期刊文献+
共找到1,882篇文章
< 1 2 95 >
每页显示 20 50 100
From VIB‑to VB‑Group Transition Metal Disulfides:Structure Engineering Modulation for Superior Electromagnetic Wave Absorption 被引量:1
1
作者 Junye Cheng Yongheng Jin +10 位作者 Jinghan Zhao Qi Jing Bailong Gu Jialiang Wei Shenghui Yi Mingming Li Wanli Nie Qinghua Qin Deqing Zhang Guangping Zheng Renchao Che 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期218-257,共40页
The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various field... The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance. 展开更多
关键词 Transition metal disulfides electromagnetic wave absorption Impedance matching structure engineering modulation
下载PDF
Enhancing electromagnetic wave absorption with core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres 被引量:1
2
作者 Xuewen Jiang Qian Wang +7 位作者 Limeng Song Hongxia Lu Hongliang Xu Gang Shao Hailong Wang Rui Zhang Changan Wang Bingbing Fan 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期90-104,共15页
Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric const... Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2)as the core,MXene as the intermediate layer,and MoS_(2)as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2)nanosheets.Notably,the synergistic combination of SiO_(2)and MoS_(2)with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.” 展开更多
关键词 core‐shell structure electromagnetic wave absorption multiloss mechanism SiO_(2)@MXene@MoS_(2)
下载PDF
Controlled Twill Surface Structure Endowing Nanofiber Composite Membrane Excellent Electromagnetic Interference Shielding
3
作者 Dechang Tao Xin Wen +4 位作者 Chenguang Yang Kun Yan Zhiyao Li Wenwen Wang Dong Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期255-273,共19页
Inspired by the Chinese Knotting weave structure,an electromagnetic interference(EMI)nanofiber composite membrane with a twill surface was prepared.Poly(vinyl alcohol-co-ethylene)(Pva-co-PE)nanofibers and twill nylon ... Inspired by the Chinese Knotting weave structure,an electromagnetic interference(EMI)nanofiber composite membrane with a twill surface was prepared.Poly(vinyl alcohol-co-ethylene)(Pva-co-PE)nanofibers and twill nylon fabric were used as the matrix and filter templates,respectively.A Pva-co-PEMXene/silver nanowire(Pva-co-PE-MXene/AgNW,PM_(x)Ag)membrane was successfully prepared using a template method.When the MXene/AgNW content was only 7.4 wt%(PM_(7.4)Ag),the EMI shielding efficiency(SE)of the composite membrane with the oblique twill structure on the surface was 103.9 dB and the surface twill structure improved the EMI by 38.5%.This result was attributed to the pre-interference of the oblique twill structure in the direction of the incident EM wave,which enhanced the probability of the electromagnetic waves randomly colliding with the MXene nanosheets.Simultaneously,the internal reflection and ohmic and resonance losses were enhanced.The PM_(7.4)Ag membrane with the twill structure exhibited both an outstanding tensile strength of 22.8 MPa and EMI SE/t of 3925.2 dB cm^(-1).Moreover,the PM_(x)Ag nanocomposite membranes demonstrated an excellent thermal management performance,hydrophobicity,non-flammability,and performance stability,which was demonstrated by an EMI SE of 97.3%in a high-temperature environment of 140℃.The successful preparation of surface-twill composite membranes makes it difficult to achieve both a low filler content and a high EMI SE in electromagnetic shielding materials.This strategy provides a new approach for preparing thin membranes with excellent EMI properties. 展开更多
关键词 Twill surface structure MXene/AgNW Nanofiber membrane electromagnetic interference Flexibility and mechanical properties
下载PDF
Electrical structure identification of deep shale gas reservoir in complex structural area using wide field electromagnetic method
4
作者 Gu Zhi-Wen Li Yue-Gang +6 位作者 Yu Chang-Heng Zou Zhong-Ping Hu Ai-Guo Yin Xue-Bo Wang Qinag Ye Heng Tan Zhang-Kun 《Applied Geophysics》 SCIE CSCD 2024年第3期564-578,619,620,共17页
To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the con... To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored. 展开更多
关键词 complex tectonic area in southern Sichuan wide field electromagnetic method deep exploration shale gas reservoir electrical structure
下载PDF
Layered Structural PBAT Composite Foams for Efficient Electromagnetic Interference Shielding 被引量:1
5
作者 Jianming Yang Hu Wang +2 位作者 Yali Zhang Hexin Zhang Junwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期273-286,共14页
The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In th... The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In this work,magnetic poly(butyleneadipate-coterephthalate)(PBAT)microspheres were firstly synthesized via phase separation method,then PBAT composite foams with layered structure was constructed through the supercritical carbon dioxide foaming and scraping techniques.The merits of integrating ferroferric oxideloaded multi-walled carbon nanotubes(Fe3O4@MWCNTs)nanoparticles,a microcellular framework,and a highly conductive silver layer have been judiciously orchestrated within this distinctive layered configuration.Microwaves are consumed throughout the process of“absorption-reflection-reabsorption”as much as possible,which greatly declines the secondary radiation pollution.The biodegradable PBAT composite foams achieved an EMI shielding effectiveness of up to 68 dB and an absorptivity of 77%,and authenticated favorable stabilization after the tape adhesion experiment. 展开更多
关键词 electromagnetic interference shielding Layered structure Supercritical carbon dioxide foaming Poly(butyleneadipateco-terephthalate) MICROCELLULAR
下载PDF
Preliminary electromagnetic analysis of the COOL blanket for CFETR
6
作者 鲁帅领 马学斌 刘松林 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第1期101-108,共8页
The supercritical CO_(2)cOoled Lithium-Lead(COOL)blanket has been designed as one advanced blanket candidate for the Chinese Fusion Engineering Test Reactor(CFETR).This work focuses on the electromagnetic(EM)loads(Max... The supercritical CO_(2)cOoled Lithium-Lead(COOL)blanket has been designed as one advanced blanket candidate for the Chinese Fusion Engineering Test Reactor(CFETR).This work focuses on the electromagnetic(EM)loads(Maxwell force and Lorentz force)acting on the COOL blanket,which are important mechanical loads in further structural analysis of the COOL blanket.A 3D electromagnetic analysis is performed using the ANSYS finite element method to obtain EM loads on the COOL blanket in this study.At first,the magnetic scalar potential(MSP)method is used to obtain the magnetic field and the Maxwell force on the COOL blanket.Then,the magnetic vector potential(MVP)method is performed during a plasma disruption event to get the eddy current distribution.At last,a multi-step method is adopted for the calculation of the Lorentz force and the torque.The maximum Lorentz forces of inboard and outboard blanket structural components are 5624 kN and 2360 kN respectively. 展开更多
关键词 CFETR cool blanket finite element analysis electromagnetic analysis
下载PDF
Structural Engineering of Hierarchical Magnetic/Carbon Nanocomposites via In Situ Growth for High-Efficient Electromagnetic Wave Absorption
7
作者 Xianyuan Liu Jinman Zhou +1 位作者 Ying Xue Xianyong Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期262-278,共17页
Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention,yet encounter significant challenges.Developing new materials and innovative stru... Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention,yet encounter significant challenges.Developing new materials and innovative structural design concepts is crucial for expanding the application field of electromagnetic wave absorption.Particularly,hierarchical structure engineering has emerged as a promising approach to enhance the physical and chemical properties of materials,providing immense potential for creating versatile electromagnetic wave absorption materials.Herein,an exceptional multi-dimensional hierarchical structure was meticulously devised,unleashing the full microwave attenuation capabilities through in situ growth,selfreduction,and multi-heterogeneous interface integration.The hierarchical structure features a three-dimensional carbon framework,where magnetic nanoparticles grow in situ on the carbon skeleton,creating a necklace-like structure.Furthermore,magnetic nanosheets assemble within this framework.Enhanced impedance matching was achieved by precisely adjusting component proportions,and intelligent integration of diverse interfaces bolstered dielectric polarization.The obtain Fe_(3)O_(4)-Fe nanoparticles/carbon nanofibers/Al-Fe_(3)O_(4)-Fe nanosheets composites demonstrated outstanding performance with a minimum reflection loss(RLmin)value of−59.3 dB and an effective absorption bandwidth(RL≤−10 dB)extending up to 5.6 GHz at 2.2 mm.These notable accomplishments offer fresh insights into the precision design of high-efficient electromagnetic wave absorption materials. 展开更多
关键词 electromagnetic wave absorption Hierarchical structure In situ growth Self-reduction
下载PDF
Integration of Multiple Heterointerfaces in a Hierarchical 0D@2D@1D Structure for Lightweight,Flexible,and Hydrophobic Multifunctional Electromagnetic Protective Fabrics 被引量:7
8
作者 Shuo Zhang Xuehua Liu +4 位作者 Chenyu Jia Zhengshuo Sun Haowen Jiang Zirui Jia Guanglei Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期241-264,共24页
The development of wearable multifunctional electromagnetic protective fabrics with multifunctional,low cost,and high efficiency remains a challenge.Here,inspired by the unique flower branch shape of“Thunberg’s mead... The development of wearable multifunctional electromagnetic protective fabrics with multifunctional,low cost,and high efficiency remains a challenge.Here,inspired by the unique flower branch shape of“Thunberg’s meadowsweet”in nature,a nanofibrous composite membrane with hierarchical structure was constructed.Integrating sophisticated 0D@2D@1D hierarchical structures with multiple heterointerfaces can fully unleash the multifunctional application potential of composite membrane.The targeted induction method was used to precisely regulate the formation site and morphology of the metal–organic framework precursor,and intelligently integrate multiple heterostructures to enhance dielectric polarization,which improves the impedance matching and loss mechanisms of the electromagnetic wave absorbing materials.Due to the synergistic enhancement of electrospinning-derived carbon nanofiber“stems”,MOF-derived carbon nanosheet“petals”and transition metal selenide nano-particle“stamens”,the CoxSey/NiSe@CNSs@CNFs(CNCC)composite membrane obtains a minimum reflection loss value(RL_(min))of-68.40 dB at 2.6 mm and a maximum effective absorption bandwidth(EAB)of 8.88 GHz at a thin thickness of 2.0 mm with a filling amount of only 5 wt%.In addition,the multi-component and hierarchical heterostructure endow the fibrous membrane with excellent flexibility,water resistance,thermal management,and other multifunctional properties.This work provides unique perspectives for the precise design and rational application of multifunctional fabrics. 展开更多
关键词 Electrostatic spinning MOFs Bimetallic selenide Hierarchical structures Multiple heterointerfaces electromagnetic wave absorption
下载PDF
Hollow Gradient-Structured Iron-Anchored Carbon Nanospheres for Enhanced Electromagnetic Wave Absorption 被引量:5
9
作者 Cao Wu Jing Wang +14 位作者 Xiaohang Zhang Lixing Kang Xun Cao Yongyi Zhang Yutao Niu Yingying Yu Huili Fu Zongjie Shen Kunjie Wu Zhenzhong Yong Jingyun Zou Bin Wang Zhou Chen Zhengpeng Yang Qingwen Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期144-160,共17页
In the present paper,a microwave absorber with nanoscale gradient structure was proposed for enhancing the electromagnetic absorption performance.The inorganic-organic competitive coating strategy was employed,which c... In the present paper,a microwave absorber with nanoscale gradient structure was proposed for enhancing the electromagnetic absorption performance.The inorganic-organic competitive coating strategy was employed,which can effectively adjust the thermodynamic and kinetic reactions of iron ions during the solvothermal process.As a result,Fe nanoparticles can be gradually decreased from the inner side to the surface across the hollow carbon shell.The results reveal that it offers an outstanding reflection loss value in combination with broadband wave absorption and flexible adjustment ability,which is superior to other relative graded distribution structures and satisfied with the requirements of lightweight equipment.In addition,this work elucidates the intrinsic microwave regulation mechanism of the multiscale hybrid electromagnetic wave absorber.The excellent impedance matching and moderate dielectric parameters are exhibited to be the dominative factors for the promotion of microwave absorption performance of the optimized materials.This strategy to prepare gradient-distributed microwave absorbing materials initiates a new way for designing and fabricating wave absorber with excellent impedance matching property in practical applications. 展开更多
关键词 Gradient structures Carbon nanospheres electromagnetic wave absorption Impedance matching
下载PDF
Resilient Si_(3)N_(4)@SiO_(2)nanowire aerogels for high-temperature electromagnetic wave transparency and thermal insulation
10
作者 Wei Zhang Lei Su +5 位作者 De Lu Kang Peng Min Niu Lei Zhuang Jian Feng Hongjie Wang 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第11期2112-2122,共11页
With the development of aerospace technology,the Mach number of aircraft continues to increase,which puts forward higher performance requirements for high-temperature wave-transparent materials.Silicon nitrides have e... With the development of aerospace technology,the Mach number of aircraft continues to increase,which puts forward higher performance requirements for high-temperature wave-transparent materials.Silicon nitrides have excellent mechanical properties,high-temperature stability,and oxidation resistance,but their brittleness and high dielectric constant impede their practical applications.Herein,by employing a template-assisted precursor pyrolysis method,we prepared a class of Si_(3)N_(4)@SiO_(2)nanowire aerogels(Si_(3)N_(4)@SiO_(2)NWAGs)that are assembled by Si_(3)N_(4)@SiO_(2)nanowires with diameters ranging from 386 to 631 nm.Si_(3)N_(4)@SiO_(2)NWAGs have low density of 12–31 mg∙cm^(−3),specific surface area of 4.13 m^(2)∙g^(−1),and average pore size of 68.9μm.Mechanical properties characterization shows that the aerogels exhibit reversible compressibility from 60%compressive strain and good fatigue resistance even when being compressed 100 times at set strain of 20%.The aerogels also show good thermal insulation performance(0.032 W·m^(−1)∙K^(−1) at room temperature),ablation resistance(butane blow torch),and high-temperature stability(maximum service temperature in air over 1200℃).The dielectric constant and loss of the aerogels are 1.02–1.06 and 4.3×10^(−5)–1.4×10^(−3) at room temperature,respectively.The combination of good mechanical,thermal,and dielectric properties makes Si_(3)N_(4)@SiO_(2)NWAGs promising ultralight wave-transparent and thermally insulating materials for applications at high temperatures. 展开更多
关键词 electromagnetic wave transparency resilient ceramic aerogels high-temperature stability fire resistance high-temperature resistance
原文传递
Sympathetic electromagnetically induced transparency ground state cooling of a~(40)Ca^(+)–~(27)Al^(+)pair in an~(27)Al^(+)clock
11
作者 孙成龙 崔凯枫 +5 位作者 晁思嘉 魏远飞 袁金波 曹健 舒华林 黄学人 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期365-370,共6页
We report on electromagnetically induced transparency cooling of ^(40)Ca^(+)to sympathetically cool the threedimensional secular modes of motion in a ^(40)Ca^(+)–^(27)Al^(+)two-ion pair near the ground state.We obser... We report on electromagnetically induced transparency cooling of ^(40)Ca^(+)to sympathetically cool the threedimensional secular modes of motion in a ^(40)Ca^(+)–^(27)Al^(+)two-ion pair near the ground state.We observe simultaneous ground state cooling across all radial modes and axial modes of a ^(40)Ca^(+)–^(27)Al^(+)ion pair,occupying a broader cooling range in frequency space over 3 MHz.The cooling time is observed to be less than 1 ms.The mean phonon number and heating rates of all motional modes are measured.This study is not only an important step for reducing the secular motion time-dilation shift uncertainty and uptime ratio of ^(27)Al^(+)optical clock,but also essential for high-fidelity quantum simulations and quantum information processors using trapped ions. 展开更多
关键词 sympathetic electromagnetically induced transparency cooling trapped ions motional ground state ~(27)Al^(+)optical clock
下载PDF
Constructing BaTiO_(3)/TiO_(2)@polypyrrole composites with hollow multishelled structure for enhanced electromagnetic wave absorbing properties
12
作者 Dan Mao Zhen Zhang +3 位作者 Mei Yang Zumin Wang Ranbo Yu Dan Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第3期581-590,共10页
BaTiO_(3)/TiO_(2)@polypyrrole(PPy)composites with hollow multishelled structure(HoMS)were constructed to enhance the electromagnetic wave absorbing properties of BaTiO_(3)-based absorbing material.BaTiO_(3)/TiO_(2)HoM... BaTiO_(3)/TiO_(2)@polypyrrole(PPy)composites with hollow multishelled structure(HoMS)were constructed to enhance the electromagnetic wave absorbing properties of BaTiO_(3)-based absorbing material.BaTiO_(3)/TiO_(2)HoMSs were prepared by hydrothermal crystallization using TiO_(2)Ho MSs as template.Then,FeCl3 was introduced to initiate the oxidative polymerization of pyrrole monomer,forming BaTiO_(3)/TiO_(2)@PPy HoMSs successfully.The electromagnetic wave absorbing properties of BaTiO_(3)/TiO_(2)HoMSs and BaTiO_(3)/TiO_(2)@PPy Ho MSs with different shell number were investigated using a vector network analyzer.The results indicate that BaTiO_(3)/TiO_(2)@PPy HoMSs exhibit improved microwave absorption compared with BaTiO_(3)/TiO_(2)HoMSs.In particular,tripled-shelled BaTiO_(3)/TiO_(2)@PPy HoMS has the most excellent absorbing performance.The best reflection loss can reach up to-21.80 dB at 13.34 GHz with a corresponding absorber thickness of only 1.3 mm,and the qualified absorption bandwidth of tripled-shelled BaTiO_(3)/TiO_(2)@PPy HoMS is up to 4.2 GHz.This work paves a new way for the development of high-performance composite microwave absorbing materials. 展开更多
关键词 BaTiO_(3)/TiO_(2)@polypyrrole composites hollow multishelled structure electromagnetic wave absorbing
下载PDF
Multifunctional Film Assembled from N‑Doped Carbon Nanofiber with Co–N_(4)–O Single Atoms for Highly Efficient Electromagnetic Energy Attenuation
13
作者 Jia Xu Bei Li +5 位作者 Zheng Ma Xiao Zhang Chunling Zhu Feng Yan Piaoping Yang Yujin Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期359-376,共18页
Single-atom materials have demonstrated attractive physicochemical characteristics.However,understanding the relationships between the coordination environment of single atoms and their properties at the atomic level ... Single-atom materials have demonstrated attractive physicochemical characteristics.However,understanding the relationships between the coordination environment of single atoms and their properties at the atomic level remains a considerable challenge.Herein,a facile waterassisted carbonization approach is developed to fabricate well-defined asymmetrically coordinated Co–N_(4)–O sites on biomass-derived carbon nanofiber(Co–N_(4)–O/NCF)for electromagnetic wave(EMW)absorption.In such nanofiber,one atomically dispersed Co site is coordinated with four N atoms in the graphene basal plane and one oxygen atom in the axial direction.In-depth experimental and theoretical studies reveal that the axial Co–O coordination breaks the charge distribution symmetry in the planar porphyrin-like Co–N_(4) structure,leading to significantly enhanced dielectric polarization loss relevant to the planar Co–N_(4) sites.Importantly,the film based on Co–N_(4)–O/NCF exhibits light weight,flexibility,excellent mechanical properties,great thermal insulating feature,and excellent EMW absorption with a reflection loss of−45.82 dB along with an effective absorption bandwidth of 4.8 GHz.The findings of this work offer insight into the relationships between the single-atom coordination environment and the dielectric performance,and the proposed strategy can be extended toward the engineering of asymmetrically coordinated single atoms for various applications. 展开更多
关键词 Co single atoms Asymmetric coordination structure Axial oxygen coordination electromagnetic wave absorption Multifunctional film
下载PDF
3D Printing of Periodic Porous Metamaterials for Tunable Electromagnetic Shielding Across Broad Frequencies
14
作者 Qinniu Lv Zilin Peng +5 位作者 Haoran Pei Xinxing Zhang Yinghong Chen Huarong Zhang Xu Zhu Shulong Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期533-552,共20页
The new-generation electronic components require a balance between electromagnetic interference shielding efficiency and open structure factors such as ventilation and heat dissipation.In addition,realizing the tunabl... The new-generation electronic components require a balance between electromagnetic interference shielding efficiency and open structure factors such as ventilation and heat dissipation.In addition,realizing the tunable shielding of porous shields over a wide range of wavelengths is even more challenging.In this study,the well-prepared thermoplastic polyurethane/carbon nanotubes composites were used to fabricate the novel periodic porous flexible metamaterials using fused deposition modeling 3D printing.Particularly,the investigation focuses on optimization of pore geometry,size,dislocation configuration and material thickness,thus establishing a clear correlation between structural parameters and shielding property.Both experimental and simulation results have validated the superior shielding performance of hexagon derived honeycomb structure over other designs,and proposed the failure shielding size(D_(f)≈λ/8-λ/5)and critical inclined angle(θf≈43°-48°),which could be used as new benchmarks for tunable electromagnetic shielding.In addition,the proper regulation of the material thickness could remarkably enhance the maximum shielding capability(85-95 dB)and absorption coefficient A(over 0.83).The final innovative design of the porous shielding box also exhibits good shielding effectiveness across a broad frequency range(over 2.4 GHz),opening up novel pathways for individualized and diversified shielding solutions. 展开更多
关键词 Polymeric component 3D printing Tunable electromagnetic shielding Periodic porous metamaterials Honeycomb pore structure
下载PDF
3D printing“wire-on-sphere”hierarchical SiC nanowires/SiC whiskers foam for efficient high-temperature electromagnetic wave absorption 被引量:3
15
作者 Xinyuan Lv Fang Ye +1 位作者 Laifei Cheng Litong Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第14期94-104,共11页
Electromagnetic wave absorption(EWA)materials for use in extreme environments are of great interest.Herein,SiC nanowires/SiC whiskers(SiC_(nw)/SiC_(w))foam with unique“wire-on-sphere”hierarchical structure was devel... Electromagnetic wave absorption(EWA)materials for use in extreme environments are of great interest.Herein,SiC nanowires/SiC whiskers(SiC_(nw)/SiC_(w))foam with unique“wire-on-sphere”hierarchical structure was developed for efficient high-temperature EWA.SiC_(w)were assembled to porous SiC_(w)spheres via spray drying and then SiC_(w)spheres were 3D printed to SiC_(w)foam.The catalyst-free precursor infiltration pyrolysis process was first developed to ensure that SiCnwcan intentionally grow in situ on the surface of SiC_(w)spheres,thereby achieving“wire-on-sphere”hierarchical structure foam.At room-temperature,the maximum electromagnetic wave effective absorption bandwidth(EAB_(max))and minimum electromagnetic wave reflection coefficient(RC_(min))of SiC_(nw)/SiC_(w)foam can reach 4 GHz and-57 dB,respectively.At600℃,the EAB_(max)and RC_(min) were 3 GHz and-15 dB,respectively.Furthermore,even oxidized at 1000-1500℃,SiC_(nw)/SiC_(w)foam can still retain EAB_(max)ranging from 2.7 to 3.9 GHz and RC_(min)ranging from-16 dB to-64 dB,because the formation of SiO_(2)layer with appropriate thickness can boost interfacial polarization and regulate impedance matching.The SiC_(nw)/SiC_(w)foam also shows the flexural strength as high as 17.05 MPa.All results demonstrate that the SiC nw/SiC_(w)foam is a promising EWA material for applications of harsh environments.And the material-independent“wire-on-sphere”hierarchical structure and its novel preparation process should find the widespread use in the design and fabrication of high-efficiency EWA micro-nano materials. 展开更多
关键词 “wire-on-sphere”hierarchical structure SiC nanowires SiC whiskers 3D printing high-temperature electromagnetic wave ABSORPTION
原文传递
High-Efficiency Electromagnetic Interference Shielding of rGO@FeNi/Epoxy Composites with Regular Honeycomb Structures 被引量:22
16
作者 Ping Song Zhonglei Ma +2 位作者 Hua Qiu Yifan Ru Junwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第3期244-256,共13页
With the rapid development of fifth-generation mobile com-munication technology and wearable electronic devices,electromagnetic interference and radiation pollution caused by electromagnetic waves have attracted world... With the rapid development of fifth-generation mobile com-munication technology and wearable electronic devices,electromagnetic interference and radiation pollution caused by electromagnetic waves have attracted worldwide attention.Therefore,the design and development of highly efficient EMI shielding materials are of great importance.In this work,the three-dimensional graphene oxide(GO)with regular honeycomb structure(GH)is firstly constructed by sacrificial template and freeze-dry-ing methods.Then,the amino functionalized FeNi alloy particles(f-FeNi)are loaded on the GH skeleton followed by in-situ reduction to prepare rGH@FeNi aerogel.Finally,the rGH@FeNi/epoxy EMI shielding com-posites with regular honeycomb structure is obtained by vacuum-assisted impregnation of epoxy resin.Benefitting from the construction of regular honeycomb structure and electromagnetic synergistic effect,the rGH@FeNi/epoxy composites with a low rGH@FeNi mass fraction of 2.1 wt%(rGH and f-FeNi are 1.2 and 0.9 wt%,respectively)exhibit a high EMI shielding effectiveness(EMI SE)of 46 dB,which is 5.8 times of that(8 dB)for rGO/FeNi/epoxy composites with the same rGO/FeNi mass fraction.At the same time,the rGH@FeNi/epoxy composites also possess excellent thermal stability(heat-resistance index and temperature at the maximum decomposition rate are 179.1 and 389.0°C respectively)and mechanical properties(storage modulus is 8296.2 MPa). 展开更多
关键词 electromagnetic interference shielding rGO@FeNi Epoxy resins Honeycomb structures
下载PDF
Numerical Simulation of Linear Electromagnetic Stirring in Secondary Cooling Region of Slab Caster 被引量:7
17
作者 HUANGJun-tao WANGEn-gang HEJi-eheng 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2003年第3期16-21,共6页
According to the theory of alternating magnetohydrodynamics and magnetic boundary renewal method,mathematical models were proposed for electromagnetic stirring in secondary cooling region( SEMS) of slab caster. The ma... According to the theory of alternating magnetohydrodynamics and magnetic boundary renewal method,mathematical models were proposed for electromagnetic stirring in secondary cooling region( SEMS) of slab caster. The magnetic fields and flow fields of melt were simulated with SEMS. It's shown that the electromagnetic forces with inward and sidelong components produced by travel magnetic field at the wide faces of slab make the melt whirling in horizontal section,and the convection of the melt is strengthened obviously there. In addition,magnetic flux density attenuates from the edge to the center of slab,and the profile of the melt velocity along slab thickness in the center of the horizontal section takes a two-opposite-peak configuration. Ultimately,the stirring intensity and features are determined by the electromagnetic parameters,coil arrangement and stirring types. 展开更多
关键词 slab casting secondary cooling region linear electromagnetic stirring numerical simulation
下载PDF
Prediction Technology of Buried Water-Bearing Structures in Coal Mines Using Transient Electromagnetic Method 被引量:21
18
作者 JIANG Zhi-hai YUE Jian-hua LIU Shu-cai 《Journal of China University of Mining and Technology》 EI 2007年第2期164-167,共4页
Buried water-conducting and water-bearing structures in front of the driving head may easily lead to water bursts in coal mines. Therefore,it is very important for the safety of production to make an accurate and time... Buried water-conducting and water-bearing structures in front of the driving head may easily lead to water bursts in coal mines. Therefore,it is very important for the safety of production to make an accurate and timely forecast about water bursts. Based on the smoke ring effect of transient electromagnetic fields,the principle of transient electro-magnetic method used in detecting buried water-bearing structures in coal mines in advance,is discussed. Small multi-turn loop configurations used in coal mines are proposed and a field procedure of semicircular sector scanning is presented. The application of this method in one coal mine indicates that the technology has many advantages compared with others. The method is inexpensive,highly accurate and efficient. Suggestions are presented for future solutions to some remaining problems. 展开更多
关键词 mine transient electromagnetic method advance detection water-bearing structure small multi-turn loop sector scanning
下载PDF
Numerical simulation and dimension reduction analysis of electromagnetic logging while drilling of horizontal wells in complex structures 被引量:7
19
作者 Zhen-Guan Wu Shao-Gui Deng +5 位作者 Xu-Quan He Runren Zhang Yi-Ren Fan Xi-Yong Yuan Yi-Zhi Wu Qing Huo Liu 《Petroleum Science》 SCIE CAS CSCD 2020年第3期645-657,共13页
Electromagnetic logging while drilling(LWD)is one of the key technologies of the geosteering and formation evaluation for high-angle and horizontal wells.In this paper,we solve the dipole source-generated magnetic/ele... Electromagnetic logging while drilling(LWD)is one of the key technologies of the geosteering and formation evaluation for high-angle and horizontal wells.In this paper,we solve the dipole source-generated magnetic/electric fields in 2D formations efficiently by the 2.5D finite diff erence method.Particularly,by leveraging the field’s rapid attenuation in spectral domain,we propose truncated Gauss–Hermite quadrature,which is several tens of times faster than traditional inverse fast Fourier transform.By applying the algorithm to the LWD modeling under complex formations,e.g.,folds,fault and sandstone pinch-outs,we analyze the feasibility of the dimension reduction from 2D to 1D.For the formations with smooth lateral changes,like folds,the simplified 1D model’s results agree well with the true responses,which indicate that the 1D simplification with sliding window is feasible.However,for the formation structures with drastic rock properties changes and sharp boundaries,for instance,faults and sandstone pinch-outs,the simplified 1D model will lead to large errors and,therefore,2.5D algorithms should be applied to ensure the accuracy. 展开更多
关键词 Complex formation structures Horizontal wells electromagnetic logging while drilling 2.5D algorithm-Model simplification
下载PDF
Microstructure and Mechanical Properties of Electromagnetic Centrifugal Cast 1Cr25Ni20Si2 Tube Blank 被引量:3
20
作者 QIU Yi-qing JIA Guang-lin LIU Xiang-hua WANG Guo-dong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第1期67-69,共3页
1Cr25Ni20Si2 tube blank centrifugally cast in a steady magnetic field was investigated. The results indicated that the solidification structure and the mechanical properties of the blank can be improved remarkably by ... 1Cr25Ni20Si2 tube blank centrifugally cast in a steady magnetic field was investigated. The results indicated that the solidification structure and the mechanical properties of the blank can be improved remarkably by electromagnetic stirring, and seamless tube can be manufactured from such blanks. 展开更多
关键词 centrifugal casting steady magnetic field solidification structure mechanical property electromagnetic stirring
下载PDF
上一页 1 2 95 下一页 到第
使用帮助 返回顶部