ.In brittle fracture zone,secondary cleavage cracks are observed in both PSZ and NSZ,but present bigger size and higher quantity in the NSZ.However,some regions of the PSZ still present micro-voids fracture mechanism in brittle fracture zone.It reveals that the microstructures in the PSZ exhibit a higher resistance ability to crack propagation than that in the NSZ.All observations above provide a better visualization of the microstructural factors that resist the crack propagation.It is important to map all information regarding the fracture mechanism and mesosegregation to allow for further acceptance and industrial use. 展开更多
关键词 high-strength low-alloy steel Heavy forgings Mesosegregation Inhomogeneous microstructures Fracture mechanism
原文传递
Effect of heat input on microstructure and mechanical properties of dissimilar joints of AISI 316L steel and API X70 high-strength low-alloy steel 被引量:3
14
作者 Ebrahim Mortazavi Reza Amini Najafabadi Amirhossein Meysami 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第12期1248-1253,共6页
The microstructure and mechanical properties of dissimilar joints of AISI 316L austenitic stainless steel and API X70 high-strength low-alloy steel were investigated.For this purpose,gas tungsten arc welding(GTAW)wa... The microstructure and mechanical properties of dissimilar joints of AISI 316L austenitic stainless steel and API X70 high-strength low-alloy steel were investigated.For this purpose,gas tungsten arc welding(GTAW)was used in three different heat inputs,including 0.73,0.84,and 0.97 kJ/mm.The microstructural investigations of different zones including base metals,weld metal,heat-affected zones and interfaces were performed by optical microscopy and scanning electron microscopy.The mechanical properties were measured by microhardness,tensile and impact tests.It was found that with increasing heat input,the dendrite size and inter-dendritic spacing in the weld metal increased.Also,the amount of delta ferrite in the weld metal was reduced.Therefore,tensile strength and hardness were reduced and impact test energy was increased.The investigation of the interface between AISI 316L base metal and ER316L filler metal showed that increasing the heat input increases the size of austenite grains in the fusion boundary.A transition region was formed at the interface between API X70 steel and filler metals. 展开更多
关键词 Dissimilar joint AISI 316L steel API X70 high-strength low-alloy steel Transition region Heat input
原文传递
Tailoring Variant Pairing to Enhance Impact Toughness in High-Strength Low-Alloy Steels via Trace Carbon Addition
15
作者 Yi-Shuang Yu Zhi-Quan Wang +4 位作者 Bin-Bin Wu Jing-Xiao Zhao Xue-Lin Wang Hui Guo Cheng-Jia Shang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第6期755-764,共10页
Alloying can make conventional metals reach ultra-high strength,but this usually comes at dramatic loss of toughness.In this work,a desirable strength–toughness combination in high-strength low-alloy steel achieved v... Alloying can make conventional metals reach ultra-high strength,but this usually comes at dramatic loss of toughness.In this work,a desirable strength–toughness combination in high-strength low-alloy steel achieved via trace carbon addition.The significance of carbon in tailoring variant pairing and tuning impact toughness was elucidated from the perspective of crystallography and thermodynamics.As the carbon content increases,the packets and blocks are refined,and the-40 impact toughness improves.The enhancement of impact toughness results from the higher density of block boundaries,and the fracture mode shifts from brittle fracture to ductile–brittle combined fractures,then to ductile fracture due to the increased carbon.Increasing the carbon content would lower the martensite start temperature(M_S)temperature and driving force for martensitic transformation,and increase the strength of austenite matrix,which in turn contributes to producing more V1/V2 variant pairs to accommodate the transformation strain. 展开更多
关键词 high-strength low-alloy steel Carbon Impact toughness Variant pairing Phase transformation
原文传递
Interface reaction of high-strength low-alloy steel with Al-43.4Zn-1.6Si(wt.%)metallic coating
16
作者 Wang-jun Peng Guang-xin Wu +1 位作者 Yi Cheng Jie-yu Zhang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2019年第12期1304-1314,共11页
The microstructure,elemental distribution,phase composition,and thickness of intermetallic layers between high-strength low-alloy steel(H420)/mild carbon steel(DC51)and Al–43.4Zn–1.6Si(wt.%)(galvalume,GL)alloy were ... The microstructure,elemental distribution,phase composition,and thickness of intermetallic layers between high-strength low-alloy steel(H420)/mild carbon steel(DC51)and Al–43.4Zn–1.6Si(wt.%)(galvalume,GL)alloy were comparatively investigated.The experimental results reveal that the interfacial reaction layer was composed of Fe2Al5,Fe4Al13,and Al8Fe2Si intermetallic compounds.Moreover,the growth curves of the Fe2Al5 and Fe4Al13 intermetallic layers fit the parabolic law well,and the total thickness of the intermetallic layers of H420+GL was almost the same as that of DC51+GL.However,the thickness of the Fe2Al5 layer in H420+GL was thinner than that in DC51+GL.In addition,first-principle calculations were performed to explore the effect of Mn on the growth of the Fe2Al5 intermetallic phase,and the results indicate that Mn substitution in Fe2Al5 removes electronic charge from the Al atoms,thus decreasing the thickness of the Fe2Al5 interface layer. 展开更多
关键词 high-strength low-alloy steel Mild carbon steel Al–43.4Zn–1.6Si(wt.%)alloy Interface reaction
原文传递
Simultaneously Improving Mechanical Properties and Stress Corrosion Cracking Resistance of High-Strength Low-Alloy Steel via Finish Rolling within Non-recrystallization Temperature 被引量:4
17
作者 Hongchi Ma Baijie Zhao +4 位作者 Yi Fan Kui Xiao Jinbin Zhao Xuequn Cheng Xiaogang Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第4期565-578,共14页
The effect of hot rolling process on microstructure evolution,mechanical properties and stress corrosion cracking(SCC)resistance of high-strength low-alloy(HSLA)steels was investigated by varying the finish rolling te... The effect of hot rolling process on microstructure evolution,mechanical properties and stress corrosion cracking(SCC)resistance of high-strength low-alloy(HSLA)steels was investigated by varying the finish rolling temperature(FRT)and total rolling reduction.The results revealed granular bainite with large equiaxed grains was obtained by a total rolling reduction of60%with the FRT of 950℃(within recrystallization temperature T_(r)).The larger grain size and much less grain boundaries should account for the relatively lower strength and SCC resistance.A larger rolling reduction of 80% under the same FRT resulted in the formation of massive martensite-austenite(M/A)constituents and resultant low ductility and SCC resistance.In contrast,a good combination of strength,ductility and SCC resistance was obtained via 80% rolling reduction with the FRT of 860℃(within non-recrystallization temperature T_(nr)),probably because of the fine grain size and M/A constituents,as well as a high density of grain boundary network. 展开更多
关键词 high-strength low-alloy(HSLA)steel Finish rolling temperature Non-recrystallization temperature Stress corrosion cracking(SCC) Grain boundary character Martensite-austenite(m/a)constituents
原文传递
Hot Deformation and Corrosion Resistance of High-Strength Low-Alloy Steel 被引量:4
18
作者 Wilasinee Kingkam Cheng-Zhi Zhao +2 位作者 Hong Li He-Xin Zhang Zhi-Ming Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第4期495-505,共11页
The hot deformation characteristics and the corrosion behavior of a high-strength low-alloy(HSLA) steel were investigated at deformation temperatures ranging from 800 to 1100 ℃ and strain rates ranging from 0.1 to 10... The hot deformation characteristics and the corrosion behavior of a high-strength low-alloy(HSLA) steel were investigated at deformation temperatures ranging from 800 to 1100 ℃ and strain rates ranging from 0.1 to 10 s-1 using an MMS-200 thermal simulation testing machine. Based on the flow curves from the experiment, the effects of temperature and strain rate on the dynamic recrystallization behavior were analyzed. The flow stress decreased with increasing deformation temperature and decreasing strain rate. With the assistance of the process parameters, constitutive equations were used to obtain the activation energy and hot working equation. The hot deformation activation energy of HSLA steel in this work was 351.87 kJ/mol. The work hardening rate was used to determine the critical stress(strain) or the peak stress(strain). The dependence of these characteristic values on the Zener-Hollomon parameter was found. A dynamic recrystallization kinetics model of the tested HSLA steel was constructed, and the validity of the model was confirmed by the experimental results. Observation of the microstructures indicated that the grain size increased with increasing deformation temperature,which led to a lowered corrosion resistance of the specimens. 展开更多
关键词 Dynamic RECRYSTALLIZATION POTENTIODYNAMIC polarization HOT deformation Flow stress high-strength low-alloy steel
原文传递
Effects of Zr addition on microstructure and toughness of simulated CGHAZ in high-strength low-alloy steels 被引量:2
19
作者 Jin-wei Lei Kai-ming Wu +3 位作者 Yu Li Ting-ping Hou Xing Xie RDKMisra 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2019年第10期1117-1125,共9页
The effect of Zr addition(0.005,0.013,and 0.054 wt.%)on the microstructure and toughness of simulated coarse-grained heat-affected zone in high-strength low-alloy steels was revealed using a Gleeble 2000 thermal simul... The effect of Zr addition(0.005,0.013,and 0.054 wt.%)on the microstructure and toughness of simulated coarse-grained heat-affected zone in high-strength low-alloy steels was revealed using a Gleeble 2000 thermal simulator.It was observed that elongated MnS inclusions were formed in the lowest Zr-containing steel,while only pure equiaxed ZrO2 existed in the 0.054Zr steel(Zr content of 0.054 wt.%).Complex oxide-sulfide inclusions(ZrO2+MnS)with size of(1.40±0.25)μtm were formed in 0.013Zr steel(Zr content of 0.013 wt.%).The complex inclusions refined the prior austenite grain,and the nucleation of acicular ferrite was promoted compared to those of 0.005Zr steel(Zr content of 0.005 wt.%)and 0.054Zr steel.Consequently,the 0.013Zr steel possessed superior low-temperature impact toughness in relation to 0.005Zr and 0.054Zr steels.Thus,moderate Zr addition can be considered as an effective method to refine the structure and improve the mechanical properties of the coarse-grained heat-affected zone. 展开更多
关键词 high-strength low-alloy steel Welding Heat-affected zone Heat INPUT ZIRCONIUM ADDITION
原文传递
Investigation and Modeling of Austenite Grain Evolution for a Typical High-strength Low-alloy Steel during Soaking and Deformation Process 被引量:4
20
作者 Ming-Jie Zhao Liang Huang +5 位作者 Chang-Min Li Jia-Hui Xu Xu-Yang Li Jian-Jun Li Peng-Chuan Li Chao-Yuan Sun 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第6期996-1010,共15页
The final mechanical properties of components greatly depend on their grain size. It is necessary to study the grain evolution during different thermomechanical processes. In the study, the real-time austenite grain e... The final mechanical properties of components greatly depend on their grain size. It is necessary to study the grain evolution during different thermomechanical processes. In the study, the real-time austenite grain evolution of a high-strength low-alloy(HSLA) steel during the soaking process is investigated by in situ experiments. The effects of different deformation parameters on the dynamic recrystallization(DRX) kinetic behaviors are investigated by hot compression experiments. Based on the observations and statistics of the microstructures at different thermomechanical processes, a unified grain size model is established to evaluate the effects of soaking parameters and deformation parameters on the austenite grain evolution. Also, the DRX kinetic model and critical strain model are established, which can describe the effects of the soaking process on the DRX kinetics process well. The established grain size model and DRX kinetic model are compiled into the numerical simulation software using Fortran language. The austenite grain evolution of the material under different deformation conditions is simulated, which is consistent with the experimental results. It indicates that the established model is reliable, and can be used to simulate and predict the grain size during different thermomechanical processes accurately. 展开更多
关键词 high-strength steel Grain growth Dynamic recrystallization Grain size model Numerical simulation
原文传递
上一页 1 2 7 下一页 到第
使用帮助 返回顶部