The deposition of mineral phases on the heat transfer surfaces of brown coal power plants may have a negative effect on power plant boilers. The paragenesis of these deposits contains information about the actual temp...The deposition of mineral phases on the heat transfer surfaces of brown coal power plants may have a negative effect on power plant boilers. The paragenesis of these deposits contains information about the actual temperature prevailed during the combustion of lignite, if the temperature-dependences of distinct mineral transformations or reactions are known. Here, we report results of a sintering study (to ?1100℃) with samples containing anhydrite, quartz, and gehlenite, which are typical components of Rhenish lignite ashes. Thermal decompositions and solid-state reactions were analyzed (1) in situ and (2) both in situ and after quenching using confocal hyperspectral Raman imaging. This novel application of confocal Raman spectroscopy provides temperature-and time-resolved, 2-dimensional information about sintering processes with a micrometer-scale resolution. In the course of the sintering experiments with anhydrite and quartz with a weight ratio of 2:1 both polymorphs wollastonite and pseudowollastonite were identified in situ at about 920 and 1000℃, respectively. The formation of pseudowollastonite was thus observed about 120℃ below the phase transition temperature, demonstrating that it can form metastably. In addition,α′L-Ca2SiO4 was identified at about 1100℃. In samples containing equal weight fractions of anhydrite and quartz that were quenched after firing for 9h at about 1100℃,β-Ca2SiO4 (larnite) crystallized as rims around anhydrite grains and in direct contact to wollastonite. We furthermore observed that, depending on the ratio between quartz and anhydrite, wollastonite replaced quartz grains between 920 and 1100℃., i.e., the higher the quartz content, the lower the formation temperature of wollastonite.展开更多
A high-temperature reduction roasting method was used to achieve metallic iron and zinc recovery from blast furnace gas ash(BFA).The reduction processes for Zn-containing and Fe-containing oxides were analyzed in deta...A high-temperature reduction roasting method was used to achieve metallic iron and zinc recovery from blast furnace gas ash(BFA).The reduction processes for Zn-containing and Fe-containing oxides were analyzed in detail by using ther-modynamic equilibrium calculation and the principle of minimum free energy.The results showed that the main reaction in the system is the reduction of ZnFe_(2)_(4)and iron oxides.Over the full temperature range,iron oxides were more easily reduced than zinc oxides.Regardless of the amount of CO contained in the system,the reduction of ZnO to Zn was difficult to proceed below the boiling point(906℃)of Zn.When the reduction temperature is below 906℃,the reduction process of zinc ferrate was ZnFe_(2)_(4)→ZnO;when the reduction temperature is above 906℃,its reduction process becomed ZnFe_(2)_(4)→ZnO→Zn(g).The metallization and dezincification rates of the BFA gradually increased with increasing reaction temperature.As the C/O ratio increased,the metallization and dezincification rates first increased and then decreased.The effect of reduction time on BFA reduction was similar to that of reaction temperature.展开更多
Portland cement(PC) containing high-volume fly ash(HVFA) is usually used to obtain economical and more sustainable merits, but these merits suffer from dramatically low compressive strength especially at early ages. I...Portland cement(PC) containing high-volume fly ash(HVFA) is usually used to obtain economical and more sustainable merits, but these merits suffer from dramatically low compressive strength especially at early ages. In this work, the possibility of using micro-size metakaolin(MSK) particles to improve the compressive strength of HVFA paste before and after subjecting to high temperatures was studied. To produce HVFA paste, cement was partially substituted with 70% fly ash(FA), by weight. After that, FA was partially substituted with MSK at ratios fluctuating from 5% to 20% with an interval of 5%, by weight. The effect of MSK on the workability of HVFA mixture was measured. After curing, specimens were subjected to different high temperatures fluctuating from 400 to 1000 ℃ with an interval of 200 ℃ for 2 h. The results were analyzed by different techniques named X-ray diffraction(XRD), thermogravimetry(TGA) and scanning electron microscopy(SEM). The results showed that the incorporation of MSK particles into HVFA mixture exhibited a negative effect on the workability and a positive effect on the compressive strength before and after firing.展开更多
文摘The deposition of mineral phases on the heat transfer surfaces of brown coal power plants may have a negative effect on power plant boilers. The paragenesis of these deposits contains information about the actual temperature prevailed during the combustion of lignite, if the temperature-dependences of distinct mineral transformations or reactions are known. Here, we report results of a sintering study (to ?1100℃) with samples containing anhydrite, quartz, and gehlenite, which are typical components of Rhenish lignite ashes. Thermal decompositions and solid-state reactions were analyzed (1) in situ and (2) both in situ and after quenching using confocal hyperspectral Raman imaging. This novel application of confocal Raman spectroscopy provides temperature-and time-resolved, 2-dimensional information about sintering processes with a micrometer-scale resolution. In the course of the sintering experiments with anhydrite and quartz with a weight ratio of 2:1 both polymorphs wollastonite and pseudowollastonite were identified in situ at about 920 and 1000℃, respectively. The formation of pseudowollastonite was thus observed about 120℃ below the phase transition temperature, demonstrating that it can form metastably. In addition,α′L-Ca2SiO4 was identified at about 1100℃. In samples containing equal weight fractions of anhydrite and quartz that were quenched after firing for 9h at about 1100℃,β-Ca2SiO4 (larnite) crystallized as rims around anhydrite grains and in direct contact to wollastonite. We furthermore observed that, depending on the ratio between quartz and anhydrite, wollastonite replaced quartz grains between 920 and 1100℃., i.e., the higher the quartz content, the lower the formation temperature of wollastonite.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51704021)Key Research and Development Projects of Sichuan Province(021YFG0114)+1 种基金Key Research and Development Projects of Shandong Province(2021CXGC010209)the Joint Funds of the National Natural Science Foundation of China(U1560203).
文摘A high-temperature reduction roasting method was used to achieve metallic iron and zinc recovery from blast furnace gas ash(BFA).The reduction processes for Zn-containing and Fe-containing oxides were analyzed in detail by using ther-modynamic equilibrium calculation and the principle of minimum free energy.The results showed that the main reaction in the system is the reduction of ZnFe_(2)_(4)and iron oxides.Over the full temperature range,iron oxides were more easily reduced than zinc oxides.Regardless of the amount of CO contained in the system,the reduction of ZnO to Zn was difficult to proceed below the boiling point(906℃)of Zn.When the reduction temperature is below 906℃,the reduction process of zinc ferrate was ZnFe_(2)_(4)→ZnO;when the reduction temperature is above 906℃,its reduction process becomed ZnFe_(2)_(4)→ZnO→Zn(g).The metallization and dezincification rates of the BFA gradually increased with increasing reaction temperature.As the C/O ratio increased,the metallization and dezincification rates first increased and then decreased.The effect of reduction time on BFA reduction was similar to that of reaction temperature.
文摘Portland cement(PC) containing high-volume fly ash(HVFA) is usually used to obtain economical and more sustainable merits, but these merits suffer from dramatically low compressive strength especially at early ages. In this work, the possibility of using micro-size metakaolin(MSK) particles to improve the compressive strength of HVFA paste before and after subjecting to high temperatures was studied. To produce HVFA paste, cement was partially substituted with 70% fly ash(FA), by weight. After that, FA was partially substituted with MSK at ratios fluctuating from 5% to 20% with an interval of 5%, by weight. The effect of MSK on the workability of HVFA mixture was measured. After curing, specimens were subjected to different high temperatures fluctuating from 400 to 1000 ℃ with an interval of 200 ℃ for 2 h. The results were analyzed by different techniques named X-ray diffraction(XRD), thermogravimetry(TGA) and scanning electron microscopy(SEM). The results showed that the incorporation of MSK particles into HVFA mixture exhibited a negative effect on the workability and a positive effect on the compressive strength before and after firing.