Nowadays buildings contain innovative materials,materials from local resources,production surpluses and rapidly renewable natural resources.Phase Change Materials(PCM)are one such group of novel materials which reduce...Nowadays buildings contain innovative materials,materials from local resources,production surpluses and rapidly renewable natural resources.Phase Change Materials(PCM)are one such group of novel materials which reduce building energy consumption.With the wider availability of microencapsulated PCM,there is an opportunity to develop a new type of insulating materials,combinate PCM with traditional insulation materials for latent heat energy storage.These materials are typically flammable and are located on the interior wall finishing yet there has been no detailed assessment of their fire performance.In this research work prototypes of low-density insulating boards for indoor spaces from hemp shives using carbamide resin binder and cold pressing were studied.Bench-scale cone calorimeter tests were conducted to evaluate fire risk,with a focus on assessing material flammability properties and the influence of PCM on the results.In this research,the amount of smoke,heat release rate,effective heat of combustion,specific extinction coefficient,mass loss,carbon dioxide yield,specific loss factor,ignition time of hemp straws samples and samples of hemp straws with 10%and without PCM admixture were compared.There is a risk of flammability for PCM and their fire reaction has not been evaluated when incorporating PCM into interior wall finishing boards.The obtained results can be used by designers to balance the potential energy savings of using PCM with a more complete understanding and predictability of the associated fire risk when using the proposed boards.It also allows for appropriate risk mitigation strategies.展开更多
Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan...Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.展开更多
The lauric-myristic-palmitic acid( LA-MA-PA) ternary eutectic mixtures/expanded graphite( EG) composite phase change materials( PCMs) were prepared by absorbing LA-MA-PA into the porous network of EG. The optimum rati...The lauric-myristic-palmitic acid( LA-MA-PA) ternary eutectic mixtures/expanded graphite( EG) composite phase change materials( PCMs) were prepared by absorbing LA-MA-PA into the porous network of EG. The optimum ratio of ternary eutectic mixtures to EG was determined to be 93∶7 without liquid LA-MA-PA leakage from the composite PCMs. In order to make the structure more stable, the composite PCMs were encapsulated by surface treatment agent to prepare LA-MA-PA/EG encapsulating form-stable PCMs which were characterized by scanning electron microscope( SEM),Fourier transformation infrared spectroscope( FT-IR),differential scanning calorimetry( DSC) and thermal treatment. The results showed there was no chemical reaction between surface treatment agent and LA-MA-PA,and the samples were compactly encapsulated which left almost no imprint on the filter paper after thermal treatment. The phase change temperature and latent heat of LA-MA-PA/EG encapsulating form-stable PCMs were tested to be29. 32 ℃ and 96. 20 J/g,respectively. Additionally,the heat transfer efficiency of heat storage was improved by the addition of EG.展开更多
The specific heat capacity of working fluid is an important influence factor on heat transfer characteristic of the pulsating heat pipe(PHP).Due to the relatively large specific heat capacity of micro encapsulated pha...The specific heat capacity of working fluid is an important influence factor on heat transfer characteristic of the pulsating heat pipe(PHP).Due to the relatively large specific heat capacity of micro encapsulated phase change material(MEPCM) suspension,a heat transfer performance experimental facility of the PHP was established.The heat transfer characteristic with MEPCM suspension of different mass concentrations(0.5% and 1.0%) and ultra-pure water were compared experimentally.It was found that when the PHP uses MEPCM suspension as its working fluid,operating stability is impoverished under lower heating power and the operating stability is better under higher heating power.At the inclination angle of 90°,the temperature at heating side decreases compared to ultra-pure water and the temperature at heating side decreases with the raising of MEPCM suspension mass concentration.The heat transfer characteristic of the PHP is positively correlated with the inclination angle and the 90° is optimum.The unfavorable effect of the inclination angle decreases with heating power increasing.When the inclination angle is 90°,the PHP with MEPCM suspension at 1.0% of mass concentration has the lowest thermal transfer resistance and followed by ultra-pure water and MEPCM suspension at 0.5% of mass concentration has the highest thermal transfer resistance.When the inclination angles are 60° and30°,the effect of gravity on the flow direction is reduced to 86.6% and 50% of that on the inclination angle of 90°,respectively,and the promoting effect of gravity on the working fluid is further weakened as the inclination angle further decreases.Due to the high viscosity of MEPCM suspension,the PHP with ultra-pure water has the lowest heat transfer resistance.When the inclination angles is 60°,the thermal resistance with MEPCM suspension at0.5% of the mass concentration is lower than that at 1.0% at the heating power below 230 W.The thermal resistance of MEPCM suspension tends to be similar for heating power of 230-250 W.At the heating power above 270 W,the thermal resistance with MEPCM suspension at 1.0% of the mass concentration is lower than that at 0.5%.展开更多
Micro-encapsulated phase-change materials(micro PCMs) with Na_2 HPO_4·12 H_2 O encapsulated in poly(lactic acid)(PLA) shell were prepared by a solvent evaporation–precipitation method that involves the use of a ...Micro-encapsulated phase-change materials(micro PCMs) with Na_2 HPO_4·12 H_2 O encapsulated in poly(lactic acid)(PLA) shell were prepared by a solvent evaporation–precipitation method that involves the use of a coaxial needle. The effects of PLA concentration, stirring speed, injection rate of core and shell solutions, and polyvinyl alcohol(PVA) concentration on phase change properties were investigated. The thermal properties of microP CMs were characterized by differential scanning calorimetry(DSC). The capsules prepared under the optimal conditions are about 2 mm in diameter and show a latent heat of up to 122.2 J·g^(-1).展开更多
Along with the integrated and miniaturized development of advanced electronic devices,phase change materials(PCMs)simultaneously with efficient thermal management and high electromag-netic interference(EMI)shielding e...Along with the integrated and miniaturized development of advanced electronic devices,phase change materials(PCMs)simultaneously with efficient thermal management and high electromag-netic interference(EMI)shielding effectiveness(SE)are ungently demanded.Herein,the shape-stabilized MXene/Ni-platted melamine sponge/Regenerated cellulose/Graphene nanoplate/Polyethylene glycol(MX/Ni@MS/RCG/PEG)composite PCMs comprising hierarchical Ni@MS/RCG and MXene film were fabricated via a facile encapsulation approach.Hierarchical Ni@MS/RCG hybrid aerogel was prepared by electroless plating and sol-gel methods,and MXene film was obtained using vacuum-assisted filtra-tion procedure.The synergistic effect of conductive Ni@MS/RCG networks and tight MXene film endows MX/Ni@MS/RCG/PEG composite PCMs with good shape stability,high cyclic reliability,large latent heat of phase change(154.3 J g^(–1)),excellent thermal conductivity(TC,0.47 W m^(–1)K^(–1))and favorable EMI shield-ing performance(32.7 dB).The TC of acceptable 0.47 W m^(–1)K^(–1)is observed for MX/Ni@MS/RCG-5/PEG at a rather low GNP content of merely 0.39 wt%.In addition,the temperature variation of MX/Ni@MS/RCG-5/PEG is a lot faster than that of pure PEG in the heating/cooling process,revealing the remarkable energy storage and release efficiency for the composite PCMs.This investigation has taken an important step to-wards shape-stabilized composite PCMs with both effective thermal management and high EMI SE for promising applications in electronic packaging and advanced energy.展开更多
Polyethylene glycol (PEG) has been used as a phase change material (PCM) to create a thermo-regulating fabric. PEG-600 (Mw) was encapsulated using an in-situ polymerization technique in an oil-in water emulsion with e...Polyethylene glycol (PEG) has been used as a phase change material (PCM) to create a thermo-regulating fabric. PEG-600 (Mw) was encapsulated using an in-situ polymerization technique in an oil-in water emulsion with encapsulating water-immiscible liquid by the reaction of urea with formaldehyde at acidic pH. Both FTIR analysis and DSC studies verified the formation of PEG microcapsules (MC). Melting temperature (Tm) of the microcapsules was found approximately 21°C which was the same as neat PEG. The heat storage capacity of these MCs was determined to be 12.78 J/g by DSC analysis. FTIR analysis of the MCs exhibited the peaks at 3211 cm﹣1, 1650 cm﹣1, and 1400 cm﹣1. These are the characteristic absorption peaks of -NH2, -C=O stretching and -CH bending vibrations, respectively. Fabric coated with PEG microcapsules showed a 20% higher thermal resistance, than the uncoated fabric, when heated on a Sweating Hot Plate (MTNW Corporation).展开更多
基金supported by the European Regional Development Fund Postdoctoral Research Support“Structures and Technology Development of Smart Insulation Materials for Indoor Microclimate Regulation”1.1.1.2/VIAA/1/16/152the European Social Fund within the Project“Development of the Academic Personnel of Riga Technical University in the Strategic Fields of Specialization”Nr.8.2.2.0/18/A/017.
文摘Nowadays buildings contain innovative materials,materials from local resources,production surpluses and rapidly renewable natural resources.Phase Change Materials(PCM)are one such group of novel materials which reduce building energy consumption.With the wider availability of microencapsulated PCM,there is an opportunity to develop a new type of insulating materials,combinate PCM with traditional insulation materials for latent heat energy storage.These materials are typically flammable and are located on the interior wall finishing yet there has been no detailed assessment of their fire performance.In this research work prototypes of low-density insulating boards for indoor spaces from hemp shives using carbamide resin binder and cold pressing were studied.Bench-scale cone calorimeter tests were conducted to evaluate fire risk,with a focus on assessing material flammability properties and the influence of PCM on the results.In this research,the amount of smoke,heat release rate,effective heat of combustion,specific extinction coefficient,mass loss,carbon dioxide yield,specific loss factor,ignition time of hemp straws samples and samples of hemp straws with 10%and without PCM admixture were compared.There is a risk of flammability for PCM and their fire reaction has not been evaluated when incorporating PCM into interior wall finishing boards.The obtained results can be used by designers to balance the potential energy savings of using PCM with a more complete understanding and predictability of the associated fire risk when using the proposed boards.It also allows for appropriate risk mitigation strategies.
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0207400)the National Natural Science Foundation of China(Grant No.U22A20168 and 52174225)。
文摘Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.
基金National Science&Technology Pillar Program during the Twelfth Five-Year Plan Period,China(No.2014BAL03B04)
文摘The lauric-myristic-palmitic acid( LA-MA-PA) ternary eutectic mixtures/expanded graphite( EG) composite phase change materials( PCMs) were prepared by absorbing LA-MA-PA into the porous network of EG. The optimum ratio of ternary eutectic mixtures to EG was determined to be 93∶7 without liquid LA-MA-PA leakage from the composite PCMs. In order to make the structure more stable, the composite PCMs were encapsulated by surface treatment agent to prepare LA-MA-PA/EG encapsulating form-stable PCMs which were characterized by scanning electron microscope( SEM),Fourier transformation infrared spectroscope( FT-IR),differential scanning calorimetry( DSC) and thermal treatment. The results showed there was no chemical reaction between surface treatment agent and LA-MA-PA,and the samples were compactly encapsulated which left almost no imprint on the filter paper after thermal treatment. The phase change temperature and latent heat of LA-MA-PA/EG encapsulating form-stable PCMs were tested to be29. 32 ℃ and 96. 20 J/g,respectively. Additionally,the heat transfer efficiency of heat storage was improved by the addition of EG.
基金financially supported by National Natural Science Foundation of China (Grant No.52000008)supported by R&D Program of Beijing Municipal Education Commission(Grant No.KM202310016008)+1 种基金Beijing Natural Science Foundation (Grant No.3192042)the Fundamental Research Funds for Beijing University of Civil Engineering and Architecture (Grant No.X20058)。
文摘The specific heat capacity of working fluid is an important influence factor on heat transfer characteristic of the pulsating heat pipe(PHP).Due to the relatively large specific heat capacity of micro encapsulated phase change material(MEPCM) suspension,a heat transfer performance experimental facility of the PHP was established.The heat transfer characteristic with MEPCM suspension of different mass concentrations(0.5% and 1.0%) and ultra-pure water were compared experimentally.It was found that when the PHP uses MEPCM suspension as its working fluid,operating stability is impoverished under lower heating power and the operating stability is better under higher heating power.At the inclination angle of 90°,the temperature at heating side decreases compared to ultra-pure water and the temperature at heating side decreases with the raising of MEPCM suspension mass concentration.The heat transfer characteristic of the PHP is positively correlated with the inclination angle and the 90° is optimum.The unfavorable effect of the inclination angle decreases with heating power increasing.When the inclination angle is 90°,the PHP with MEPCM suspension at 1.0% of mass concentration has the lowest thermal transfer resistance and followed by ultra-pure water and MEPCM suspension at 0.5% of mass concentration has the highest thermal transfer resistance.When the inclination angles are 60° and30°,the effect of gravity on the flow direction is reduced to 86.6% and 50% of that on the inclination angle of 90°,respectively,and the promoting effect of gravity on the working fluid is further weakened as the inclination angle further decreases.Due to the high viscosity of MEPCM suspension,the PHP with ultra-pure water has the lowest heat transfer resistance.When the inclination angles is 60°,the thermal resistance with MEPCM suspension at0.5% of the mass concentration is lower than that at 1.0% at the heating power below 230 W.The thermal resistance of MEPCM suspension tends to be similar for heating power of 230-250 W.At the heating power above 270 W,the thermal resistance with MEPCM suspension at 1.0% of the mass concentration is lower than that at 0.5%.
基金Supported by the National Natural Science Foundation of China(21476065)the China National Tobacco Corporation
文摘Micro-encapsulated phase-change materials(micro PCMs) with Na_2 HPO_4·12 H_2 O encapsulated in poly(lactic acid)(PLA) shell were prepared by a solvent evaporation–precipitation method that involves the use of a coaxial needle. The effects of PLA concentration, stirring speed, injection rate of core and shell solutions, and polyvinyl alcohol(PVA) concentration on phase change properties were investigated. The thermal properties of microP CMs were characterized by differential scanning calorimetry(DSC). The capsules prepared under the optimal conditions are about 2 mm in diameter and show a latent heat of up to 122.2 J·g^(-1).
基金supported by the National Natural Science Foundation of China(No.51963003)the Science and Tech-nology Plan Project of Guizhou Province(No.ZK[2022]Maj019)+1 种基金the Youth Science and Technology Talent Growth Project of Guizhou Province Education Department(No.[2018]106)the Key Project of Fundamental Research in Guizhou Province(No.[2020]1Z044).
文摘Along with the integrated and miniaturized development of advanced electronic devices,phase change materials(PCMs)simultaneously with efficient thermal management and high electromag-netic interference(EMI)shielding effectiveness(SE)are ungently demanded.Herein,the shape-stabilized MXene/Ni-platted melamine sponge/Regenerated cellulose/Graphene nanoplate/Polyethylene glycol(MX/Ni@MS/RCG/PEG)composite PCMs comprising hierarchical Ni@MS/RCG and MXene film were fabricated via a facile encapsulation approach.Hierarchical Ni@MS/RCG hybrid aerogel was prepared by electroless plating and sol-gel methods,and MXene film was obtained using vacuum-assisted filtra-tion procedure.The synergistic effect of conductive Ni@MS/RCG networks and tight MXene film endows MX/Ni@MS/RCG/PEG composite PCMs with good shape stability,high cyclic reliability,large latent heat of phase change(154.3 J g^(–1)),excellent thermal conductivity(TC,0.47 W m^(–1)K^(–1))and favorable EMI shield-ing performance(32.7 dB).The TC of acceptable 0.47 W m^(–1)K^(–1)is observed for MX/Ni@MS/RCG-5/PEG at a rather low GNP content of merely 0.39 wt%.In addition,the temperature variation of MX/Ni@MS/RCG-5/PEG is a lot faster than that of pure PEG in the heating/cooling process,revealing the remarkable energy storage and release efficiency for the composite PCMs.This investigation has taken an important step to-wards shape-stabilized composite PCMs with both effective thermal management and high EMI SE for promising applications in electronic packaging and advanced energy.
文摘Polyethylene glycol (PEG) has been used as a phase change material (PCM) to create a thermo-regulating fabric. PEG-600 (Mw) was encapsulated using an in-situ polymerization technique in an oil-in water emulsion with encapsulating water-immiscible liquid by the reaction of urea with formaldehyde at acidic pH. Both FTIR analysis and DSC studies verified the formation of PEG microcapsules (MC). Melting temperature (Tm) of the microcapsules was found approximately 21°C which was the same as neat PEG. The heat storage capacity of these MCs was determined to be 12.78 J/g by DSC analysis. FTIR analysis of the MCs exhibited the peaks at 3211 cm﹣1, 1650 cm﹣1, and 1400 cm﹣1. These are the characteristic absorption peaks of -NH2, -C=O stretching and -CH bending vibrations, respectively. Fabric coated with PEG microcapsules showed a 20% higher thermal resistance, than the uncoated fabric, when heated on a Sweating Hot Plate (MTNW Corporation).