A new robust bio-inspired route by using lysozyme aqueous solution for surface modification on 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)was described in this paper.HMX crystals were coated by in situ phase transitio...A new robust bio-inspired route by using lysozyme aqueous solution for surface modification on 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)was described in this paper.HMX crystals were coated by in situ phase transition of lysozyme(PTL)molecules.The HMX decorated by PTL was characterized by SEM,XRD,FTIR and XPS,demonstrating a dense core-shell coating layer.The coverage of lysozyme on HMX crystal was calculated by the ratio of sulfur content.The surface coverage increased from 60.5% to 93.5% when the content of PTL was changed from 0.5 wt% to 2.0 wt%,indicating efficient coating.The thermal stability of HMX was investigated by in situ XRD and DSC.The thermal phase transition temperature of HMX(β to δ phase)was delayed by 42℃ with 2.0 wt% PTL coating,which prevented HMX from thermal damage and sensitivity by the effect of PTL coating.After heating at 215℃,large cracks appeared in the naked HMX crystal,while the PTL coated HMX still maintained intact,with the impact energy of HMX dropped dramatically from 5 J to 2 J.However,the impact energy of HMX with 1.0 wt% and 2.0 wt% coating content(HMX@PTL-1.0 and HMX@PTL-2.0)was unchanged(5 J).Present results potentially enable large-scale fabrication of polymorphic energetic materials with outstanding thermal stability by novel lysozyme coating.展开更多
Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body...Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body–surrounding rock combination under high-stress conditions.Current monitoring data processing methods cannot fully consider the complexity of monitoring objects,the diversity of monitoring methods,and the dynamics of monitoring data.To solve this problem,this paper proposes a phase space reconstruction and stability prediction method to process heterogeneous information of backfill–surrounding rock combinations.The three-dimensional monitoring system of a large-area filling body–surrounding rock combination in Longshou Mine was constructed by using drilling stress,multipoint displacement meter,and inclinometer.Varied information,such as the stress and displacement of the filling body–surrounding rock combination,was continuously obtained.Combined with the average mutual information method and the false nearest neighbor point method,the phase space of the heterogeneous information of the filling body–surrounding rock combination was then constructed.In this paper,the distance between the phase point and its nearest point was used as the index evaluation distance to evaluate the stability of the filling body–surrounding rock combination.The evaluated distances(ED)revealed a high sensitivity to the stability of the filling body–surrounding rock combination.The new method was then applied to calculate the time series of historically ED for 12 measuring points located at Longshou Mine.The moments of mutation in these time series were at least 3 months ahead of the roadway return dates.In the ED prediction experiments,the autoregressive integrated moving average model showed a higher prediction accuracy than the deep learning models(long short-term memory and Transformer).Furthermore,the root-mean-square error distribution of the prediction results peaked at 0.26,thus outperforming the no-prediction method in 70%of the cases.展开更多
The high temperature(HT)thermal stability and mechanical properties of Al-5%Cu(AC)and Al-5%Cu-0.2%Mn-0.2 Zr%(ACMZ)alloys from 573 to 673 K were systematically studied.The results displayed that micro-alloying addition...The high temperature(HT)thermal stability and mechanical properties of Al-5%Cu(AC)and Al-5%Cu-0.2%Mn-0.2 Zr%(ACMZ)alloys from 573 to 673 K were systematically studied.The results displayed that micro-alloying additions of Zr and Mn elements have presented a significant role in stabilizing the main strengthening metastableθ′precipitates at a temperature as high as 573 K.Simultaneously,the HT tensile test demonstrated that ACMZ alloy retained their strength of(88.6±8.8)MPa,which was much higher than that of AC alloy((32.5±0.8)MPa)after the thermal exposure at 573 K for 200 h.Finally,the underlying mechanisms of strength and ductility enhancement mechanism of the ACMZ alloy at HT were discussed in detail.展开更多
The high-temperature β-phase NaMnO2 is a promising material for Na-ion batteries(NIBs) due to its high capacity and abundant resources. However, the synthesis of phase-pure -NaMnO2 is burdensome and costineffective...The high-temperature β-phase NaMnO2 is a promising material for Na-ion batteries(NIBs) due to its high capacity and abundant resources. However, the synthesis of phase-pure -NaMnO2 is burdensome and costineffective because it needs to be sintered under oxygen atmosphere at high temperature and followed by a quenching procedure. Here we first report that the pure β phase can be stabilized by Cu-doping and easily synthesized by replacing a proportion of Mn with Cu via a simplified process including sintering in air and cooling to room temperature naturally. Based on the first-principle calculations, the band gap decreases from 0.7 eV to 0.3 eV, which indicates that the electronic conductivity can be improved by Cu-doping. The designed -NaCu(0.1)Mn(0.9)O2 is applied as cathode in NIBs, exhibiting an energy density of 419 Wh/kg and better performance in terms of rate capability and cycling stability than those in the undoped case.展开更多
The use of lignin,which is a by-product of the pulp and paper industry,in the development of asphalt binders would contribute to waste reduction,providing environmental,economic,and social benefits.In this study,samp...The use of lignin,which is a by-product of the pulp and paper industry,in the development of asphalt binders would contribute to waste reduction,providing environmental,economic,and social benefits.In this study,samples of lignin-modified asphalt binder samples with different content of lignin(3%,6%,9%,12%,and 15%)and unmodified asphalt(control)were tested using Fourier transform infrared spectroscopy(FTIR),dynamic shear rheometer(DSR),and thermogravimetry.The mechanism and effectiveness of lignin in improving the thermal stability of asphalt at high temperatures were analyzed.The FTIR analysis shows that no new characteristic absorption peak is seen in the infrared spectral of the lignin-modified asphalt binder samples,and some bands characteristic of lignin-related peaks gradually increased with the increase of lignin content.This suggests that the modification of lignin-modified asphalt binder samples was due to physical blending rather than chemical modification.The increase of lignin content in the lignin-modified asphalt samples increases the complex shear modulus G*of the samples and decreases the phase angles of the samples.Similarly,the anti-rutting performance(G*/sinδ)of the samples improves with the increase in lignin content,but this is not significant after any addition of lignin that exceeds 12%of asphalt mass.Thermal characterizations show that the thermal decomposition rate of lignin is lower,and its residual amount is higher compared to that of asphalt,which is a major reason for the improved stability of lignin-modified asphalt binders at high temperatures.The effect of lignin on the thermal stability of asphalt is dependent on both lignin content and temperature.It has a positive effect on the thermal stability of asphalt at high temperatures within the range of asphalt service temperature(25℃–200℃).Additionally,from the pyrolysis viewpoint,it was explained that excessive lignin addition is not beneficial to the thermal stability of asphalt at high temperatures,which is consistent with the DSR test result conducted high temperatures.展开更多
To investigate the thermal stability of ceramic-matrix composites,three kinds of C/C−ZrC−SiC composites with different Zr/Si molar ratios were synthesized by reactive melt infiltration.Employing region labeling method...To investigate the thermal stability of ceramic-matrix composites,three kinds of C/C−ZrC−SiC composites with different Zr/Si molar ratios were synthesized by reactive melt infiltration.Employing region labeling method,the high-temperature thermal stability of the composites was systematically studied by changing the temperature and holding time of thermal treatment.Results show that the mass loss rate of low Si composites has a growth trend with increasing temperature,and a crystal transformation from β-SiC toα-SiC occurs in the composites.In the calibrated area,SiC phase experiences Ostwald ripening and volume change with location migration,while ZrC phase experiences a re-sintering process with diffusion.Moreover,it is found that increasing temperature has a more obvious effect on the thermal stability than extending holding time,which is mainly attributed to the faster diffusion rate of atoms.展开更多
Based on defect chemistry theory and molecular dynamics,the defect formation energy and its relationship with the mechanism of pyrochlore-fluorite phase change were investigated,so as to reveal the underlying mechanis...Based on defect chemistry theory and molecular dynamics,the defect formation energy and its relationship with the mechanism of pyrochlore-fluorite phase change were investigated,so as to reveal the underlying mechanism of high-temperature stability of pyrochlore zirconates.Results showed that with the rise of the atom mass of A,the defect formation energies decreased that meant the crystal structure tended to become more disordered.Noticeably,the first nearest cation antisite dominated the pyrochlore disorder transformation process.In addition,it was found that the diffusion of oxygen atoms was far higher than that of cations,and was increased with the temperature,thus also promoting the pyrochlore-fluorite transformation process.展开更多
First-principles calculations were carried out to investigate the structural stabilities and electronic properties of RhZr.The plane wave based pseudopotential method was used,in which both the local density approxima...First-principles calculations were carried out to investigate the structural stabilities and electronic properties of RhZr.The plane wave based pseudopotential method was used,in which both the local density approximation(LDA) and the generalized gradient approximation(GGA) implanted in the CASTEP code were employed.The internal positions of atoms in the unit cell were optimized and the ground state properties such as lattice parameter,density of state,cohesive energies and enthalpies of formation of ortho-RhZr and cubic-RhZr were calculated.The calculation results indicate that ortho-RhZr can form more easily than cubic-RhZr and the ortho-RhZr is more stable than cubic-RhZr.The density of states(DOS) reveals that the strong bonding in the Rh-Zr and Rh-Rh or Zr-Zr interaction chains accounts for the structural stability of ortho-RhZr and the hybridization between Rh-4d states and Zr-4d states is strong.展开更多
Two experimental single crystal superalloys, the Ru-free alloy and the Ru-containing alloy with [001 ] orientation, were cast in a directionally solidified furnace, while other alloying element contents were kept unch...Two experimental single crystal superalloys, the Ru-free alloy and the Ru-containing alloy with [001 ] orientation, were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Ru on the microstructure and phase stability of the single crystal superalloy were investigated, y' directional coarsening and rafting were observed in the Ru-free alloy and Ru-containing alloy after long-term aging at 1070~C for 800 h. Needle-shaped o topologically close packed (TCP) phases precipitated and grew along the fixed direction in both the alloys. The precipitating rate and volume fraction of TCP phases decreased significantly by adding Ru. The compositions ofy and y' phases measured using an energy-dispersive X-ray spectroscope (EDS) in transmission electron microscopy (TEM) analysis showed that the addition of Ru lessened the partition ratio of TCP forming elements, Re, W and Mo, and decreased the satu- ration degrees of these elements in y phase, which can enable the Ru-containing alloy to be more resistant to the formation of TCP phases. It is indicated that the addition of Ru to the Ni-based single crystal superalloy with high content of the refractory alloying element can enhance phase stability.展开更多
Formation, solution and phase change of hydration products in MgO-MgCl2-H2O system was studied with thermodynamics method, and resistance to water immersion and phase change of magnesium oxychloride cement with differ...Formation, solution and phase change of hydration products in MgO-MgCl2-H2O system was studied with thermodynamics method, and resistance to water immersion and phase change of magnesium oxychloride cement with different MgO/MgCl2 molar ratio was experimented. The results show that pH value of immersion solution of cement paste has a remarkable influence on phase stability of hydration products. A higher pH value leads to a lower solubility and a better phase stability of hydration products. When the solution pH value is higher than 10.37, the precipitation of much Mg(OH)2 crystal induces a worse phase stability of hydration products. With the increasing MgO/MgCl2 molar ratio (lower than 6), the more amount of MgO in the hydration products enhances the alkalinity of solution and the phase stability is improved. However, when the MgO/MgCl2 molar ratio is higher than 6 and the excessive MgO exsits in the hydration products, the cement paste may be damaged by the excessive crystallization stress of a great deal of Mg(OH)2 formation.展开更多
This paper studies the effect of Ce on the thermal stability of the Ω phase in an Al-Cu-Mg-Ag alloy by TEM and tensile testing. It has been shown that Ce substantially increases the nucleation density of the Ω phase...This paper studies the effect of Ce on the thermal stability of the Ω phase in an Al-Cu-Mg-Ag alloy by TEM and tensile testing. It has been shown that Ce substantially increases the nucleation density of the Ω phase by acting as the heterogeneous nucleation center. Most impor-tantly,Ce improves the thermal stability of the Ω phase by decreasing the diffusion velocity of Cu atoms and increasing the energy barrier of the thickening ledge nucleation,thus improving the strength of the Al-Cu-Mg-Ag alloy at both ...展开更多
An investigation of electronic property and high pressure phase stability of SmN has been conducted using first principles calculations based on density functional theory. The elec- tronic properties of Stun show a st...An investigation of electronic property and high pressure phase stability of SmN has been conducted using first principles calculations based on density functional theory. The elec- tronic properties of Stun show a striking feature of a half metal, the majority-spin electrons are metallic and the minority-spin electrons are semiconducting. It was found that Stun undergoes a pressure-induced phase transition from NaCl-type (B1) to CsCl-type structure (B2) at 117 GPa. The elastic constants of Stun satisfy Born conditions at ambient pressure, indicating that B1 phase of SmN is mechanically stable at 0 GPa. The result of phonon spectra shows that B1 structure is dynamically stable at ambient pressure, which agrees with the conclusion derived from the elastic constants.展开更多
The phase stability,elastic properties and electronic structures of three typical Mg-Y intermetallics including Mg_(24)Y_(5),Mg_(2)Y and MgY are systematically investigated using first-principles calculations based on...The phase stability,elastic properties and electronic structures of three typical Mg-Y intermetallics including Mg_(24)Y_(5),Mg_(2)Y and MgY are systematically investigated using first-principles calculations based on density functional theory.The optimized structural parameters including lattice constants and atomic coordinates are in good agreement with experimental values.The calculated cohesive energies and formation enthalpies show that either phase stability or alloying ability of the three intermetallics is gradually enhanced with increasing Y content.The single-crystal elastic constants C_(ij) of Mg-Y intermetallics are also calculated,and the bulk modulus B,shear modulus G,Young's modulus E,Poisson ratio v and anisotropy factor A of polycrystalline materials are derived.It is suggested that the resistances to volume and shear deformation as well as the stiffness of the three intermetallics are raised with increasing Y content.Besides,these intermetallics all exhibit ductile characteristics,and they are isotropic in compression but anisotropic to a certain degree in shear and stiffness.Comparatively,Mg_(24)Y_(5) presents a relatively higher ductility,while MgY has a relatively stronger anisotropy in shear and stiffness.Further analysis of electronic structures indicates that the phase stability of Mg-Y intermetallics is closely related with their bonding electrons numbers below Fermi level.Namely,the more bonding electrons number below Fermi level corresponds to the higher structural stability of Mg-Y intermetallics.展开更多
Electronic structure and elastic properties of Al_(2)Y,Al_(3)Y,Al_(2)Gd and Al_(3)Gd phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The g...Electronic structure and elastic properties of Al_(2)Y,Al_(3)Y,Al_(2)Gd and Al_(3)Gd phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The ground state energy and elastic constants of each phase were calculated,the formation enthalpy(ΔH),bulk modulus(B),shear modulus(G),Young's modulus(E),Poisson's ratio(ν)and anisotropic coefficient(A)were derived.The formation enthalpy shows that Al_(2)RE is more stable than Al_(3)RE,and Al-Y intermetallics have stronger phase stability than Al-Gd intermetallics.The calculated mechanical properties indicate that all these four intermetallics are strong and hard brittle phases,it may lead to the similar performance when deforming due to their similar elastic constants.The total and partial electron density of states(DOS),Mulliken population and metallicity were calculated to analyze the electron structure and bonding characteristics of the phases.Finally,phonon calculation was conducted,and the thermodynamic properties were obtained and further discussed.展开更多
Higher nickel content endows Ni-rich cathode materials LiNi_(x)Co_yMn_(1-x-y)O_(2)(x>0.6)with higher specific capacity and high energy density,which is regarded as the most promising cathode materials for Li-ion ba...Higher nickel content endows Ni-rich cathode materials LiNi_(x)Co_yMn_(1-x-y)O_(2)(x>0.6)with higher specific capacity and high energy density,which is regarded as the most promising cathode materials for Li-ion batteries.However,the deterioration of structural stability hinders its practical application,especially under harsh working conditions such as high-temperature cycling.Given these circumstances,it becomes particularly critical to clarify the impact of the crystal morphology on the structure and high-temperature performance as for the ultrahigh-nickel cathodes.Herein,we conducted a comprehensive comparison in terms of microstructure,high-temperature long-cycle phase evolution,and high-temperature electrochemical stability,revealing the differences and the working mechanisms among polycrystalline(PC),single-crystalline(SC)and Al doped SC ultrahigh-nickel materials.The results show that the PC sample suffers a severe irreversible phase transition along with the appearance of microcracks,resulting a serious decay of both average voltage and the energy density.While the Al doped SC sample exhibits superior cycling stability with intact layered structure.In-situ XRD and intraparticle structural evolution characterization reveal that Al doping can significantly alleviate the irreversible phase transition,thus inhibiting microcracks generation and enabling enhanced structure.Specifically,it exhibits excellent cycling performance in pouch-type full-cell with a high capacity retention of 91.8%after 500 cycles at 55℃.This work promotes the fundamental understanding on the correlation between the crystalline morphology and high-temperature electrochemical stability and provides a guide for optimization the Ni-rich cathode materials.展开更多
The presence of excess Ta in high-temperature protective coatings can compromise the integrity of the Al_(2)O_(3)scale on the surface,which has a negative impact on the oxidation behavior and reduces the service life....The presence of excess Ta in high-temperature protective coatings can compromise the integrity of the Al_(2)O_(3)scale on the surface,which has a negative impact on the oxidation behavior and reduces the service life.The effects of oxygen doping on the isothermal oxidation of three sputtered nanocrystalline coatings were investigated at 1100°C.The results indicated that oxygen doping inhibited the diffusion of Ta from the coating to the oxide scale,which was primarily attributed to the preferential oxidation of the Al in the coating.However,excess oxygen doping decreased the amount of Al available for the formation of the Al_(2)O_(3)scale on the coating,thus reducing the inhibitory effect on Ta oxidation.Moreover,doping with excess O caused spalling of the oxide scale.Therefore,the right balance in O doping is crucial for suppressing Ta oxidation while maintaining the integrity of the oxide scale.展开更多
This study focuses on finding a solution to the sharp decline in mechanical properties of Al-Si-Cu-Mg alloys due to rapid coarsening of traditional intermediate phases at high temperature.A new type of modified al oy,...This study focuses on finding a solution to the sharp decline in mechanical properties of Al-Si-Cu-Mg alloys due to rapid coarsening of traditional intermediate phases at high temperature.A new type of modified al oy,to be used in automobile engines at high temperatures,was prepared by adding Zr and Mo into Al-Si-Cu-Mg alloy.The synergistic effects of Zr and Mo on the microstructure evolution and high-temperature mechanical properties were studied.Results show that the addition of Zr and Mo generates a series of intermetallic phases dispersed in the alloy.They can improve the strength of the alloy by hindering dislocation movement and crack propagation.In addition,some nano-strengthened phases show coherent interfaces with the matrix and improve grain refinement.The addition of Mo greatly improves the heat resistance of the alloy.The extremely low diffusivity of Mo enables it to improve the thermal stability of the intermetallic phases,inhibit precipitation during aging,reduce the size of the precipitates,and improve the heat resistance of the alloy.展开更多
Phase behavior, thermal stability and rheological properties of the blends of poly(phthalazinone ether ketone) (PPEK) with bisphenol-A polycarbonate (PC) prepared by solution coprecipitation were studied using differe...Phase behavior, thermal stability and rheological properties of the blends of poly(phthalazinone ether ketone) (PPEK) with bisphenol-A polycarbonate (PC) prepared by solution coprecipitation were studied using differential scanning calorimetry (DSC), Frourier-Transform IR spectroscopy (FT-IR), thermogravimetric analysis (TGA) and capillary rheometer. The DSC results indicated that PPEK/PC blends are almost immiscible in full compositions. FT-IR investigation showed that there were no apparent specific interactions between the constituent polymers. The blends keep excellent thermal stability and the addition of PC degrades the thermal stability of blends to some degree. The thermal degradation processes of the blends are much similar to that of PC. The studies on rheological properties of blends show that blending PPEK with PC is beneficial to reducing the melt viscosity and improving the appearance of PPEK.展开更多
A single crystalline Mg2Si film was formed by solid phase reaction (SPR) of a Si(111) substrate with an Mg overlayer capped with an oxide layer(s),which was enhanced by post annealing from room temperature to 10...A single crystalline Mg2Si film was formed by solid phase reaction (SPR) of a Si(111) substrate with an Mg overlayer capped with an oxide layer(s),which was enhanced by post annealing from room temperature to 100℃ in a molecular beam epitaxy (MBE) system.The thermal stability of the Mg2Si film was then systematically investigated by post annealing in an oxygen-radical ambient at 300℃,450℃ and 650℃,respectively.The Mg2Si film stayed stable until the annealing temperature reached 450℃ then it transformed into amorphous MgOx attributed to the decomposition of Mg2Si and the oxidization of dissociated Mg.展开更多
The thermal stability of the rare earth rich phase particles in α, α+β and β phase regions of Ti 5Al 4Sn 2Zr 1Mo 0 25Si 1Nd(Ti 55) high temperature titanium alloy heat treated was studied. Under ...The thermal stability of the rare earth rich phase particles in α, α+β and β phase regions of Ti 5Al 4Sn 2Zr 1Mo 0 25Si 1Nd(Ti 55) high temperature titanium alloy heat treated was studied. Under conditions of 600~980 ℃/1~100 h and 1050~1500 ℃/1~10 h, the average particle size ranges from 3 34 to 4 20 μm, the circularity shape factor from 0 619 to 0 759, and the volume fraction from 1 4% to 1 8%. The results show that nearly no change is found for the size, shape, and volume fraction of the particles in the alloy, and the rare earth rich phase particles exhibit thermal stability.展开更多
基金the China National Nature Science Foundation(Grant No.12102404)。
文摘A new robust bio-inspired route by using lysozyme aqueous solution for surface modification on 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)was described in this paper.HMX crystals were coated by in situ phase transition of lysozyme(PTL)molecules.The HMX decorated by PTL was characterized by SEM,XRD,FTIR and XPS,demonstrating a dense core-shell coating layer.The coverage of lysozyme on HMX crystal was calculated by the ratio of sulfur content.The surface coverage increased from 60.5% to 93.5% when the content of PTL was changed from 0.5 wt% to 2.0 wt%,indicating efficient coating.The thermal stability of HMX was investigated by in situ XRD and DSC.The thermal phase transition temperature of HMX(β to δ phase)was delayed by 42℃ with 2.0 wt% PTL coating,which prevented HMX from thermal damage and sensitivity by the effect of PTL coating.After heating at 215℃,large cracks appeared in the naked HMX crystal,while the PTL coated HMX still maintained intact,with the impact energy of HMX dropped dramatically from 5 J to 2 J.However,the impact energy of HMX with 1.0 wt% and 2.0 wt% coating content(HMX@PTL-1.0 and HMX@PTL-2.0)was unchanged(5 J).Present results potentially enable large-scale fabrication of polymorphic energetic materials with outstanding thermal stability by novel lysozyme coating.
基金the National Key R&D Program of China(No.2022YFC2904103)the Key Program of the National Natural Science Foundation of China(No.52034001)+1 种基金the 111 Project(No.B20041)the China National Postdoctoral Program for Innovative Talents(No.BX20230041)。
文摘Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body–surrounding rock combination under high-stress conditions.Current monitoring data processing methods cannot fully consider the complexity of monitoring objects,the diversity of monitoring methods,and the dynamics of monitoring data.To solve this problem,this paper proposes a phase space reconstruction and stability prediction method to process heterogeneous information of backfill–surrounding rock combinations.The three-dimensional monitoring system of a large-area filling body–surrounding rock combination in Longshou Mine was constructed by using drilling stress,multipoint displacement meter,and inclinometer.Varied information,such as the stress and displacement of the filling body–surrounding rock combination,was continuously obtained.Combined with the average mutual information method and the false nearest neighbor point method,the phase space of the heterogeneous information of the filling body–surrounding rock combination was then constructed.In this paper,the distance between the phase point and its nearest point was used as the index evaluation distance to evaluate the stability of the filling body–surrounding rock combination.The evaluated distances(ED)revealed a high sensitivity to the stability of the filling body–surrounding rock combination.The new method was then applied to calculate the time series of historically ED for 12 measuring points located at Longshou Mine.The moments of mutation in these time series were at least 3 months ahead of the roadway return dates.In the ED prediction experiments,the autoregressive integrated moving average model showed a higher prediction accuracy than the deep learning models(long short-term memory and Transformer).Furthermore,the root-mean-square error distribution of the prediction results peaked at 0.26,thus outperforming the no-prediction method in 70%of the cases.
基金financial supports from the National Natural Science Foundation of China(No.52071207)the China Postdoctoral Science Foundation(Nos.2019TQ0193,2019M661497)+1 种基金the National Key Research and Development Program of China(No.2018YFB1106302)Anhui Provincial Engineering Research Center of Aluminum Matrix Composites,China(No.2017WAMC002)。
文摘The high temperature(HT)thermal stability and mechanical properties of Al-5%Cu(AC)and Al-5%Cu-0.2%Mn-0.2 Zr%(ACMZ)alloys from 573 to 673 K were systematically studied.The results displayed that micro-alloying additions of Zr and Mn elements have presented a significant role in stabilizing the main strengthening metastableθ′precipitates at a temperature as high as 573 K.Simultaneously,the HT tensile test demonstrated that ACMZ alloy retained their strength of(88.6±8.8)MPa,which was much higher than that of AC alloy((32.5±0.8)MPa)after the thermal exposure at 573 K for 200 h.Finally,the underlying mechanisms of strength and ductility enhancement mechanism of the ACMZ alloy at HT were discussed in detail.
基金Supported by the National Key Technologies R&D Program of China under Grant No 2016YFB0901500the National Nature Science Foundation of China under Grant Nos 51725206 and 51421002
文摘The high-temperature β-phase NaMnO2 is a promising material for Na-ion batteries(NIBs) due to its high capacity and abundant resources. However, the synthesis of phase-pure -NaMnO2 is burdensome and costineffective because it needs to be sintered under oxygen atmosphere at high temperature and followed by a quenching procedure. Here we first report that the pure β phase can be stabilized by Cu-doping and easily synthesized by replacing a proportion of Mn with Cu via a simplified process including sintering in air and cooling to room temperature naturally. Based on the first-principle calculations, the band gap decreases from 0.7 eV to 0.3 eV, which indicates that the electronic conductivity can be improved by Cu-doping. The designed -NaCu(0.1)Mn(0.9)O2 is applied as cathode in NIBs, exhibiting an energy density of 419 Wh/kg and better performance in terms of rate capability and cycling stability than those in the undoped case.
基金This research was funded by the Scientific Research Fund of Yunnan Provincial Department of Education(Grant No.2020J0420)Open Fund based on Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products(Grant No.2015004).In addition,the authors would like to thank the reviewers of this paper for their ever-present support and valuable advice.
文摘The use of lignin,which is a by-product of the pulp and paper industry,in the development of asphalt binders would contribute to waste reduction,providing environmental,economic,and social benefits.In this study,samples of lignin-modified asphalt binder samples with different content of lignin(3%,6%,9%,12%,and 15%)and unmodified asphalt(control)were tested using Fourier transform infrared spectroscopy(FTIR),dynamic shear rheometer(DSR),and thermogravimetry.The mechanism and effectiveness of lignin in improving the thermal stability of asphalt at high temperatures were analyzed.The FTIR analysis shows that no new characteristic absorption peak is seen in the infrared spectral of the lignin-modified asphalt binder samples,and some bands characteristic of lignin-related peaks gradually increased with the increase of lignin content.This suggests that the modification of lignin-modified asphalt binder samples was due to physical blending rather than chemical modification.The increase of lignin content in the lignin-modified asphalt samples increases the complex shear modulus G*of the samples and decreases the phase angles of the samples.Similarly,the anti-rutting performance(G*/sinδ)of the samples improves with the increase in lignin content,but this is not significant after any addition of lignin that exceeds 12%of asphalt mass.Thermal characterizations show that the thermal decomposition rate of lignin is lower,and its residual amount is higher compared to that of asphalt,which is a major reason for the improved stability of lignin-modified asphalt binders at high temperatures.The effect of lignin on the thermal stability of asphalt is dependent on both lignin content and temperature.It has a positive effect on the thermal stability of asphalt at high temperatures within the range of asphalt service temperature(25℃–200℃).Additionally,from the pyrolysis viewpoint,it was explained that excessive lignin addition is not beneficial to the thermal stability of asphalt at high temperatures,which is consistent with the DSR test result conducted high temperatures.
基金supported by the National Natural Science Foundation of China(No.U19A2099)the CAS Key Laboratory of Carbon Materials,China(No.KLCMKFJJ2005)the Fund of Aerospace Research Institute of Material and Processing Technology,China(No.6142906200108).
文摘To investigate the thermal stability of ceramic-matrix composites,three kinds of C/C−ZrC−SiC composites with different Zr/Si molar ratios were synthesized by reactive melt infiltration.Employing region labeling method,the high-temperature thermal stability of the composites was systematically studied by changing the temperature and holding time of thermal treatment.Results show that the mass loss rate of low Si composites has a growth trend with increasing temperature,and a crystal transformation from β-SiC toα-SiC occurs in the composites.In the calibrated area,SiC phase experiences Ostwald ripening and volume change with location migration,while ZrC phase experiences a re-sintering process with diffusion.Moreover,it is found that increasing temperature has a more obvious effect on the thermal stability than extending holding time,which is mainly attributed to the faster diffusion rate of atoms.
基金Sponsored by the National Natural Science Foundation of China (50801005)
文摘Based on defect chemistry theory and molecular dynamics,the defect formation energy and its relationship with the mechanism of pyrochlore-fluorite phase change were investigated,so as to reveal the underlying mechanism of high-temperature stability of pyrochlore zirconates.Results showed that with the rise of the atom mass of A,the defect formation energies decreased that meant the crystal structure tended to become more disordered.Noticeably,the first nearest cation antisite dominated the pyrochlore disorder transformation process.In addition,it was found that the diffusion of oxygen atoms was far higher than that of cations,and was increased with the temperature,thus also promoting the pyrochlore-fluorite transformation process.
基金Project(u0837601)supported by the National Natural Science Foundation of China
文摘First-principles calculations were carried out to investigate the structural stabilities and electronic properties of RhZr.The plane wave based pseudopotential method was used,in which both the local density approximation(LDA) and the generalized gradient approximation(GGA) implanted in the CASTEP code were employed.The internal positions of atoms in the unit cell were optimized and the ground state properties such as lattice parameter,density of state,cohesive energies and enthalpies of formation of ortho-RhZr and cubic-RhZr were calculated.The calculation results indicate that ortho-RhZr can form more easily than cubic-RhZr and the ortho-RhZr is more stable than cubic-RhZr.The density of states(DOS) reveals that the strong bonding in the Rh-Zr and Rh-Rh or Zr-Zr interaction chains accounts for the structural stability of ortho-RhZr and the hybridization between Rh-4d states and Zr-4d states is strong.
文摘Two experimental single crystal superalloys, the Ru-free alloy and the Ru-containing alloy with [001 ] orientation, were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Ru on the microstructure and phase stability of the single crystal superalloy were investigated, y' directional coarsening and rafting were observed in the Ru-free alloy and Ru-containing alloy after long-term aging at 1070~C for 800 h. Needle-shaped o topologically close packed (TCP) phases precipitated and grew along the fixed direction in both the alloys. The precipitating rate and volume fraction of TCP phases decreased significantly by adding Ru. The compositions ofy and y' phases measured using an energy-dispersive X-ray spectroscope (EDS) in transmission electron microscopy (TEM) analysis showed that the addition of Ru lessened the partition ratio of TCP forming elements, Re, W and Mo, and decreased the satu- ration degrees of these elements in y phase, which can enable the Ru-containing alloy to be more resistant to the formation of TCP phases. It is indicated that the addition of Ru to the Ni-based single crystal superalloy with high content of the refractory alloying element can enhance phase stability.
基金Funded by the National Natural Science Foundation of China(No50078019)
文摘Formation, solution and phase change of hydration products in MgO-MgCl2-H2O system was studied with thermodynamics method, and resistance to water immersion and phase change of magnesium oxychloride cement with different MgO/MgCl2 molar ratio was experimented. The results show that pH value of immersion solution of cement paste has a remarkable influence on phase stability of hydration products. A higher pH value leads to a lower solubility and a better phase stability of hydration products. When the solution pH value is higher than 10.37, the precipitation of much Mg(OH)2 crystal induces a worse phase stability of hydration products. With the increasing MgO/MgCl2 molar ratio (lower than 6), the more amount of MgO in the hydration products enhances the alkalinity of solution and the phase stability is improved. However, when the MgO/MgCl2 molar ratio is higher than 6 and the excessive MgO exsits in the hydration products, the cement paste may be damaged by the excessive crystallization stress of a great deal of Mg(OH)2 formation.
基金the Natural Science Foundation of Hunan Province (No. 07JJ3117)the Chinese Postdoctoral Science Foundation (No. 20070410303)the High Technology Research and Development Program of Hunan Province, China (No. 06FJ2007).
文摘This paper studies the effect of Ce on the thermal stability of the Ω phase in an Al-Cu-Mg-Ag alloy by TEM and tensile testing. It has been shown that Ce substantially increases the nucleation density of the Ω phase by acting as the heterogeneous nucleation center. Most impor-tantly,Ce improves the thermal stability of the Ω phase by decreasing the diffusion velocity of Cu atoms and increasing the energy barrier of the thickening ledge nucleation,thus improving the strength of the Al-Cu-Mg-Ag alloy at both ...
文摘An investigation of electronic property and high pressure phase stability of SmN has been conducted using first principles calculations based on density functional theory. The elec- tronic properties of Stun show a striking feature of a half metal, the majority-spin electrons are metallic and the minority-spin electrons are semiconducting. It was found that Stun undergoes a pressure-induced phase transition from NaCl-type (B1) to CsCl-type structure (B2) at 117 GPa. The elastic constants of Stun satisfy Born conditions at ambient pressure, indicating that B1 phase of SmN is mechanically stable at 0 GPa. The result of phonon spectra shows that B1 structure is dynamically stable at ambient pressure, which agrees with the conclusion derived from the elastic constants.
基金This work was financially supported by the National Natural Science Foundation of China(No.51401036)the Hunan Provincial Natural Science Foundation of China(No.14JJ3086),the Research Foundation of Education Bureau of Hunan Province(No.12B001)the Key Laboratory of Efficient and Clean Energy Utilization,College of Hunan Province(No.2015NGQ005).
文摘The phase stability,elastic properties and electronic structures of three typical Mg-Y intermetallics including Mg_(24)Y_(5),Mg_(2)Y and MgY are systematically investigated using first-principles calculations based on density functional theory.The optimized structural parameters including lattice constants and atomic coordinates are in good agreement with experimental values.The calculated cohesive energies and formation enthalpies show that either phase stability or alloying ability of the three intermetallics is gradually enhanced with increasing Y content.The single-crystal elastic constants C_(ij) of Mg-Y intermetallics are also calculated,and the bulk modulus B,shear modulus G,Young's modulus E,Poisson ratio v and anisotropy factor A of polycrystalline materials are derived.It is suggested that the resistances to volume and shear deformation as well as the stiffness of the three intermetallics are raised with increasing Y content.Besides,these intermetallics all exhibit ductile characteristics,and they are isotropic in compression but anisotropic to a certain degree in shear and stiffness.Comparatively,Mg_(24)Y_(5) presents a relatively higher ductility,while MgY has a relatively stronger anisotropy in shear and stiffness.Further analysis of electronic structures indicates that the phase stability of Mg-Y intermetallics is closely related with their bonding electrons numbers below Fermi level.Namely,the more bonding electrons number below Fermi level corresponds to the higher structural stability of Mg-Y intermetallics.
基金This work is supported by the Key Technologies Research and Development Program of Liaoning Province(2013201018).
文摘Electronic structure and elastic properties of Al_(2)Y,Al_(3)Y,Al_(2)Gd and Al_(3)Gd phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The ground state energy and elastic constants of each phase were calculated,the formation enthalpy(ΔH),bulk modulus(B),shear modulus(G),Young's modulus(E),Poisson's ratio(ν)and anisotropic coefficient(A)were derived.The formation enthalpy shows that Al_(2)RE is more stable than Al_(3)RE,and Al-Y intermetallics have stronger phase stability than Al-Gd intermetallics.The calculated mechanical properties indicate that all these four intermetallics are strong and hard brittle phases,it may lead to the similar performance when deforming due to their similar elastic constants.The total and partial electron density of states(DOS),Mulliken population and metallicity were calculated to analyze the electron structure and bonding characteristics of the phases.Finally,phonon calculation was conducted,and the thermodynamic properties were obtained and further discussed.
基金supported by the Natural Science Foundation of Jiangsu Province (BK20210887)the Jiangsu Provincial Double Innovation Program (JSSCB20210984)+1 种基金the Natural Science Fund for Colleges and Universities of Jiangsu Province (21KJB450003)the Jiangsu University of Science and Technology Doctoral Research Start-up Fund (120200012)。
文摘Higher nickel content endows Ni-rich cathode materials LiNi_(x)Co_yMn_(1-x-y)O_(2)(x>0.6)with higher specific capacity and high energy density,which is regarded as the most promising cathode materials for Li-ion batteries.However,the deterioration of structural stability hinders its practical application,especially under harsh working conditions such as high-temperature cycling.Given these circumstances,it becomes particularly critical to clarify the impact of the crystal morphology on the structure and high-temperature performance as for the ultrahigh-nickel cathodes.Herein,we conducted a comprehensive comparison in terms of microstructure,high-temperature long-cycle phase evolution,and high-temperature electrochemical stability,revealing the differences and the working mechanisms among polycrystalline(PC),single-crystalline(SC)and Al doped SC ultrahigh-nickel materials.The results show that the PC sample suffers a severe irreversible phase transition along with the appearance of microcracks,resulting a serious decay of both average voltage and the energy density.While the Al doped SC sample exhibits superior cycling stability with intact layered structure.In-situ XRD and intraparticle structural evolution characterization reveal that Al doping can significantly alleviate the irreversible phase transition,thus inhibiting microcracks generation and enabling enhanced structure.Specifically,it exhibits excellent cycling performance in pouch-type full-cell with a high capacity retention of 91.8%after 500 cycles at 55℃.This work promotes the fundamental understanding on the correlation between the crystalline morphology and high-temperature electrochemical stability and provides a guide for optimization the Ni-rich cathode materials.
基金supported by the National Natural Science Foundation of China under Grant Nos.51671053 and 51801021the Fundamental Research Funds for the Central Universities(No.N2302007)the Ministry of Industry and Information Technology Project(No.MJ-2017-J-99).
文摘The presence of excess Ta in high-temperature protective coatings can compromise the integrity of the Al_(2)O_(3)scale on the surface,which has a negative impact on the oxidation behavior and reduces the service life.The effects of oxygen doping on the isothermal oxidation of three sputtered nanocrystalline coatings were investigated at 1100°C.The results indicated that oxygen doping inhibited the diffusion of Ta from the coating to the oxide scale,which was primarily attributed to the preferential oxidation of the Al in the coating.However,excess oxygen doping decreased the amount of Al available for the formation of the Al_(2)O_(3)scale on the coating,thus reducing the inhibitory effect on Ta oxidation.Moreover,doping with excess O caused spalling of the oxide scale.Therefore,the right balance in O doping is crucial for suppressing Ta oxidation while maintaining the integrity of the oxide scale.
基金supported by the Key R&D Program of Shandong Province of China(Grant number 2019QYTPY057)the Natural Science Foundation of Shandong Province of China(Grant numbers ZR2020ME110,ZR2021ME023)。
文摘This study focuses on finding a solution to the sharp decline in mechanical properties of Al-Si-Cu-Mg alloys due to rapid coarsening of traditional intermediate phases at high temperature.A new type of modified al oy,to be used in automobile engines at high temperatures,was prepared by adding Zr and Mo into Al-Si-Cu-Mg alloy.The synergistic effects of Zr and Mo on the microstructure evolution and high-temperature mechanical properties were studied.Results show that the addition of Zr and Mo generates a series of intermetallic phases dispersed in the alloy.They can improve the strength of the alloy by hindering dislocation movement and crack propagation.In addition,some nano-strengthened phases show coherent interfaces with the matrix and improve grain refinement.The addition of Mo greatly improves the heat resistance of the alloy.The extremely low diffusivity of Mo enables it to improve the thermal stability of the intermetallic phases,inhibit precipitation during aging,reduce the size of the precipitates,and improve the heat resistance of the alloy.
基金This work was supported by the National Natural Science Foundation of China (59473901).
文摘Phase behavior, thermal stability and rheological properties of the blends of poly(phthalazinone ether ketone) (PPEK) with bisphenol-A polycarbonate (PC) prepared by solution coprecipitation were studied using differential scanning calorimetry (DSC), Frourier-Transform IR spectroscopy (FT-IR), thermogravimetric analysis (TGA) and capillary rheometer. The DSC results indicated that PPEK/PC blends are almost immiscible in full compositions. FT-IR investigation showed that there were no apparent specific interactions between the constituent polymers. The blends keep excellent thermal stability and the addition of PC degrades the thermal stability of blends to some degree. The thermal degradation processes of the blends are much similar to that of PC. The studies on rheological properties of blends show that blending PPEK with PC is beneficial to reducing the melt viscosity and improving the appearance of PPEK.
基金Project supported by the National Natural Science Foundation (Grant Nos 50532090,60606023 and 60621091)the Ministry of Science and Technology of China (Grant Nos 2002CB613502 and 2007CB936203)Australia Research Council
文摘A single crystalline Mg2Si film was formed by solid phase reaction (SPR) of a Si(111) substrate with an Mg overlayer capped with an oxide layer(s),which was enhanced by post annealing from room temperature to 100℃ in a molecular beam epitaxy (MBE) system.The thermal stability of the Mg2Si film was then systematically investigated by post annealing in an oxygen-radical ambient at 300℃,450℃ and 650℃,respectively.The Mg2Si film stayed stable until the annealing temperature reached 450℃ then it transformed into amorphous MgOx attributed to the decomposition of Mg2Si and the oxidization of dissociated Mg.
文摘The thermal stability of the rare earth rich phase particles in α, α+β and β phase regions of Ti 5Al 4Sn 2Zr 1Mo 0 25Si 1Nd(Ti 55) high temperature titanium alloy heat treated was studied. Under conditions of 600~980 ℃/1~100 h and 1050~1500 ℃/1~10 h, the average particle size ranges from 3 34 to 4 20 μm, the circularity shape factor from 0 619 to 0 759, and the volume fraction from 1 4% to 1 8%. The results show that nearly no change is found for the size, shape, and volume fraction of the particles in the alloy, and the rare earth rich phase particles exhibit thermal stability.