Since the discovery of hydride superconductors,a significant challenge has been to reduce the pressure required for their stabilization.In this context,we propose that alloying could be an effective strategy to achiev...Since the discovery of hydride superconductors,a significant challenge has been to reduce the pressure required for their stabilization.In this context,we propose that alloying could be an effective strategy to achieve this.We focus on a series of alloyed hydrides with the AMH_(6)composition,which can be made via alloying A15 AH_(3)(A=Al or Ga)with M(M=a group IIIB or IVB metal),and study their behavior under pressure.Seven of them are predicted to maintain the A15-type structure,similar to AH_(3)under pressure,providing a platform for studying the effects of alloying on the stability and superconductivity of AH_(3).Among these,the A15-type phases of AlZrH_(6)and AlHfH_(6)are found to be thermodynamically stable in the pressure ranges of 40–150 and 30–181 GPa,respectively.Furthermore,they remain dynamically stable at even lower pressures,as low as 13 GPa for AlZrH_(6)and 6 GPa for AlHfH_(6).These pressures are significantly lower than that required for stabilizing A15 AlH3.Additionally,the introduction of Zr or Hf increases the electronic density of states at the Fermi level compared with AlH3.This enhancement leads to higher critical temperatures(Tc)of 75 and 76 K for AlZrH_(6)and AlHfH_(6)at 20 and 10 GPa,respectively.In the case of GaMH_(6)alloys,where M represents Sc,Ti,Zr,or Hf,these metals reinforce the stability of the A15-type structure and reduce the lowest thermodynamically stable pressure for GaH_(3) from 160 GPa to 116,95,80,and 85 GPa,respectively.Particularly noteworthy are the A15-type GaMH_(6)alloys,which remain dynamically stable at low pressures of 97,28,5,and 6 GPa,simultaneously exhibiting high Tc of 88,39,70,and 49 K at 100,35,10,and 10 GPa,respectively.Overall,these findings enrich the family of A15-type superconductors and provide insights for the future exploration of high-temperature hydride superconductors that can be stabilized at lower pressures.展开更多
The high-temperature superconductor (HTSC) resonator and diplexer are simulated by full-wave tools. A newly developed miniature HTSC diplexer is designed and fabricated on double sided YBa2Cu3O7 (YBCO) film (YBCO...The high-temperature superconductor (HTSC) resonator and diplexer are simulated by full-wave tools. A newly developed miniature HTSC diplexer is designed and fabricated on double sided YBa2Cu3O7 (YBCO) film (YBCO/LaAlO3/YBCO), the thickness of which is 400 nm for YBCO and 0.5 mm for the LaAlO3. The measured results show a good agreement with the simulation. The volume and mass of the diplexers are greatly reduced by miniaturized configuration.展开更多
The interaction between a permanent magnet(PM)assumed as a magnetic dipole and a flat high-temperature superconductor(HTS)is calculated by the advanced frozen-image model.When the dipole vertically moves above the sem...The interaction between a permanent magnet(PM)assumed as a magnetic dipole and a flat high-temperature superconductor(HTS)is calculated by the advanced frozen-image model.When the dipole vertically moves above the semiinfinite HTS,the general analytical expression of vertical force and that of torque are obtained for an arbitrary angle between the magnetization direction of the PM and the c axis of the HTS.The variations of the force and torque are analyzed for angle and vertical movements in both zero-field cooling(ZFC)condition and field cooling(FC)condition.It is found that the maximum vertical repulsive or attractive force has the positive or negative cosine relation with the angle.However,the maximum torque has the positive or negative sine relation.From the viewpoint of the rotational equilibrium,the orientation of the magnetic dipole with zero angle is deemed to be an unstable equilibrium point in ZFC,but the same orientation is considered as a stable equilibrium point in FC.In addition,both of the variation cycles of the maximum force and torque with the angle areπ.展开更多
Magnetic stiffness determines the stability of a high-temperature superconductor(HTS)magnetic levitation system.The quantitative properties of the physical and geometrical parameters that affect the stiffness of HTS l...Magnetic stiffness determines the stability of a high-temperature superconductor(HTS)magnetic levitation system.The quantitative properties of the physical and geometrical parameters that affect the stiffness of HTS levitation systems should be identified for improving the stiffness by some effective methods.The magnetic stiffness is directly related to the first-order derivative of the magnetic force with respect to the corresponding displacement,which indicates that the effects of the parameters on the stiffness should be different from the relationships between the forces and the same parameters.In this paper,we study the influences of some physical and geometrical parameters,including the strength of the external magnetic field(B0)produced by a rectangular permanent magnet(PM),critical current density(Jc),the PM-to-HTS area ratio(α),and thickness ratio(β),on the lateral stiffness by using a numerical approach under zero-field cooling(ZFC)and field cooling(FC)conditions.In the first and second passes of the PM,the lateral stiffness at most of lateral positions essentially increases with B0 increasing and decreases withβincreasing in ZFC and FC.The largest lateral stiffness at every lateral position is almost produced by the minimum value of Jc,which is obviously different from the lateral force–Jc relation.Theα-dependent lateral stiffness changes with some parameters,which include the cooling conditions of the bulk HTS,lateral displacement,and movement history of the PM.These findings can provide some suggestions for improving the lateral stiffness of the HTS levitation system.展开更多
The electromagnetic characteristics and iron loss of a high-temperature superconductor wind generator(HWG)equipped with an overlapped field coil arrangement(OFCA)are studied by comparing with the one equipped with the...The electromagnetic characteristics and iron loss of a high-temperature superconductor wind generator(HWG)equipped with an overlapped field coil arrangement(OFCA)are studied by comparing with the one equipped with the conventional field coil arrangement(CFCA).Through a quantitative analysis,it was found that HWG with OFCA exhibits better electromagnetic characteristics than HWG with CFCA and can reduce the iron loss by eliminating the magnetic flux sag caused by the adjacent field coil sides with the same current flow direction.In addition,the OFCA topology can further reduce the volume of the wind generator.展开更多
Superconducting magnetic levitation performance, including levitation force and guidance force, is important for the application of high-temperature super- conducting maglev. Both of them are not only affected by diff...Superconducting magnetic levitation performance, including levitation force and guidance force, is important for the application of high-temperature super- conducting maglev. Both of them are not only affected by different arrays of superconductors and magnets, but also by the thickness of the iron shim between permanent magnets. In order to obtain the best levitation performance, the magnetic field distribution, levitation force, and guidance force of a new type of three magnetic hills of permanent magnet guideway with iron shim of different thicknesses (4, 6, and 8 mm) are discussed in this paper. Simulation analysis and experiment results show that the guideway with iron shim of 8 mm thickness possesses the strongest magnetic field and levitation performance when the suspension gap is larger than 10 mm. However, with the decreasing of suspension gap, the guideway with iron shim of 4 mm thickness possesses the best levitation performance. The phenomena can be attributed to the density distribution of flux and magnetization of iron shim.展开更多
A dream long held by physicists has been to raise the critical temperature(Tc)—the temperature below which the material exhibits no electrical resistance—of a superconductor to room temperature.The most recent excit...A dream long held by physicists has been to raise the critical temperature(Tc)—the temperature below which the material exhibits no electrical resistance—of a superconductor to room temperature.The most recent excitement in that regard has centered on rare-earth superhydrides,of which LaH10 at 190 GPa has a remarkably high Tc of 260 K.展开更多
High energy ion backscattering can be used to enhance the sensitivity of oxygen analysis. At He++ ion energy of 8.8 MeV, the yield due to oxygen is about 25 times larger than that predicted by Rutherford formula. The ...High energy ion backscattering can be used to enhance the sensitivity of oxygen analysis. At He++ ion energy of 8.8 MeV, the yield due to oxygen is about 25 times larger than that predicted by Rutherford formula. The elemental stoichiometry of some bulk and thin film superconductor samples was determined. The details of the measuring method are discribed.展开更多
A modified spark plasma sintering(SPS) technique was developed for the fabrication of Bi2Sr2CaCu2Ox(Bi-2212)superconducting bulks with better intergrain connections. The influences of the modified SPS process on t...A modified spark plasma sintering(SPS) technique was developed for the fabrication of Bi2Sr2CaCu2Ox(Bi-2212)superconducting bulks with better intergrain connections. The influences of the modified SPS process on the microstructures, intergrain connections, and related superconducting properties were systematically analyzed. The modified SPS process can not only increase the final density of the bulk samples but also enhance the texture structures. Clean grain boundaries were obtained instead of the intergrain amorphous layers. Therefore the intergranular properties were obviously improved. Due to the better intergrain connections and the stronger flux pinning properties, the critical current densities of the Bi-2212 bulks obtained via the modified SPS process were greatly increased. The obtained improvements imply the possibility for the modified SPS technique to be used for enhancing the superconducting properties of the Bi-2212 tapes.展开更多
The effects of flux creep on the magnetization curves of high-temperature superconductors are investigated numerically for Anderson-Kim model.The pinning energy at zero current density,U_(c),greatly influences the flu...The effects of flux creep on the magnetization curves of high-temperature superconductors are investigated numerically for Anderson-Kim model.The pinning energy at zero current density,U_(c),greatly influences the flux penetration process,a larger U_(c),value reults in a larger penetration field.The characteristic of the magnetization curve is also a function of U_(c).The magnetization M and ΔM increase with the increasing U_(c) and depend on the magnetic induction B,so the critical current formula based on Bean model is pot accurate,especially for high-T_(c) superconductor,for which flux creep is a large effect.展开更多
We consider a Ginzburg-Landau modified model of layered high-temperature superconductor under pressure. We have theoretically studied the relation between the pressure and the temperature of layered high-temperature s...We consider a Ginzburg-Landau modified model of layered high-temperature superconductor under pressure. We have theoretically studied the relation between the pressure and the temperature of layered high-temperature superconductor. If the pressure is not a constant, we have a relation of quadratic equation between the pressure and the temperature of layered high-temperature superconductor. In a special case, we find the critical temperature decreases with further increasing pressure. In another special ease, the critical temperature increases with further increasing pressure.展开更多
1987: First BreakthroughsIn 1911, Dutch physicist Heike Kamerlingh Onnes found that some certain materials could become a "perfect conductor" in the presence of extremely low temperatures: the electrical res...1987: First BreakthroughsIn 1911, Dutch physicist Heike Kamerlingh Onnes found that some certain materials could become a "perfect conductor" in the presence of extremely low temperatures: the electrical resistance disappeared, and meanwhile the magnetic flux fields got totally expelled from the interior of the material. Such a phenomenon was later named superconductivity, and such materials termed superconductors.展开更多
The second-generation high-temperature superconductor tape(2G-HTS,also known as a coated conductor)based on REBaCuO(REBa_(2)Cu_(3)O_(7-δ))exhibits high current density and potential cost-effective price/performance,c...The second-generation high-temperature superconductor tape(2G-HTS,also known as a coated conductor)based on REBaCuO(REBa_(2)Cu_(3)O_(7-δ))exhibits high current density and potential cost-effective price/performance,compared with conventional superconducting materials.Using commercial 2G-HTS tapes,more than a dozen cable vendors had been manufacturing REBCO cables,such as the latest kilometer-class REBCO cable,which was incorporated into a civil grid on December 2021,as part of the recordbreaking 35-kV-voltage superconductor cable demonstration project in downtown Shanghai.This paper describes the development of HTS-coated conductors,then outlines the various technological routes for their preparation,reviews the artificial flux pinning of coated conductors,and finally summarizes the technological breakthroughs,the latest research advances,and provides an outlook on their application prospects.展开更多
Despite notable progress in thermoelectric(TE)materials and devices,developing TE aerogels with high-temperature resistance,superior TE performance and excellent elasticity to enable self-powered high-temperature moni...Despite notable progress in thermoelectric(TE)materials and devices,developing TE aerogels with high-temperature resistance,superior TE performance and excellent elasticity to enable self-powered high-temperature monitoring/warning in industrial and wearable applications remains a great challenge.Herein,a highly elastic,flame-retardant and high-temperature-resistant TE aerogel,made of poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate)/single-walled carbon nanotube(PEDOT:PSS/SWCNT)composites,has been fabricated,displaying attractive compression-induced power factor enhancement.The as-fabricated sensors with the aerogel can achieve accurately pressure stimuli detection and wide temperature range monitoring.Subsequently,a flexible TE generator is assembled,consisting of 25 aerogels connected in series,capable of delivering a maximum output power of 400μW when subjected to a temperature difference of 300 K.This demonstrates its outstanding high-temperature heat harvesting capability and promising application prospects for real-time temperature monitoring on industrial high-temperature pipelines.Moreover,the designed self-powered wearable sensing glove can realize precise wide-range temperature detection,high-temperature warning and accurate recognition of human hand gestures.The aerogel-based intelligent wearable sensing system developed for firefighters demonstrates the desired self-powered and highly sensitive high-temperature fire warning capability.Benefitting from these desirable properties,the elastic and high-temperature-resistant aerogels present various promising applications including self-powered high-temperature monitoring,industrial overheat warning,waste heat energy recycling and even wearable healthcare.展开更多
Optimizing the high-temperature energy storage characteristics of energy storage dielectrics is of great significance for the development of pulsed power devices and power control systems.Selecting a polymer with a hi...Optimizing the high-temperature energy storage characteristics of energy storage dielectrics is of great significance for the development of pulsed power devices and power control systems.Selecting a polymer with a higher glass transition temperature(T_(g))as the matrix is one of the effective ways to increase the upper limit of the polymer operating temperature.However,current high-T_(g)polymers have limitations,and it is difficult to meet the demand for high-temperature energy storage dielectrics with only one polymer.For example,polyetherimide has high-energy storage efficiency,but low breakdown strength at high temperatures.Polyimide has high corona resistance,but low high-temperature energy storage efficiency.In this work,combining the advantages of two polymer,a novel high-T_(g)polymer fiber-reinforced microstructure is designed.Polyimide is designed as extremely fine fibers distributed in the composite dielectric,which will facilitate the reduction of high-temperature conductivity loss for polyimide.At the same time,due to the high-temperature resistance and corona resistance of polyimide,the high-temperature breakdown strength of the composite dielectric is enhanced.After the polyimide content with the best high-temperature energy storage characteristics is determined,molecular semiconductors(ITIC)are blended into the polyimide fibers to further improve the high-temperature efficiency.Ultimately,excellent high-temperature energy storage properties are obtained.The 0.25 vol%ITIC-polyimide/polyetherimide composite exhibits high-energy density and high discharge efficiency at 150℃(2.9 J cm^(-3),90%)and 180℃(2.16 J cm^(-3),90%).This work provides a scalable design idea for high-performance all-organic high-temperature energy storage dielectrics.展开更多
Facing the complex variable high-temperature environment,electromagnetic wave(EMW)absorbing materials maintaining high stability and satisfying absorbing properties is essential.This study focused on the synthesis and...Facing the complex variable high-temperature environment,electromagnetic wave(EMW)absorbing materials maintaining high stability and satisfying absorbing properties is essential.This study focused on the synthesis and EMW absorbing performance evaluation of TiN/Fe_(2)N/C composite materials,which were prepared using electrostatic spinning followed by a high-temperature nitridation process.The TiN/Fe_(2)N/C fibers constructed a well-developed conductive network that generates considerable conduction loss.The heterogeneous interfaces between different components generated a significant level of interfacial polarization.Thanks to the synergistic effect of stable dielectric loss and optimized impedance matching,the TiN/Fe_(2)N/C composite materials demonstrated excellent and stable absorption performance across a wide temperature range(293-453 K).Moreover,TiN/Fe_(2)N/C-15 achieved a minimum reflection loss(RL)of−48.01 dB and an effective absorption bandwidth(EAB)of 3.64 GHz at 2.1 mm and 373 K.This work provides new insights into the development of high-efficiency and stabile EMW absorbing materials under complex variable high-temperature conditions.展开更多
Two-dimensional(2D)materials have demonstrated promising prospects owing to their distinctive electronic properties and exceptional mechanical properties.Among them,2D superconductors with T_(c) above the boiling poin...Two-dimensional(2D)materials have demonstrated promising prospects owing to their distinctive electronic properties and exceptional mechanical properties.Among them,2D superconductors with T_(c) above the boiling point of liquid nitrogen(77 K)will exhibit tremendous applicable value in the future.Here,we design two 2D superconductors Na(BC)_(2) and K(BC)_(2) with MgB2-like structures,which are theoretically predicted to host T_(c) as high as 99 and 102 K,respectively.The origin of such high T_(c) is ascribed to the presence of both𝜎-bonding bands and van Hove singularity at the Fermi level.Furthermore,T_(c) of Na(BC)_(2) is boosted up to 153K with a biaxial strain of 5%,which sets a new record among 2D superconductors.The predictions of Na(BC)_(2) and K(BC)_(2) open the door to explore 2D high-temperature superconductors and provide a potential future for developing new applications in 2D materials.展开更多
High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,...High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,N2physisorption,27Al magic angle spinning nuclear magnetic resonance(MAS NMR),and temperature-programmed desorption of ammonia results indicated that the hightemperature treatment at 650℃ hardly affected the inherent crystal and texture of HZSM-5zeolites but facilitated the conversion of framework Al to extra-framework Al,reducing the acid site and enhancing the acid strength.Moreover,the high-temperature treatment improved the performance of HZSM-5 zeolites in n-heptane catalytic cracking,promoting the conversion and light olefins yield while inhibiting coke formation.Based on the kinetic and mechanism analysis,the improvement of HZSM-5 performance caused by high-temperature treatment has been attributed to the formation of extra-framework Al,which enhanced the acid strength,facilitated the bimolecular reaction,and promoted the entropy change to overcome a higher energy barrier in n-heptane catalytic cracking.展开更多
This study focuses on finding a solution to the sharp decline in mechanical properties of Al-Si-Cu-Mg alloys due to rapid coarsening of traditional intermediate phases at high temperature.A new type of modified al oy,...This study focuses on finding a solution to the sharp decline in mechanical properties of Al-Si-Cu-Mg alloys due to rapid coarsening of traditional intermediate phases at high temperature.A new type of modified al oy,to be used in automobile engines at high temperatures,was prepared by adding Zr and Mo into Al-Si-Cu-Mg alloy.The synergistic effects of Zr and Mo on the microstructure evolution and high-temperature mechanical properties were studied.Results show that the addition of Zr and Mo generates a series of intermetallic phases dispersed in the alloy.They can improve the strength of the alloy by hindering dislocation movement and crack propagation.In addition,some nano-strengthened phases show coherent interfaces with the matrix and improve grain refinement.The addition of Mo greatly improves the heat resistance of the alloy.The extremely low diffusivity of Mo enables it to improve the thermal stability of the intermetallic phases,inhibit precipitation during aging,reduce the size of the precipitates,and improve the heat resistance of the alloy.展开更多
Second generation(2G)high-temperature superconductor(HTS)(RE)Ba2Cu3Ox(REBCO)shows a great potential in building high field magnets beyond 23.5 T.The electromagnetic modelling is vital for the design of HTS magnet,howe...Second generation(2G)high-temperature superconductor(HTS)(RE)Ba2Cu3Ox(REBCO)shows a great potential in building high field magnets beyond 23.5 T.The electromagnetic modelling is vital for the design of HTS magnet,however,this always suffers the challenge of huge computation for high field magnets with large number of turns.This study presents a novel electromagnetic modelling based on T-A formulation for REBCO magnets with thousands of turns.An equivalent turn method is proposed to reduce the number of turns in calculation,so that the computation cost can be reduced significantly,and meanwhile the key electromagnetic behaviour of HTS magnet can be simulated with enough accuracy.The ramping operation of a fully HTS magnet with 12,000 turns are analysed using both the original T-A model with actual turns and improved T-A model with equivalent turns.The two models show a good agreement on the key electromagnetic behaviours of the magnet:distribution of current density,magnetic fields,screen current induced field and magnetisation loss,so that this improved T-A model using equivalent turns is validated.The T-A modelling of REBCO magnet is a powerful tool for the electromagnetic analysis of industry-scale high field magnets.展开更多
基金supported by the Natural Science Foundation of China(Grant Nos.52022089,52372261,52288102,and 11964026)the National Key R&D Program of China(Grant No.2022YFA1402300)+5 种基金the Natural Science Foundation of Hebei Province(Grant No.E2022203109)the Doctoral Fund of Henan University of Technology(Grant No.31401579)P.L.thanks the Science and Technology Leading Talents and Innovation Team Building Projects of the Inner Mongolia Autonomous Region(Grant No.GXKY22060)financial support from the Spanish Ministry of Science and Innovation(Grant No.FIS2019-105488GB-I00)the Department of Education,Universities and Research of the Basque Government and the University of the Basque Country(Grant No.IT1707-22)the National Science Foundation(Grant No.DMR-2136038)for financial support.
文摘Since the discovery of hydride superconductors,a significant challenge has been to reduce the pressure required for their stabilization.In this context,we propose that alloying could be an effective strategy to achieve this.We focus on a series of alloyed hydrides with the AMH_(6)composition,which can be made via alloying A15 AH_(3)(A=Al or Ga)with M(M=a group IIIB or IVB metal),and study their behavior under pressure.Seven of them are predicted to maintain the A15-type structure,similar to AH_(3)under pressure,providing a platform for studying the effects of alloying on the stability and superconductivity of AH_(3).Among these,the A15-type phases of AlZrH_(6)and AlHfH_(6)are found to be thermodynamically stable in the pressure ranges of 40–150 and 30–181 GPa,respectively.Furthermore,they remain dynamically stable at even lower pressures,as low as 13 GPa for AlZrH_(6)and 6 GPa for AlHfH_(6).These pressures are significantly lower than that required for stabilizing A15 AlH3.Additionally,the introduction of Zr or Hf increases the electronic density of states at the Fermi level compared with AlH3.This enhancement leads to higher critical temperatures(Tc)of 75 and 76 K for AlZrH_(6)and AlHfH_(6)at 20 and 10 GPa,respectively.In the case of GaMH_(6)alloys,where M represents Sc,Ti,Zr,or Hf,these metals reinforce the stability of the A15-type structure and reduce the lowest thermodynamically stable pressure for GaH_(3) from 160 GPa to 116,95,80,and 85 GPa,respectively.Particularly noteworthy are the A15-type GaMH_(6)alloys,which remain dynamically stable at low pressures of 97,28,5,and 6 GPa,simultaneously exhibiting high Tc of 88,39,70,and 49 K at 100,35,10,and 10 GPa,respectively.Overall,these findings enrich the family of A15-type superconductors and provide insights for the future exploration of high-temperature hydride superconductors that can be stabilized at lower pressures.
基金Supported by the Foundation of National 863 Programme of China (No.2002AA306421)
文摘The high-temperature superconductor (HTSC) resonator and diplexer are simulated by full-wave tools. A newly developed miniature HTSC diplexer is designed and fabricated on double sided YBa2Cu3O7 (YBCO) film (YBCO/LaAlO3/YBCO), the thickness of which is 400 nm for YBCO and 0.5 mm for the LaAlO3. The measured results show a good agreement with the simulation. The volume and mass of the diplexers are greatly reduced by miniaturized configuration.
基金Projects supported by the National Natural Science Foundation of China(Grant No.11572232)the China Three Gorges Corporation Research Project(Grant No.202103407)。
文摘The interaction between a permanent magnet(PM)assumed as a magnetic dipole and a flat high-temperature superconductor(HTS)is calculated by the advanced frozen-image model.When the dipole vertically moves above the semiinfinite HTS,the general analytical expression of vertical force and that of torque are obtained for an arbitrary angle between the magnetization direction of the PM and the c axis of the HTS.The variations of the force and torque are analyzed for angle and vertical movements in both zero-field cooling(ZFC)condition and field cooling(FC)condition.It is found that the maximum vertical repulsive or attractive force has the positive or negative cosine relation with the angle.However,the maximum torque has the positive or negative sine relation.From the viewpoint of the rotational equilibrium,the orientation of the magnetic dipole with zero angle is deemed to be an unstable equilibrium point in ZFC,but the same orientation is considered as a stable equilibrium point in FC.In addition,both of the variation cycles of the maximum force and torque with the angle areπ.
基金the National Natural Science Foundation of China(Grant No.11572232)。
文摘Magnetic stiffness determines the stability of a high-temperature superconductor(HTS)magnetic levitation system.The quantitative properties of the physical and geometrical parameters that affect the stiffness of HTS levitation systems should be identified for improving the stiffness by some effective methods.The magnetic stiffness is directly related to the first-order derivative of the magnetic force with respect to the corresponding displacement,which indicates that the effects of the parameters on the stiffness should be different from the relationships between the forces and the same parameters.In this paper,we study the influences of some physical and geometrical parameters,including the strength of the external magnetic field(B0)produced by a rectangular permanent magnet(PM),critical current density(Jc),the PM-to-HTS area ratio(α),and thickness ratio(β),on the lateral stiffness by using a numerical approach under zero-field cooling(ZFC)and field cooling(FC)conditions.In the first and second passes of the PM,the lateral stiffness at most of lateral positions essentially increases with B0 increasing and decreases withβincreasing in ZFC and FC.The largest lateral stiffness at every lateral position is almost produced by the minimum value of Jc,which is obviously different from the lateral force–Jc relation.Theα-dependent lateral stiffness changes with some parameters,which include the cooling conditions of the bulk HTS,lateral displacement,and movement history of the PM.These findings can provide some suggestions for improving the lateral stiffness of the HTS levitation system.
基金partly supported by the National Natural Science Foundation of China under Grants No.61473061 and No.61104104the Sichuan Science and Technology Program under Grant No.2020YFSY0012the Program for New Century Excellent Talents in University under Grant No.NCET-13-0091。
文摘The electromagnetic characteristics and iron loss of a high-temperature superconductor wind generator(HWG)equipped with an overlapped field coil arrangement(OFCA)are studied by comparing with the one equipped with the conventional field coil arrangement(CFCA).Through a quantitative analysis,it was found that HWG with OFCA exhibits better electromagnetic characteristics than HWG with CFCA and can reduce the iron loss by eliminating the magnetic flux sag caused by the adjacent field coil sides with the same current flow direction.In addition,the OFCA topology can further reduce the volume of the wind generator.
基金supported by the National Magnetic Confinement Fusion Science Program (2011GB112001)the Program of International S&T Cooperation (S2013ZR0595)+2 种基金the National Natural Science Foundation of China (No. 51271155)the Fundamental Research Funds for the Central Universities (SWJTU11CX073, SWJTU11ZT16 and SWJTU11ZT31)the Science Foundation of Sichuan Province (2011JY0031 and 2011JY0130)
文摘Superconducting magnetic levitation performance, including levitation force and guidance force, is important for the application of high-temperature super- conducting maglev. Both of them are not only affected by different arrays of superconductors and magnets, but also by the thickness of the iron shim between permanent magnets. In order to obtain the best levitation performance, the magnetic field distribution, levitation force, and guidance force of a new type of three magnetic hills of permanent magnet guideway with iron shim of different thicknesses (4, 6, and 8 mm) are discussed in this paper. Simulation analysis and experiment results show that the guideway with iron shim of 8 mm thickness possesses the strongest magnetic field and levitation performance when the suspension gap is larger than 10 mm. However, with the decreasing of suspension gap, the guideway with iron shim of 4 mm thickness possesses the best levitation performance. The phenomena can be attributed to the density distribution of flux and magnetization of iron shim.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11534003,11874175,11874176,12074138,and 11974134)the Science Challenge Project(Grant No.TZ2016001)+3 种基金the Fundamental Research Funds for the Central Universities(Jilin University,JLU)the Program for JLU Science and Technology Innovative Research Team(JLUSTIRT)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33000000)the Jilin Province Outstanding Young Talents Project(Grant No.20190103040JH).
文摘A dream long held by physicists has been to raise the critical temperature(Tc)—the temperature below which the material exhibits no electrical resistance—of a superconductor to room temperature.The most recent excitement in that regard has centered on rare-earth superhydrides,of which LaH10 at 190 GPa has a remarkably high Tc of 260 K.
文摘High energy ion backscattering can be used to enhance the sensitivity of oxygen analysis. At He++ ion energy of 8.8 MeV, the yield due to oxygen is about 25 times larger than that predicted by Rutherford formula. The elemental stoichiometry of some bulk and thin film superconductor samples was determined. The details of the measuring method are discribed.
基金Project supported by the National Basic Research Program of China(Grant No.2011CBA00104)the National Natural Science Foundation of China(Grant No.51472206)+1 种基金the ITER Project of China(Grant No.2013GB110001)the Program for Innovative Research Team in Shaanxi Province,China(Grant No.2013KCT-07)
文摘A modified spark plasma sintering(SPS) technique was developed for the fabrication of Bi2Sr2CaCu2Ox(Bi-2212)superconducting bulks with better intergrain connections. The influences of the modified SPS process on the microstructures, intergrain connections, and related superconducting properties were systematically analyzed. The modified SPS process can not only increase the final density of the bulk samples but also enhance the texture structures. Clean grain boundaries were obtained instead of the intergrain amorphous layers. Therefore the intergranular properties were obviously improved. Due to the better intergrain connections and the stronger flux pinning properties, the critical current densities of the Bi-2212 bulks obtained via the modified SPS process were greatly increased. The obtained improvements imply the possibility for the modified SPS technique to be used for enhancing the superconducting properties of the Bi-2212 tapes.
文摘The effects of flux creep on the magnetization curves of high-temperature superconductors are investigated numerically for Anderson-Kim model.The pinning energy at zero current density,U_(c),greatly influences the flux penetration process,a larger U_(c),value reults in a larger penetration field.The characteristic of the magnetization curve is also a function of U_(c).The magnetization M and ΔM increase with the increasing U_(c) and depend on the magnetic induction B,so the critical current formula based on Bean model is pot accurate,especially for high-T_(c) superconductor,for which flux creep is a large effect.
文摘We consider a Ginzburg-Landau modified model of layered high-temperature superconductor under pressure. We have theoretically studied the relation between the pressure and the temperature of layered high-temperature superconductor. If the pressure is not a constant, we have a relation of quadratic equation between the pressure and the temperature of layered high-temperature superconductor. In a special case, we find the critical temperature decreases with further increasing pressure. In another special ease, the critical temperature increases with further increasing pressure.
文摘1987: First BreakthroughsIn 1911, Dutch physicist Heike Kamerlingh Onnes found that some certain materials could become a "perfect conductor" in the presence of extremely low temperatures: the electrical resistance disappeared, and meanwhile the magnetic flux fields got totally expelled from the interior of the material. Such a phenomenon was later named superconductivity, and such materials termed superconductors.
基金supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB25000000)by the National Natural Science Foundation(Grant No.52172271)by the National Key R&D Program of China(Grant No.2022YFE03150200)。
文摘The second-generation high-temperature superconductor tape(2G-HTS,also known as a coated conductor)based on REBaCuO(REBa_(2)Cu_(3)O_(7-δ))exhibits high current density and potential cost-effective price/performance,compared with conventional superconducting materials.Using commercial 2G-HTS tapes,more than a dozen cable vendors had been manufacturing REBCO cables,such as the latest kilometer-class REBCO cable,which was incorporated into a civil grid on December 2021,as part of the recordbreaking 35-kV-voltage superconductor cable demonstration project in downtown Shanghai.This paper describes the development of HTS-coated conductors,then outlines the various technological routes for their preparation,reviews the artificial flux pinning of coated conductors,and finally summarizes the technological breakthroughs,the latest research advances,and provides an outlook on their application prospects.
基金financially supported by the Guangdong Basic and Applied Basic Research Foundation(2022A1515110296,2022A1515110432)the Shenzhen Science and Technology Program(20231120171032001)the National Natural Science Foundation of China(No.52242305).
文摘Despite notable progress in thermoelectric(TE)materials and devices,developing TE aerogels with high-temperature resistance,superior TE performance and excellent elasticity to enable self-powered high-temperature monitoring/warning in industrial and wearable applications remains a great challenge.Herein,a highly elastic,flame-retardant and high-temperature-resistant TE aerogel,made of poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate)/single-walled carbon nanotube(PEDOT:PSS/SWCNT)composites,has been fabricated,displaying attractive compression-induced power factor enhancement.The as-fabricated sensors with the aerogel can achieve accurately pressure stimuli detection and wide temperature range monitoring.Subsequently,a flexible TE generator is assembled,consisting of 25 aerogels connected in series,capable of delivering a maximum output power of 400μW when subjected to a temperature difference of 300 K.This demonstrates its outstanding high-temperature heat harvesting capability and promising application prospects for real-time temperature monitoring on industrial high-temperature pipelines.Moreover,the designed self-powered wearable sensing glove can realize precise wide-range temperature detection,high-temperature warning and accurate recognition of human hand gestures.The aerogel-based intelligent wearable sensing system developed for firefighters demonstrates the desired self-powered and highly sensitive high-temperature fire warning capability.Benefitting from these desirable properties,the elastic and high-temperature-resistant aerogels present various promising applications including self-powered high-temperature monitoring,industrial overheat warning,waste heat energy recycling and even wearable healthcare.
基金funded by National Natural Science Foundation of China(No.U20A20308,52177017 and 51977050)Heilongjiang Province Natural Science Foundation of China(No.ZD2020E009)+3 种基金China Postdoctoral Science Foundation(No.2020T130156)Heilongjiang Postdoctoral Financial Assistance(No.LBHZ18098)Fundamental Research Foundation for Universities of Heilongjiang Province(No.2019-KYYWF-0207 and 2018-KYYWF-1624)University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(No.UNPYSCT-2020177)
文摘Optimizing the high-temperature energy storage characteristics of energy storage dielectrics is of great significance for the development of pulsed power devices and power control systems.Selecting a polymer with a higher glass transition temperature(T_(g))as the matrix is one of the effective ways to increase the upper limit of the polymer operating temperature.However,current high-T_(g)polymers have limitations,and it is difficult to meet the demand for high-temperature energy storage dielectrics with only one polymer.For example,polyetherimide has high-energy storage efficiency,but low breakdown strength at high temperatures.Polyimide has high corona resistance,but low high-temperature energy storage efficiency.In this work,combining the advantages of two polymer,a novel high-T_(g)polymer fiber-reinforced microstructure is designed.Polyimide is designed as extremely fine fibers distributed in the composite dielectric,which will facilitate the reduction of high-temperature conductivity loss for polyimide.At the same time,due to the high-temperature resistance and corona resistance of polyimide,the high-temperature breakdown strength of the composite dielectric is enhanced.After the polyimide content with the best high-temperature energy storage characteristics is determined,molecular semiconductors(ITIC)are blended into the polyimide fibers to further improve the high-temperature efficiency.Ultimately,excellent high-temperature energy storage properties are obtained.The 0.25 vol%ITIC-polyimide/polyetherimide composite exhibits high-energy density and high discharge efficiency at 150℃(2.9 J cm^(-3),90%)and 180℃(2.16 J cm^(-3),90%).This work provides a scalable design idea for high-performance all-organic high-temperature energy storage dielectrics.
基金financially supported by the Natural Science Foundation of Henan Province Youth Fund of China(No.242300421466)the Key Scientific Research Project Plan in Universities of Henan Province,China(No.23A430037)+1 种基金the Research Project of Xuchang University,China(No.2024ZD004)the College Students’Innovation and Entrepreneurship Training Program of China(No.202410480008).
文摘Facing the complex variable high-temperature environment,electromagnetic wave(EMW)absorbing materials maintaining high stability and satisfying absorbing properties is essential.This study focused on the synthesis and EMW absorbing performance evaluation of TiN/Fe_(2)N/C composite materials,which were prepared using electrostatic spinning followed by a high-temperature nitridation process.The TiN/Fe_(2)N/C fibers constructed a well-developed conductive network that generates considerable conduction loss.The heterogeneous interfaces between different components generated a significant level of interfacial polarization.Thanks to the synergistic effect of stable dielectric loss and optimized impedance matching,the TiN/Fe_(2)N/C composite materials demonstrated excellent and stable absorption performance across a wide temperature range(293-453 K).Moreover,TiN/Fe_(2)N/C-15 achieved a minimum reflection loss(RL)of−48.01 dB and an effective absorption bandwidth(EAB)of 3.64 GHz at 2.1 mm and 373 K.This work provides new insights into the development of high-efficiency and stabile EMW absorbing materials under complex variable high-temperature conditions.
基金supported by the National Natural Science Foundation of China(Grant Nos.12122405 and 12274169)the National Key Research and Development Program of China(Grant Nos.2022YFA1402304 and 2023YFA1406200)the Fundamental Research Funds for the Central Universities。
文摘Two-dimensional(2D)materials have demonstrated promising prospects owing to their distinctive electronic properties and exceptional mechanical properties.Among them,2D superconductors with T_(c) above the boiling point of liquid nitrogen(77 K)will exhibit tremendous applicable value in the future.Here,we design two 2D superconductors Na(BC)_(2) and K(BC)_(2) with MgB2-like structures,which are theoretically predicted to host T_(c) as high as 99 and 102 K,respectively.The origin of such high T_(c) is ascribed to the presence of both𝜎-bonding bands and van Hove singularity at the Fermi level.Furthermore,T_(c) of Na(BC)_(2) is boosted up to 153K with a biaxial strain of 5%,which sets a new record among 2D superconductors.The predictions of Na(BC)_(2) and K(BC)_(2) open the door to explore 2D high-temperature superconductors and provide a potential future for developing new applications in 2D materials.
基金the financial support from the National Natural Science Foundation of China(21908010)Jilin Provincial Department of Science and Technology(20220101089JC)the Education Department of Jilin Province(JJKH20220694KJ)。
文摘High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,N2physisorption,27Al magic angle spinning nuclear magnetic resonance(MAS NMR),and temperature-programmed desorption of ammonia results indicated that the hightemperature treatment at 650℃ hardly affected the inherent crystal and texture of HZSM-5zeolites but facilitated the conversion of framework Al to extra-framework Al,reducing the acid site and enhancing the acid strength.Moreover,the high-temperature treatment improved the performance of HZSM-5 zeolites in n-heptane catalytic cracking,promoting the conversion and light olefins yield while inhibiting coke formation.Based on the kinetic and mechanism analysis,the improvement of HZSM-5 performance caused by high-temperature treatment has been attributed to the formation of extra-framework Al,which enhanced the acid strength,facilitated the bimolecular reaction,and promoted the entropy change to overcome a higher energy barrier in n-heptane catalytic cracking.
基金supported by the Key R&D Program of Shandong Province of China(Grant number 2019QYTPY057)the Natural Science Foundation of Shandong Province of China(Grant numbers ZR2020ME110,ZR2021ME023)。
文摘This study focuses on finding a solution to the sharp decline in mechanical properties of Al-Si-Cu-Mg alloys due to rapid coarsening of traditional intermediate phases at high temperature.A new type of modified al oy,to be used in automobile engines at high temperatures,was prepared by adding Zr and Mo into Al-Si-Cu-Mg alloy.The synergistic effects of Zr and Mo on the microstructure evolution and high-temperature mechanical properties were studied.Results show that the addition of Zr and Mo generates a series of intermetallic phases dispersed in the alloy.They can improve the strength of the alloy by hindering dislocation movement and crack propagation.In addition,some nano-strengthened phases show coherent interfaces with the matrix and improve grain refinement.The addition of Mo greatly improves the heat resistance of the alloy.The extremely low diffusivity of Mo enables it to improve the thermal stability of the intermetallic phases,inhibit precipitation during aging,reduce the size of the precipitates,and improve the heat resistance of the alloy.
基金the National Natural Science Foundation of China under grant nos.11802036 and 11872195the National High Magnetic Field Laboratory,which was supported by the U.S.National Science Foundation Cooperative Agreement no.DMR-1644779 and the State of Florida.
文摘Second generation(2G)high-temperature superconductor(HTS)(RE)Ba2Cu3Ox(REBCO)shows a great potential in building high field magnets beyond 23.5 T.The electromagnetic modelling is vital for the design of HTS magnet,however,this always suffers the challenge of huge computation for high field magnets with large number of turns.This study presents a novel electromagnetic modelling based on T-A formulation for REBCO magnets with thousands of turns.An equivalent turn method is proposed to reduce the number of turns in calculation,so that the computation cost can be reduced significantly,and meanwhile the key electromagnetic behaviour of HTS magnet can be simulated with enough accuracy.The ramping operation of a fully HTS magnet with 12,000 turns are analysed using both the original T-A model with actual turns and improved T-A model with equivalent turns.The two models show a good agreement on the key electromagnetic behaviours of the magnet:distribution of current density,magnetic fields,screen current induced field and magnetisation loss,so that this improved T-A model using equivalent turns is validated.The T-A modelling of REBCO magnet is a powerful tool for the electromagnetic analysis of industry-scale high field magnets.