The article explores the issue of designing a new design of a loading cylinder with a casing filled with vulcanized rubber for pneumomechanical spinning machines. The theoretical calculation of the deformed state of a...The article explores the issue of designing a new design of a loading cylinder with a casing filled with vulcanized rubber for pneumomechanical spinning machines. The theoretical calculation of the deformed state of a cylindrical shell filled with vulcanized rubber is given. Deflections and stresses in the rubber layer are determined, which we use approximately for the Ritz methods. The theory of the radial and axial moving rubber layer was analyzed. The specific energy of deformation of a cylindrical layer of a compound cylinder is determined. The statics of the case and the loading cylinder of spinning machines are thoroughly studied.展开更多
The aging of natural rubber(NR)at high temperatures will seriously affect its service lifetime in many key applications.In the present work,the changes in microstructure and mechanical properties of semi-efficient vul...The aging of natural rubber(NR)at high temperatures will seriously affect its service lifetime in many key applications.In the present work,the changes in microstructure and mechanical properties of semi-efficient vulcanized NR/carbon black(CB)vulcanizates during thermooxidative aging at high temperatures(150-200℃)and a moderate temperature(95℃)were compared.At high temperatures,a two-stage aging behavior,which was characteristic of a first rapid decline and then a continuous rise in the crosslinking density(ve),was identified and was found to be closely related to the depletion behavior of antioxidants.The surface cracking behavior observed in the second stage of high-temperature aging was discussed in terms of the grafting reaction of macromolecular radicals on CB particles and thermal expansion.In contrast,the aging of NR at moderate temperatures was much mild,which featured a continuous increase in ve and an oxidation mechanism dominated by peroxy radicals attacking double bonds.In general,the mechanical properties of NR vulcanizates during high-temperature aging depended on the competition effects of structural evolution in the crosslinked network and oxidation-induced chain scission.展开更多
In this study the stress–strain characteristics of sand-ground rubber mixtures are investigated in the sandlike zone,at different confining pressures,using hollow cylinder specimens subjected to torsional monotonic a...In this study the stress–strain characteristics of sand-ground rubber mixtures are investigated in the sandlike zone,at different confining pressures,using hollow cylinder specimens subjected to torsional monotonic and cyclic loading.Under monotonic loading a mixture of sand-ground rubber with 10% and 25% rubber content show more contraction behaviour than that observed in a pure sand specimen.Phase transformation point in these mixtures are located on a larger shear strain.As expected,the shear strength of specimens decreases with increase of ground rubber content.However,with increasing of effective confining pressure,the loss in shear strength of the mixture is decreased.In addition,a mixture with 25% ground rubber shows a smaller loss in shear strength compared to a mixture with 10% ground rubber mixture.Under cyclic loading mixtures with 10% and 25% ground rubber have similar liquefaction resistance,especially at confining pressures of 110 k Pa and 260 k Pa.Therefore,by using of the mixture with 25% ground rubber,a larger volume of scrap tires could be recycled.The addition of ground rubber to sand would affect the shear strain variation and excess pore water pressure trends,and this effect was further intensified with increasing ground rubber percentage.展开更多
In this paper,organic montmorillonite(OMMT)was added into crumb rubber modified asphalt(CRMA)to improve its high temperature performance,anti-aging performance and storage stability.The effects of different OMMT conte...In this paper,organic montmorillonite(OMMT)was added into crumb rubber modified asphalt(CRMA)to improve its high temperature performance,anti-aging performance and storage stability.The effects of different OMMT content on properties of CRMA were studied.The rutting factor obtained by dynamic shear rheological(DSR)test was adopted to evaluate the high-temperature performance.The creep stiffness and m value determined by the bending beam rheometer(BBR)test were employed to evaluate the low-temperature performance.The softening point,ductility,rutting factor before and after rolling thin film ovens test(RTFOT)and pressure aging vessel test(PAV)were compared to characterize the aging properties.Moreover,the segregation test after being reserved for 48 h and 7 d was conducted,and the softening point and rutting factor of upper and lower layers of segregation pipe were adopted to evaluate the storage stability.The results indicated that the high-temperature performance and anti-aging performance were developed with the increasing content of OMMT,while the low-temperature performance deteriorated.The storage stability was improved with the increasing content of OMMT before the content exceeded 4%,after which the storage stability declined.Taking account of all factors,it is suggested that the optimum content of OMMT is 3%−4%.展开更多
文摘The article explores the issue of designing a new design of a loading cylinder with a casing filled with vulcanized rubber for pneumomechanical spinning machines. The theoretical calculation of the deformed state of a cylindrical shell filled with vulcanized rubber is given. Deflections and stresses in the rubber layer are determined, which we use approximately for the Ritz methods. The theory of the radial and axial moving rubber layer was analyzed. The specific energy of deformation of a cylindrical layer of a compound cylinder is determined. The statics of the case and the loading cylinder of spinning machines are thoroughly studied.
基金financially supported by the National Natural Science Foundation of China(Nos.51790504 and U19A2096)the Programme of Introducing Talents of Discipline to Universities(No.B13040)State Key Laboratory of Polymer Materials Engineering(No.sklpme2019-2-07)。
文摘The aging of natural rubber(NR)at high temperatures will seriously affect its service lifetime in many key applications.In the present work,the changes in microstructure and mechanical properties of semi-efficient vulcanized NR/carbon black(CB)vulcanizates during thermooxidative aging at high temperatures(150-200℃)and a moderate temperature(95℃)were compared.At high temperatures,a two-stage aging behavior,which was characteristic of a first rapid decline and then a continuous rise in the crosslinking density(ve),was identified and was found to be closely related to the depletion behavior of antioxidants.The surface cracking behavior observed in the second stage of high-temperature aging was discussed in terms of the grafting reaction of macromolecular radicals on CB particles and thermal expansion.In contrast,the aging of NR at moderate temperatures was much mild,which featured a continuous increase in ve and an oxidation mechanism dominated by peroxy radicals attacking double bonds.In general,the mechanical properties of NR vulcanizates during high-temperature aging depended on the competition effects of structural evolution in the crosslinked network and oxidation-induced chain scission.
文摘In this study the stress–strain characteristics of sand-ground rubber mixtures are investigated in the sandlike zone,at different confining pressures,using hollow cylinder specimens subjected to torsional monotonic and cyclic loading.Under monotonic loading a mixture of sand-ground rubber with 10% and 25% rubber content show more contraction behaviour than that observed in a pure sand specimen.Phase transformation point in these mixtures are located on a larger shear strain.As expected,the shear strength of specimens decreases with increase of ground rubber content.However,with increasing of effective confining pressure,the loss in shear strength of the mixture is decreased.In addition,a mixture with 25% ground rubber shows a smaller loss in shear strength compared to a mixture with 10% ground rubber mixture.Under cyclic loading mixtures with 10% and 25% ground rubber have similar liquefaction resistance,especially at confining pressures of 110 k Pa and 260 k Pa.Therefore,by using of the mixture with 25% ground rubber,a larger volume of scrap tires could be recycled.The addition of ground rubber to sand would affect the shear strain variation and excess pore water pressure trends,and this effect was further intensified with increasing ground rubber percentage.
基金Projects(51838001,51878070,51908069)supported by the National Natural Science Foundation of China。
文摘In this paper,organic montmorillonite(OMMT)was added into crumb rubber modified asphalt(CRMA)to improve its high temperature performance,anti-aging performance and storage stability.The effects of different OMMT content on properties of CRMA were studied.The rutting factor obtained by dynamic shear rheological(DSR)test was adopted to evaluate the high-temperature performance.The creep stiffness and m value determined by the bending beam rheometer(BBR)test were employed to evaluate the low-temperature performance.The softening point,ductility,rutting factor before and after rolling thin film ovens test(RTFOT)and pressure aging vessel test(PAV)were compared to characterize the aging properties.Moreover,the segregation test after being reserved for 48 h and 7 d was conducted,and the softening point and rutting factor of upper and lower layers of segregation pipe were adopted to evaluate the storage stability.The results indicated that the high-temperature performance and anti-aging performance were developed with the increasing content of OMMT,while the low-temperature performance deteriorated.The storage stability was improved with the increasing content of OMMT before the content exceeded 4%,after which the storage stability declined.Taking account of all factors,it is suggested that the optimum content of OMMT is 3%−4%.
文摘在管道封堵机器人中大变形橡胶筒是实现密封的核心部件,其在使用中常出现密封失效和撕裂失效等问题.为了明晰上述原因和解决问题,本文中研究了不同橡胶材料以及不同橡胶筒轴向长度、径向长度和倾斜边角等结构参数对管道封堵机器人的静态密封特性影响.基于橡胶材料的高弹性和大变形特性,进行了橡胶筒的多阶段变形力学分析.对橡胶材料进行单轴拉伸压缩试验,得到橡胶材料的本构关系参数.建立管道封堵机器人橡胶筒密封特性分析的有限元计算模型,通过多因素分析方法,获得橡胶筒关键结构参数的最优方案.并设计了室内试验来进一步确定最优橡胶筒材料.研究结果表明集中在橡胶筒肩部的应力直接影响橡胶筒的形变损伤.经过橡胶筒的密封效果对比分析后得出最优的橡胶筒结构为轴向长度180 mm、径向厚度55 mm、倾斜边角28°,橡胶材料硬度为85 HA.