A suitable model for high-temperature heat pipe startup is a prerequisite to realizing the numerical simula-tion for the heat pipe cooled reactor startup from the cold state.It is required that this model not only des...A suitable model for high-temperature heat pipe startup is a prerequisite to realizing the numerical simula-tion for the heat pipe cooled reactor startup from the cold state.It is required that this model not only describes the transient behavior during the startup period,but also reduces the computing resources of the heat pipe cooled reactor simulation in the simplest way.In this study,a simplified model that integrates the two-zone and network models is proposed.In this model,vapor flow in the vapor space,evaporation,and condensation in the vapor–liquid interface are decoupled with heat conduction to achieve a fast calculation of the transient characteristics of the heat pipe.An experimental system for a high-temperature heat pipe was developed to validate the proposed model.A potassium heat pipe was utilized as the experimental material.Startup experiments were performed with differ-ent heating powers.Compared with the experimental results,the accuracy of the proposed model was verified.Moreover,the proposed model can predict the vapor flow,pressure drop,and temperature drop in the vapor space.As indicated by the analysis results,the essential requirements for successful startup are also determined.The heat pipe cannot achieve a successful startup until the heating power satisfies these requirements.All the discussions indicate the capability of the proposed model for the simulation of a high-temperature heat pipe startup from the frozen state;hence,can act as a basic tool for the heat pipe cooled reactor simulation.展开更多
Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump(HTHP).The experimental research was used to analyze and compare the performance of M1 and M2...Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump(HTHP).The experimental research was used to analyze and compare the performance of M1 and M2-based in the HTHP in different running conditions.The results demonstrated the feasibility and reliability of M1 and M2 as new high-temperature refrigerants.Additionally,the exploration and analyses of the support vector machine(SVM)and back propagation(BP)neural network models were made to find a practical way to predict the performance of HTHP system.The results showed that SVM-Linear,SVM-RBF and BP models shared the similar ability to predict the heat capacity and power input with high accuracy.SVM-RBF demonstrated better stability for coefficient of performance prediction.Finally,the proposed SVM model was used to assess the potential of the M1 and M2.The results indicated that the HTHP system using M1 could produce heat at the temperature of 130°C with good performance.展开更多
High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and eco...High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and economic operation of boiler. An on-line life monitoring model of high-temperature heating surface was set up according to the well-known L-M formula of the creep damages. The tube wall metal temperature and working stress was measured by on-line monitoring, and with this model, the real-time calculation of the life expenditure of the heating surface tube bundles were realized. Based on the technique the on-line life monitoring and management system of high-temperature heating surface was developed for a 300 MW utility boiler. An effective device was thus suggested for the implementation of the safe operation and the condition-based maintenance of utility boilers.展开更多
To study the heat and mass transfer characteristics of alkali metals in a combined porous wick in high-temperature heat pipes,a three-dimensional(3-D)numerical model is constructed by using the finite volume method,Da...To study the heat and mass transfer characteristics of alkali metals in a combined porous wick in high-temperature heat pipes,a three-dimensional(3-D)numerical model is constructed by using the finite volume method,Darcy’s theory,and the theory of local thermal equilibrium.The research finds that the pressure drop of fluids flowing through a combined porous wick exhibits an increasing trend with increasing flow velocity at the inlet and with decreasing permeability of the porous media;a combined porous wick of lower porosity and permeability and larger fluid velocity at the inlet is found to have a less uniformly distributed fluid velocity;the different temperatures of the fluid at the inlet mainly influence the inlet section of the computational model,while having negligible effect thereon in the axial direction(this embodies the thermal homogeneity of such heat pipes).The result reveals that the temperature change in fluids at the inlet does not significantly affect the overall temperature distribution in a combined wick.展开更多
With the limited production and use of R245fa,environmentally friendly refrigerant has attracted the attention of researchers.Due to the similar thermal characteristics,R1233zd(E)is considered to be an ideal substitut...With the limited production and use of R245fa,environmentally friendly refrigerant has attracted the attention of researchers.Due to the similar thermal characteristics,R1233zd(E)is considered to be an ideal substitute for R245fa in heat pump systems.In this study,the performance and economic analysis of heat pump systems with R245fa and R1233zd(E)as refrigerants are carried out.The results show that the total cost of R1233zd(E)system is more than 10%higher than that of R245fa system under the same heating load.With the increase of condensation temperature,the heating capacity of both systems decreases,and with the increase of evaporation temperature,the heating capacity increases.The variation trend of coefficient of performance(COP)of the two systems is similar to that of heating capacity.Under the same operating conditions,the COP of R1233zd(E)system is 19.2%higher than that of R245fa system,and the volumetric heat capacity of R1233zd(E)is 9.0%–13.9%lower than that of R245fa.The economic analysis results show that the investment cost of R1233zd(E)system is low under the same heat load.展开更多
Energy efficiency issues are being focused on the growing concern of global warming and environmental pollution.The high-temperature heat pipe(HTHP) is an effective and environmental-friendly heat transfer device empl...Energy efficiency issues are being focused on the growing concern of global warming and environmental pollution.The high-temperature heat pipe(HTHP) is an effective and environmental-friendly heat transfer device employed in many industries,including solar power generation,high-temperature flue gas waste heat recovery,industrial furnaces,nuclear industries,and aviation.As a critical factor in HTHPs,thermal performance is mainly introduced in the entire paper.To date,most reviews have been published concerning one or several application scenarios.However,to the best of authors' knowledge,it is hard to find a review discussing how to improve the thermal performance of HTHPs comprehensively.First,the impact on the performance of three main components of HTHPs over the past 30 years is introduced:the working fluid,the HTHP structure,and the wick structure.Herein,it is a considerable review of the optimal operating conditions for each direction,and we expect this paper contribute to improving the thermal performance of HTHPs.Then,current numerical simulations and theoretical research on the heat transfer limit of HTHPs are recommended.The significant hypotheses used in numerical simulations and the present theoretical studies are compiled here.Finally,some potential future directions and tentative suggestions for HTHP research are put forward.展开更多
The interfacial wettability and heat transfer behavior are crucial in the strip casting of high phosphorus-containing steel.A hightemperature simulation of strip casting was conducted using the droplet solidification ...The interfacial wettability and heat transfer behavior are crucial in the strip casting of high phosphorus-containing steel.A hightemperature simulation of strip casting was conducted using the droplet solidification technique with the aims to reveal the effects of phosphorus content on interfacial wettability,deposited film,and interfacial heat transfer behavior.Results showed that when the phosphorus content increased from 0.014wt%to 0.406wt%,the mushy zone enlarged,the complete solidification temperature delayed from1518.3 to 1459.4℃,the final contact angle decreased from 118.4°to 102.8°,indicating improved interfacial contact,and the maximum heat flux increased from 6.9 to 9.2 MW/m2.Increasing the phosphorus content from 0.081wt%to 0.406wt%also accelerated the film deposition rate from 1.57 to 1.73μm per test,resulting in a thickened naturally deposited film with increased thermal resistance that advanced the transition point of heat transfer from the fifth experiment to the third experiment.展开更多
In this paper,an ejector enhanced high-temperature heat pump with dual-pressure condensation and evaporation is proposed to improve the system performance.Theoretical analyses of the system operation characteristics a...In this paper,an ejector enhanced high-temperature heat pump with dual-pressure condensation and evaporation is proposed to improve the system performance.Theoretical analyses of the system operation characteristics are conducted using energetic and exergetic methods.The performance comparisons among the basic cycle,parallel compression cycle,and ejector enhanced cycle are conducted with six different refrigerants,including R245fa,R600a,R1234ze(Z),R1336mzz(Z),R1224yd(Z),and R1233zd(E).The results demonstrate that environmentally-friendly refrigerant R1234ze(Z)would be a promising alternative refrigerant.Compared with the basic cycle and parallel compression cycle at selected operation conditions,29.5%and 12.6%improvements in COP,and 16.7%and 11.1%higher system exergy efficiency are achieved in the ejector enhanced cycle on average.The volumetric heating capacity of the ejector enhanced cycle is increased by 15.7%–21.7%.The ejector enhanced cycle outperforms the other two cycles in high-temperature heat pump applications at the large temperature lift and temperature rise in the heat sink.The assessment offers an option to improve the energy utilization efficiency of the high-temperature heat pumps.展开更多
Process heating constitutes a significant share of final energy consumption in the industrial sector around the world.In this paper,a high-temperature heat pump(HTHP)using flash tank vapor injection technology(FTVI)is...Process heating constitutes a significant share of final energy consumption in the industrial sector around the world.In this paper,a high-temperature heat pump(HTHP)using flash tank vapor injection technology(FTVI)is proposed to develop low-temperature geothermal source for industrial process heating with temperature above 100°C.With heat sink output temperatures between 120°C and 150°C,the thermo-economic performance of the FTVI HTHP system using R1234ze(Z)as refrigerant is analyzed and also compared to the single-stage vapor compression(SSVC)system by employing the developed mathematical model.The coefficient of performance(COP),exergy efficiency(ηexe),net present value(NPV)and payback period(PBP)are used as performance indicators.The results show that under the typical working conditions,the COP andηexe of FTVI HTHP system are 3.00 and 59.66%,respectively,and the corresponding NPV and PBP reach 8.13×106 CNY and 4.13 years,respectively.Under the high-temperature heating conditions,the thermo-economic performance of the FTVI HTHP system is significantly better than that of the SSVC system,and the larger the temperature lift,the greater the thermo-economic advantage of the FTVI HTHP system.Additionally,the FTVI HTHP system is more capable than the SSVC system in absorbing the financial risks associated with changes of electricity price and natural gas price.展开更多
Despite notable progress in thermoelectric(TE)materials and devices,developing TE aerogels with high-temperature resistance,superior TE performance and excellent elasticity to enable self-powered high-temperature moni...Despite notable progress in thermoelectric(TE)materials and devices,developing TE aerogels with high-temperature resistance,superior TE performance and excellent elasticity to enable self-powered high-temperature monitoring/warning in industrial and wearable applications remains a great challenge.Herein,a highly elastic,flame-retardant and high-temperature-resistant TE aerogel,made of poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate)/single-walled carbon nanotube(PEDOT:PSS/SWCNT)composites,has been fabricated,displaying attractive compression-induced power factor enhancement.The as-fabricated sensors with the aerogel can achieve accurately pressure stimuli detection and wide temperature range monitoring.Subsequently,a flexible TE generator is assembled,consisting of 25 aerogels connected in series,capable of delivering a maximum output power of 400μW when subjected to a temperature difference of 300 K.This demonstrates its outstanding high-temperature heat harvesting capability and promising application prospects for real-time temperature monitoring on industrial high-temperature pipelines.Moreover,the designed self-powered wearable sensing glove can realize precise wide-range temperature detection,high-temperature warning and accurate recognition of human hand gestures.The aerogel-based intelligent wearable sensing system developed for firefighters demonstrates the desired self-powered and highly sensitive high-temperature fire warning capability.Benefitting from these desirable properties,the elastic and high-temperature-resistant aerogels present various promising applications including self-powered high-temperature monitoring,industrial overheat warning,waste heat energy recycling and even wearable healthcare.展开更多
Optimizing the high-temperature energy storage characteristics of energy storage dielectrics is of great significance for the development of pulsed power devices and power control systems.Selecting a polymer with a hi...Optimizing the high-temperature energy storage characteristics of energy storage dielectrics is of great significance for the development of pulsed power devices and power control systems.Selecting a polymer with a higher glass transition temperature(T_(g))as the matrix is one of the effective ways to increase the upper limit of the polymer operating temperature.However,current high-T_(g)polymers have limitations,and it is difficult to meet the demand for high-temperature energy storage dielectrics with only one polymer.For example,polyetherimide has high-energy storage efficiency,but low breakdown strength at high temperatures.Polyimide has high corona resistance,but low high-temperature energy storage efficiency.In this work,combining the advantages of two polymer,a novel high-T_(g)polymer fiber-reinforced microstructure is designed.Polyimide is designed as extremely fine fibers distributed in the composite dielectric,which will facilitate the reduction of high-temperature conductivity loss for polyimide.At the same time,due to the high-temperature resistance and corona resistance of polyimide,the high-temperature breakdown strength of the composite dielectric is enhanced.After the polyimide content with the best high-temperature energy storage characteristics is determined,molecular semiconductors(ITIC)are blended into the polyimide fibers to further improve the high-temperature efficiency.Ultimately,excellent high-temperature energy storage properties are obtained.The 0.25 vol%ITIC-polyimide/polyetherimide composite exhibits high-energy density and high discharge efficiency at 150℃(2.9 J cm^(-3),90%)and 180℃(2.16 J cm^(-3),90%).This work provides a scalable design idea for high-performance all-organic high-temperature energy storage dielectrics.展开更多
With the increasing environmental concern on global warming, hydrofluoro-olefin (HFOs), possessing low GWP, has attracted great attention of many researchers recently. In this study, non-azeotropic mixtures composed o...With the increasing environmental concern on global warming, hydrofluoro-olefin (HFOs), possessing low GWP, has attracted great attention of many researchers recently. In this study, non-azeotropic mixtures composed of HFOs (HFO-1234yf, HFO-1234ze(z), HFO-1234ze(e) and HFO-1234zf) are developed to substitute for HFC-134a and CFC-114 in air-conditioning and high-temperature heat pump systems, respectively. The cycle performances were evaluated by an improved theoretical cy-cle evaluation methodology. The results showed that all the mixtures proposed herein were favorable refrigerants with excel-lent thermodynamic cycle performances. M1A presented lower discharge temperature and pressure ratio and higher COPc than that of HFC-134a. The volumetric cooling capacity was similar to HFC-134a. It can be served as a good environmentally friendly alternative to replace HFC-134a. M3H delivered similar discharge temperature as CFC-114 did. And the COPh was 3% higher. It exhibits excellent cycle performance in high-temperature heat pump and is a promising refrigerant to substitute for CFC-114. And the gliding temperature differences enable them to exhibit better coefficient of performance by matching the sink/source temperature in practice. Because the toxicity, flammability and other properties are not investigated in detail, ex-tensive toxicity and flammability testing needs to be conducted before they are used in a particular application.展开更多
To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more ...To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more than 18 months was studied by XRD, SEM and EDS techniques. The results show that high hardness, high intensity and good impact property make the new kind of heat-resistant grid plate and its oxide film have a higher resistance to deformation and abrasion at 900-1000℃ Besides, small grain size is beneficial to form a complete protective oxide film. The oxide film composed of SiO2 layer, Cr2O3 layer and Fe2O3 layer is rather thin and bonds closely with the backing. The forming of the chemical stable nickel-rich layer increases the density of Cr2O3 layer.展开更多
The effect of RE addition on solidification process and high-temperature strength of Al-12%Si-4%Cu-1.6%Mn(in wt.%)heat-resistant alloy was investigated by microstructure observation and tensile test.A great number of ...The effect of RE addition on solidification process and high-temperature strength of Al-12%Si-4%Cu-1.6%Mn(in wt.%)heat-resistant alloy was investigated by microstructure observation and tensile test.A great number of fine needle-like RE-rich phases are observed in the alloys with RE addition. Solutionizing treatment does not change their morphologies and sizes, indicating that they have good thermal stability. The addition of RE totally alters the solidification process of eutectic CruAl2 phase, from network-like phase in the form of segregation at the final eutectic grain boundaries to discretely blocky phase growing on the hair-filamentous RE-rich needles. In the alloys with Ce addition, blocky CuAl2, particulate Al15Mn3Si2 and needle-like RE-rich needle phases grow together, but they did not occur in the alloy with only La addition. The addition of RE does not considerably improve the strength of the alloy at high temperatures. The formation of RE-rich phases also does not significantly alter the originating and propagating of micro-cracks in the alloy during tensile test.展开更多
The kinetic curves of the high-temperature oxidation of austenitic heat resistant stainless steel 1. 4828 at 1 050 ℃ were measured using a weighing method. It is shown that the oxidation curves at 1 050 ℃ followed t...The kinetic curves of the high-temperature oxidation of austenitic heat resistant stainless steel 1. 4828 at 1 050 ℃ were measured using a weighing method. It is shown that the oxidation curves at 1 050 ℃ followed the parabolic line law, and after 250 h of oxidation, the mass gain was about 80 g/m2. The surface morphology and structure of the oxide layers were studied by scanning electron microscopy and X-ray diffraction. A complicated oxide layer obtained at 1 050 ℃ was mainly composed, from inner to outer, of (FeSi) 3 04, Cr2 03, Fe2 03, and spinel oxides FeCr204 and NiMn204.展开更多
Facing the complex variable high-temperature environment,electromagnetic wave(EMW)absorbing materials maintaining high stability and satisfying absorbing properties is essential.This study focused on the synthesis and...Facing the complex variable high-temperature environment,electromagnetic wave(EMW)absorbing materials maintaining high stability and satisfying absorbing properties is essential.This study focused on the synthesis and EMW absorbing performance evaluation of TiN/Fe_(2)N/C composite materials,which were prepared using electrostatic spinning followed by a high-temperature nitridation process.The TiN/Fe_(2)N/C fibers constructed a well-developed conductive network that generates considerable conduction loss.The heterogeneous interfaces between different components generated a significant level of interfacial polarization.Thanks to the synergistic effect of stable dielectric loss and optimized impedance matching,the TiN/Fe_(2)N/C composite materials demonstrated excellent and stable absorption performance across a wide temperature range(293-453 K).Moreover,TiN/Fe_(2)N/C-15 achieved a minimum reflection loss(RL)of−48.01 dB and an effective absorption bandwidth(EAB)of 3.64 GHz at 2.1 mm and 373 K.This work provides new insights into the development of high-efficiency and stabile EMW absorbing materials under complex variable high-temperature conditions.展开更多
High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,...High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,N2physisorption,27Al magic angle spinning nuclear magnetic resonance(MAS NMR),and temperature-programmed desorption of ammonia results indicated that the hightemperature treatment at 650℃ hardly affected the inherent crystal and texture of HZSM-5zeolites but facilitated the conversion of framework Al to extra-framework Al,reducing the acid site and enhancing the acid strength.Moreover,the high-temperature treatment improved the performance of HZSM-5 zeolites in n-heptane catalytic cracking,promoting the conversion and light olefins yield while inhibiting coke formation.Based on the kinetic and mechanism analysis,the improvement of HZSM-5 performance caused by high-temperature treatment has been attributed to the formation of extra-framework Al,which enhanced the acid strength,facilitated the bimolecular reaction,and promoted the entropy change to overcome a higher energy barrier in n-heptane catalytic cracking.展开更多
This study focuses on finding a solution to the sharp decline in mechanical properties of Al-Si-Cu-Mg alloys due to rapid coarsening of traditional intermediate phases at high temperature.A new type of modified al oy,...This study focuses on finding a solution to the sharp decline in mechanical properties of Al-Si-Cu-Mg alloys due to rapid coarsening of traditional intermediate phases at high temperature.A new type of modified al oy,to be used in automobile engines at high temperatures,was prepared by adding Zr and Mo into Al-Si-Cu-Mg alloy.The synergistic effects of Zr and Mo on the microstructure evolution and high-temperature mechanical properties were studied.Results show that the addition of Zr and Mo generates a series of intermetallic phases dispersed in the alloy.They can improve the strength of the alloy by hindering dislocation movement and crack propagation.In addition,some nano-strengthened phases show coherent interfaces with the matrix and improve grain refinement.The addition of Mo greatly improves the heat resistance of the alloy.The extremely low diffusivity of Mo enables it to improve the thermal stability of the intermetallic phases,inhibit precipitation during aging,reduce the size of the precipitates,and improve the heat resistance of the alloy.展开更多
For the rational manipulation of the production quality of high-temperature metallurgical engineering,there are many challenges in understanding the processes involved because of the black box chemical/electrochemical...For the rational manipulation of the production quality of high-temperature metallurgical engineering,there are many challenges in understanding the processes involved because of the black box chemical/electrochemical reactors.To overcome this issue,various in-situ characterization methods have been recently developed to analyze the interactions between the composition,microstructure,and solid-liquid interface of high-temperature electrochemical electrodes and molten salts.In this review,recent progress of in-situ hightemperature characterization techniques is discussed to summarize the advances in understanding the processes in metallurgical engineering.In-situ high-temperature technologies and analytical methods mainly include synchrotron X-ray diffraction(s-XRD),laser scanning confocal microscopy,and X-ray computed microtomography(X-rayμ-CT),which are important platforms for analyzing the structure and morphology of the electrodes to reveal the complexity and variability of their interfaces.In addition,laser-induced breakdown spectroscopy,high-temperature Raman spectroscopy,and ultraviolet-visible absorption spectroscopy provide microscale characterizations of the composition and structure of molten salts.More importantly,the combination of X-rayμ-CT and s-XRD techniques enables the investigation of the chemical reaction mechanisms at the two-phase interface.Therefore,these in-situ methods are essential for analyzing the chemical/electrochemical kinetics of high-temperature reaction processes and establishing the theoretical principles for the efficient and stable operation of chemical/electrochemical metallurgical processes.展开更多
基金This work was supported by the National Key Research and Development Project of China(No.2020YFB1901700)Science Challenge Project(No.TZ2018001)+1 种基金the National Natural Science Foundation of China(Nos.11775126 and 11775127)the Tsinghua University Initiative Scientific Research Program.
文摘A suitable model for high-temperature heat pipe startup is a prerequisite to realizing the numerical simula-tion for the heat pipe cooled reactor startup from the cold state.It is required that this model not only describes the transient behavior during the startup period,but also reduces the computing resources of the heat pipe cooled reactor simulation in the simplest way.In this study,a simplified model that integrates the two-zone and network models is proposed.In this model,vapor flow in the vapor space,evaporation,and condensation in the vapor–liquid interface are decoupled with heat conduction to achieve a fast calculation of the transient characteristics of the heat pipe.An experimental system for a high-temperature heat pipe was developed to validate the proposed model.A potassium heat pipe was utilized as the experimental material.Startup experiments were performed with differ-ent heating powers.Compared with the experimental results,the accuracy of the proposed model was verified.Moreover,the proposed model can predict the vapor flow,pressure drop,and temperature drop in the vapor space.As indicated by the analysis results,the essential requirements for successful startup are also determined.The heat pipe cannot achieve a successful startup until the heating power satisfies these requirements.All the discussions indicate the capability of the proposed model for the simulation of a high-temperature heat pipe startup from the frozen state;hence,can act as a basic tool for the heat pipe cooled reactor simulation.
基金Project (2015CB251403) supported by the National Key Basic Research Program of China(973)
文摘Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump(HTHP).The experimental research was used to analyze and compare the performance of M1 and M2-based in the HTHP in different running conditions.The results demonstrated the feasibility and reliability of M1 and M2 as new high-temperature refrigerants.Additionally,the exploration and analyses of the support vector machine(SVM)and back propagation(BP)neural network models were made to find a practical way to predict the performance of HTHP system.The results showed that SVM-Linear,SVM-RBF and BP models shared the similar ability to predict the heat capacity and power input with high accuracy.SVM-RBF demonstrated better stability for coefficient of performance prediction.Finally,the proposed SVM model was used to assess the potential of the M1 and M2.The results indicated that the HTHP system using M1 could produce heat at the temperature of 130°C with good performance.
文摘High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and economic operation of boiler. An on-line life monitoring model of high-temperature heating surface was set up according to the well-known L-M formula of the creep damages. The tube wall metal temperature and working stress was measured by on-line monitoring, and with this model, the real-time calculation of the life expenditure of the heating surface tube bundles were realized. Based on the technique the on-line life monitoring and management system of high-temperature heating surface was developed for a 300 MW utility boiler. An effective device was thus suggested for the implementation of the safe operation and the condition-based maintenance of utility boilers.
基金supported by the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20180177)the Science and Technology Foundation of Xuzhou,China(Grant No.KH17007)the Natural Science Foundation for Colleges and Universities of Jiangsu Province,China(Grant No.17KJB460015,No.18KJB460028).
文摘To study the heat and mass transfer characteristics of alkali metals in a combined porous wick in high-temperature heat pipes,a three-dimensional(3-D)numerical model is constructed by using the finite volume method,Darcy’s theory,and the theory of local thermal equilibrium.The research finds that the pressure drop of fluids flowing through a combined porous wick exhibits an increasing trend with increasing flow velocity at the inlet and with decreasing permeability of the porous media;a combined porous wick of lower porosity and permeability and larger fluid velocity at the inlet is found to have a less uniformly distributed fluid velocity;the different temperatures of the fluid at the inlet mainly influence the inlet section of the computational model,while having negligible effect thereon in the axial direction(this embodies the thermal homogeneity of such heat pipes).The result reveals that the temperature change in fluids at the inlet does not significantly affect the overall temperature distribution in a combined wick.
基金supported by theKorea Institute of Energy Technology Evaluationand Planning (KETEP) grant funded by the Korean Government (MOTIE) (No. 20202020900060,The development and application of operational technology in smart farm utilizing waste heat fromparticulates reduced smokestack).
文摘With the limited production and use of R245fa,environmentally friendly refrigerant has attracted the attention of researchers.Due to the similar thermal characteristics,R1233zd(E)is considered to be an ideal substitute for R245fa in heat pump systems.In this study,the performance and economic analysis of heat pump systems with R245fa and R1233zd(E)as refrigerants are carried out.The results show that the total cost of R1233zd(E)system is more than 10%higher than that of R245fa system under the same heating load.With the increase of condensation temperature,the heating capacity of both systems decreases,and with the increase of evaporation temperature,the heating capacity increases.The variation trend of coefficient of performance(COP)of the two systems is similar to that of heating capacity.Under the same operating conditions,the COP of R1233zd(E)system is 19.2%higher than that of R245fa system,and the volumetric heat capacity of R1233zd(E)is 9.0%–13.9%lower than that of R245fa.The economic analysis results show that the investment cost of R1233zd(E)system is low under the same heat load.
基金supported by the National Natural Science Foundation of China (52006218)。
文摘Energy efficiency issues are being focused on the growing concern of global warming and environmental pollution.The high-temperature heat pipe(HTHP) is an effective and environmental-friendly heat transfer device employed in many industries,including solar power generation,high-temperature flue gas waste heat recovery,industrial furnaces,nuclear industries,and aviation.As a critical factor in HTHPs,thermal performance is mainly introduced in the entire paper.To date,most reviews have been published concerning one or several application scenarios.However,to the best of authors' knowledge,it is hard to find a review discussing how to improve the thermal performance of HTHPs comprehensively.First,the impact on the performance of three main components of HTHPs over the past 30 years is introduced:the working fluid,the HTHP structure,and the wick structure.Herein,it is a considerable review of the optimal operating conditions for each direction,and we expect this paper contribute to improving the thermal performance of HTHPs.Then,current numerical simulations and theoretical research on the heat transfer limit of HTHPs are recommended.The significant hypotheses used in numerical simulations and the present theoretical studies are compiled here.Finally,some potential future directions and tentative suggestions for HTHP research are put forward.
基金supported from the National Natural Science Foundation of China(Nos.52204356,52274342,and 52130408)the Natural Science Foundation of Hunan Province,China(Nos.2023JJ40762 and 2021JJ40731)。
文摘The interfacial wettability and heat transfer behavior are crucial in the strip casting of high phosphorus-containing steel.A hightemperature simulation of strip casting was conducted using the droplet solidification technique with the aims to reveal the effects of phosphorus content on interfacial wettability,deposited film,and interfacial heat transfer behavior.Results showed that when the phosphorus content increased from 0.014wt%to 0.406wt%,the mushy zone enlarged,the complete solidification temperature delayed from1518.3 to 1459.4℃,the final contact angle decreased from 118.4°to 102.8°,indicating improved interfacial contact,and the maximum heat flux increased from 6.9 to 9.2 MW/m2.Increasing the phosphorus content from 0.081wt%to 0.406wt%also accelerated the film deposition rate from 1.57 to 1.73μm per test,resulting in a thickened naturally deposited film with increased thermal resistance that advanced the transition point of heat transfer from the fifth experiment to the third experiment.
基金financially supported by the National Natural Science Foundation of China(NSFC)under grant No.51806160the China Postdoctoral Science Foundation(CPSF)under grant No.2018M640982。
文摘In this paper,an ejector enhanced high-temperature heat pump with dual-pressure condensation and evaporation is proposed to improve the system performance.Theoretical analyses of the system operation characteristics are conducted using energetic and exergetic methods.The performance comparisons among the basic cycle,parallel compression cycle,and ejector enhanced cycle are conducted with six different refrigerants,including R245fa,R600a,R1234ze(Z),R1336mzz(Z),R1224yd(Z),and R1233zd(E).The results demonstrate that environmentally-friendly refrigerant R1234ze(Z)would be a promising alternative refrigerant.Compared with the basic cycle and parallel compression cycle at selected operation conditions,29.5%and 12.6%improvements in COP,and 16.7%and 11.1%higher system exergy efficiency are achieved in the ejector enhanced cycle on average.The volumetric heating capacity of the ejector enhanced cycle is increased by 15.7%–21.7%.The ejector enhanced cycle outperforms the other two cycles in high-temperature heat pump applications at the large temperature lift and temperature rise in the heat sink.The assessment offers an option to improve the energy utilization efficiency of the high-temperature heat pumps.
基金supported by the Carbon Peak and Carbon Neutralization Science and Technology Innovation Special Fund of Jiangsu Province,China(No.BE2022859)Natural Science Foundation of Guangdong Province,China(No.2021A1515011763).
文摘Process heating constitutes a significant share of final energy consumption in the industrial sector around the world.In this paper,a high-temperature heat pump(HTHP)using flash tank vapor injection technology(FTVI)is proposed to develop low-temperature geothermal source for industrial process heating with temperature above 100°C.With heat sink output temperatures between 120°C and 150°C,the thermo-economic performance of the FTVI HTHP system using R1234ze(Z)as refrigerant is analyzed and also compared to the single-stage vapor compression(SSVC)system by employing the developed mathematical model.The coefficient of performance(COP),exergy efficiency(ηexe),net present value(NPV)and payback period(PBP)are used as performance indicators.The results show that under the typical working conditions,the COP andηexe of FTVI HTHP system are 3.00 and 59.66%,respectively,and the corresponding NPV and PBP reach 8.13×106 CNY and 4.13 years,respectively.Under the high-temperature heating conditions,the thermo-economic performance of the FTVI HTHP system is significantly better than that of the SSVC system,and the larger the temperature lift,the greater the thermo-economic advantage of the FTVI HTHP system.Additionally,the FTVI HTHP system is more capable than the SSVC system in absorbing the financial risks associated with changes of electricity price and natural gas price.
基金financially supported by the Guangdong Basic and Applied Basic Research Foundation(2022A1515110296,2022A1515110432)the Shenzhen Science and Technology Program(20231120171032001)the National Natural Science Foundation of China(No.52242305).
文摘Despite notable progress in thermoelectric(TE)materials and devices,developing TE aerogels with high-temperature resistance,superior TE performance and excellent elasticity to enable self-powered high-temperature monitoring/warning in industrial and wearable applications remains a great challenge.Herein,a highly elastic,flame-retardant and high-temperature-resistant TE aerogel,made of poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate)/single-walled carbon nanotube(PEDOT:PSS/SWCNT)composites,has been fabricated,displaying attractive compression-induced power factor enhancement.The as-fabricated sensors with the aerogel can achieve accurately pressure stimuli detection and wide temperature range monitoring.Subsequently,a flexible TE generator is assembled,consisting of 25 aerogels connected in series,capable of delivering a maximum output power of 400μW when subjected to a temperature difference of 300 K.This demonstrates its outstanding high-temperature heat harvesting capability and promising application prospects for real-time temperature monitoring on industrial high-temperature pipelines.Moreover,the designed self-powered wearable sensing glove can realize precise wide-range temperature detection,high-temperature warning and accurate recognition of human hand gestures.The aerogel-based intelligent wearable sensing system developed for firefighters demonstrates the desired self-powered and highly sensitive high-temperature fire warning capability.Benefitting from these desirable properties,the elastic and high-temperature-resistant aerogels present various promising applications including self-powered high-temperature monitoring,industrial overheat warning,waste heat energy recycling and even wearable healthcare.
基金funded by National Natural Science Foundation of China(No.U20A20308,52177017 and 51977050)Heilongjiang Province Natural Science Foundation of China(No.ZD2020E009)+3 种基金China Postdoctoral Science Foundation(No.2020T130156)Heilongjiang Postdoctoral Financial Assistance(No.LBHZ18098)Fundamental Research Foundation for Universities of Heilongjiang Province(No.2019-KYYWF-0207 and 2018-KYYWF-1624)University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(No.UNPYSCT-2020177)
文摘Optimizing the high-temperature energy storage characteristics of energy storage dielectrics is of great significance for the development of pulsed power devices and power control systems.Selecting a polymer with a higher glass transition temperature(T_(g))as the matrix is one of the effective ways to increase the upper limit of the polymer operating temperature.However,current high-T_(g)polymers have limitations,and it is difficult to meet the demand for high-temperature energy storage dielectrics with only one polymer.For example,polyetherimide has high-energy storage efficiency,but low breakdown strength at high temperatures.Polyimide has high corona resistance,but low high-temperature energy storage efficiency.In this work,combining the advantages of two polymer,a novel high-T_(g)polymer fiber-reinforced microstructure is designed.Polyimide is designed as extremely fine fibers distributed in the composite dielectric,which will facilitate the reduction of high-temperature conductivity loss for polyimide.At the same time,due to the high-temperature resistance and corona resistance of polyimide,the high-temperature breakdown strength of the composite dielectric is enhanced.After the polyimide content with the best high-temperature energy storage characteristics is determined,molecular semiconductors(ITIC)are blended into the polyimide fibers to further improve the high-temperature efficiency.Ultimately,excellent high-temperature energy storage properties are obtained.The 0.25 vol%ITIC-polyimide/polyetherimide composite exhibits high-energy density and high discharge efficiency at 150℃(2.9 J cm^(-3),90%)and 180℃(2.16 J cm^(-3),90%).This work provides a scalable design idea for high-performance all-organic high-temperature energy storage dielectrics.
基金supported by the National Natural Science Foundation of China (Grant No. 50976079)Science and Technology Support Key Project of Tianjin (Grant No. 10ZCKFGX01700)
文摘With the increasing environmental concern on global warming, hydrofluoro-olefin (HFOs), possessing low GWP, has attracted great attention of many researchers recently. In this study, non-azeotropic mixtures composed of HFOs (HFO-1234yf, HFO-1234ze(z), HFO-1234ze(e) and HFO-1234zf) are developed to substitute for HFC-134a and CFC-114 in air-conditioning and high-temperature heat pump systems, respectively. The cycle performances were evaluated by an improved theoretical cy-cle evaluation methodology. The results showed that all the mixtures proposed herein were favorable refrigerants with excel-lent thermodynamic cycle performances. M1A presented lower discharge temperature and pressure ratio and higher COPc than that of HFC-134a. The volumetric cooling capacity was similar to HFC-134a. It can be served as a good environmentally friendly alternative to replace HFC-134a. M3H delivered similar discharge temperature as CFC-114 did. And the COPh was 3% higher. It exhibits excellent cycle performance in high-temperature heat pump and is a promising refrigerant to substitute for CFC-114. And the gliding temperature differences enable them to exhibit better coefficient of performance by matching the sink/source temperature in practice. Because the toxicity, flammability and other properties are not investigated in detail, ex-tensive toxicity and flammability testing needs to be conducted before they are used in a particular application.
文摘To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more than 18 months was studied by XRD, SEM and EDS techniques. The results show that high hardness, high intensity and good impact property make the new kind of heat-resistant grid plate and its oxide film have a higher resistance to deformation and abrasion at 900-1000℃ Besides, small grain size is beneficial to form a complete protective oxide film. The oxide film composed of SiO2 layer, Cr2O3 layer and Fe2O3 layer is rather thin and bonds closely with the backing. The forming of the chemical stable nickel-rich layer increases the density of Cr2O3 layer.
基金Project(BM2007204)supported by the Jiangsu Key Laboratory of Advanced Metallic Materials,ChinaProject(2242016K40011)supported by the Fundamental Research Funds for the Central Universities,China
文摘The effect of RE addition on solidification process and high-temperature strength of Al-12%Si-4%Cu-1.6%Mn(in wt.%)heat-resistant alloy was investigated by microstructure observation and tensile test.A great number of fine needle-like RE-rich phases are observed in the alloys with RE addition. Solutionizing treatment does not change their morphologies and sizes, indicating that they have good thermal stability. The addition of RE totally alters the solidification process of eutectic CruAl2 phase, from network-like phase in the form of segregation at the final eutectic grain boundaries to discretely blocky phase growing on the hair-filamentous RE-rich needles. In the alloys with Ce addition, blocky CuAl2, particulate Al15Mn3Si2 and needle-like RE-rich needle phases grow together, but they did not occur in the alloy with only La addition. The addition of RE does not considerably improve the strength of the alloy at high temperatures. The formation of RE-rich phases also does not significantly alter the originating and propagating of micro-cracks in the alloy during tensile test.
文摘The kinetic curves of the high-temperature oxidation of austenitic heat resistant stainless steel 1. 4828 at 1 050 ℃ were measured using a weighing method. It is shown that the oxidation curves at 1 050 ℃ followed the parabolic line law, and after 250 h of oxidation, the mass gain was about 80 g/m2. The surface morphology and structure of the oxide layers were studied by scanning electron microscopy and X-ray diffraction. A complicated oxide layer obtained at 1 050 ℃ was mainly composed, from inner to outer, of (FeSi) 3 04, Cr2 03, Fe2 03, and spinel oxides FeCr204 and NiMn204.
基金financially supported by the Natural Science Foundation of Henan Province Youth Fund of China(No.242300421466)the Key Scientific Research Project Plan in Universities of Henan Province,China(No.23A430037)+1 种基金the Research Project of Xuchang University,China(No.2024ZD004)the College Students’Innovation and Entrepreneurship Training Program of China(No.202410480008).
文摘Facing the complex variable high-temperature environment,electromagnetic wave(EMW)absorbing materials maintaining high stability and satisfying absorbing properties is essential.This study focused on the synthesis and EMW absorbing performance evaluation of TiN/Fe_(2)N/C composite materials,which were prepared using electrostatic spinning followed by a high-temperature nitridation process.The TiN/Fe_(2)N/C fibers constructed a well-developed conductive network that generates considerable conduction loss.The heterogeneous interfaces between different components generated a significant level of interfacial polarization.Thanks to the synergistic effect of stable dielectric loss and optimized impedance matching,the TiN/Fe_(2)N/C composite materials demonstrated excellent and stable absorption performance across a wide temperature range(293-453 K).Moreover,TiN/Fe_(2)N/C-15 achieved a minimum reflection loss(RL)of−48.01 dB and an effective absorption bandwidth(EAB)of 3.64 GHz at 2.1 mm and 373 K.This work provides new insights into the development of high-efficiency and stabile EMW absorbing materials under complex variable high-temperature conditions.
基金the financial support from the National Natural Science Foundation of China(21908010)Jilin Provincial Department of Science and Technology(20220101089JC)the Education Department of Jilin Province(JJKH20220694KJ)。
文摘High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,N2physisorption,27Al magic angle spinning nuclear magnetic resonance(MAS NMR),and temperature-programmed desorption of ammonia results indicated that the hightemperature treatment at 650℃ hardly affected the inherent crystal and texture of HZSM-5zeolites but facilitated the conversion of framework Al to extra-framework Al,reducing the acid site and enhancing the acid strength.Moreover,the high-temperature treatment improved the performance of HZSM-5 zeolites in n-heptane catalytic cracking,promoting the conversion and light olefins yield while inhibiting coke formation.Based on the kinetic and mechanism analysis,the improvement of HZSM-5 performance caused by high-temperature treatment has been attributed to the formation of extra-framework Al,which enhanced the acid strength,facilitated the bimolecular reaction,and promoted the entropy change to overcome a higher energy barrier in n-heptane catalytic cracking.
基金supported by the Key R&D Program of Shandong Province of China(Grant number 2019QYTPY057)the Natural Science Foundation of Shandong Province of China(Grant numbers ZR2020ME110,ZR2021ME023)。
文摘This study focuses on finding a solution to the sharp decline in mechanical properties of Al-Si-Cu-Mg alloys due to rapid coarsening of traditional intermediate phases at high temperature.A new type of modified al oy,to be used in automobile engines at high temperatures,was prepared by adding Zr and Mo into Al-Si-Cu-Mg alloy.The synergistic effects of Zr and Mo on the microstructure evolution and high-temperature mechanical properties were studied.Results show that the addition of Zr and Mo generates a series of intermetallic phases dispersed in the alloy.They can improve the strength of the alloy by hindering dislocation movement and crack propagation.In addition,some nano-strengthened phases show coherent interfaces with the matrix and improve grain refinement.The addition of Mo greatly improves the heat resistance of the alloy.The extremely low diffusivity of Mo enables it to improve the thermal stability of the intermetallic phases,inhibit precipitation during aging,reduce the size of the precipitates,and improve the heat resistance of the alloy.
基金financially supported by the National Key R&D Program of China(No.2022YFC2906100).
文摘For the rational manipulation of the production quality of high-temperature metallurgical engineering,there are many challenges in understanding the processes involved because of the black box chemical/electrochemical reactors.To overcome this issue,various in-situ characterization methods have been recently developed to analyze the interactions between the composition,microstructure,and solid-liquid interface of high-temperature electrochemical electrodes and molten salts.In this review,recent progress of in-situ hightemperature characterization techniques is discussed to summarize the advances in understanding the processes in metallurgical engineering.In-situ high-temperature technologies and analytical methods mainly include synchrotron X-ray diffraction(s-XRD),laser scanning confocal microscopy,and X-ray computed microtomography(X-rayμ-CT),which are important platforms for analyzing the structure and morphology of the electrodes to reveal the complexity and variability of their interfaces.In addition,laser-induced breakdown spectroscopy,high-temperature Raman spectroscopy,and ultraviolet-visible absorption spectroscopy provide microscale characterizations of the composition and structure of molten salts.More importantly,the combination of X-rayμ-CT and s-XRD techniques enables the investigation of the chemical reaction mechanisms at the two-phase interface.Therefore,these in-situ methods are essential for analyzing the chemical/electrochemical kinetics of high-temperature reaction processes and establishing the theoretical principles for the efficient and stable operation of chemical/electrochemical metallurgical processes.