期刊文献+
共找到1,083篇文章
< 1 2 55 >
每页显示 20 50 100
Research on the impact of high-temperature aging on the thermal safety of lithium-ion batteries 被引量:5
1
作者 Guangxu Zhang Xuezhe Wei +5 位作者 Siqi Chen Gang Wei Jiangong Zhu Xueyuan Wang Guangshuai Han Haifeng Dai 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期378-389,I0010,共13页
Understanding the thermal safety evolution of lithium-ion batteries during high-temperature usage conditions bears significant implications for enhancing the safety management of aging batteries.This work investigates... Understanding the thermal safety evolution of lithium-ion batteries during high-temperature usage conditions bears significant implications for enhancing the safety management of aging batteries.This work investigates the thermal safety evolution mechanism of lithium-ion batteries during high-temperature aging.Similarities arise in the thermal safety evolution and degradation mechanisms for lithium-ion batteries undergoing cyclic aging and calendar aging.Employing multi-angle characterization analysis,the intricate mechanism governing the thermal safety evolution of lithium-ion batteries during high-temperature aging is clarified.Specifically,lithium plating serves as the pivotal factor contributing to the reduction in the self-heating initial temperature.Additionally,the crystal structure of the cathode induced by the dissolution of transition metals and the reductive gas generated during aging attacking the crystal structure of the cathode lead to a decrease in thermal runaway triggering temperature.Furthermore,the loss of active materials and active lithium during aging contributes to a decline in both the maximum temperature and the maximum temperature rise rate,ultimately indicating a decrease in the thermal hazards of aging batteries. 展开更多
关键词 Lithium-ion batteries high-temperature aging thermal safety DEGRADATION Lithium plating
下载PDF
Study on the effect of thermal deformation on the liquid seal of high-temperature molten salt pump in molten salt reactor 被引量:2
2
作者 Xing‑Chao Shen Yuan Fu Jian‑Yu Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第2期128-138,共11页
The high-temperature molten salt pump is the core equipment in a molten salt reactor that drives the flow of the molten salt coolant.Rotor stability is key to the continuous and reliable operation of the molten salt p... The high-temperature molten salt pump is the core equipment in a molten salt reactor that drives the flow of the molten salt coolant.Rotor stability is key to the continuous and reliable operation of the molten salt pump,and the liquid seal at the wear ring can affect the dynamic characteristics of the rotor system.When the molten salt pump is operated in the hightemperature molten salt medium,thermal deformation of the submerged parts inevitably occurs,changing clearance between the stator and rotor,affecting the leakage and dynamic characteristics of the seal.In this study,the seal leakage,seal dynamic characteristics,and rotor system dynamic characteristics are simulated and analyzed using finite element simulation software based on two cases of considering the effect of seal thermal deformation effect or not.The results show a significant difference in the leakage characteristics and dynamic characteristics of the seal obtained by considering the effect of seal thermal deformation and neglecting the effect of thermal deformation.The leakage flow rate decreases,and the first-order critical speed of the seal-bearing-rotor system decrease after considering the seal’s thermal deformation. 展开更多
关键词 high-temperature molten salt pump Seal thermal deformation Leakage characteristics Seal dynamic characteristics Critical speed
下载PDF
THERMAL RATE TREATMENT AND ITS EFFECT ON MODIFICATION OF Al-Si ALLOYS 被引量:15
3
作者 Geng, Haoran Ma, Jiaji Bian, Xoufang 《中国有色金属学会会刊:英文版》 EI CSCD 1997年第1期138-142,共5页
THERMALRATETREATMENTANDITSEFFECTONMODIFICATIONOFAlSiALLOYS①GengHaoran,MaJiaji,BianXoufangCollegeofMaterials... THERMALRATETREATMENTANDITSEFFECTONMODIFICATIONOFAlSiALLOYS①GengHaoran,MaJiaji,BianXoufangCollegeofMaterialsScienceandEnginer... 展开更多
关键词 Al Si ALLOYS thermal RATE TREATMENT modification alloy melt
下载PDF
Enhanced thermal stability and mechanical properties of high-temperature resistant Al-Cu alloy with Zr and Mn micro-alloying 被引量:7
4
作者 Teng-teng SUN Ji-wei GENG +5 位作者 Ze-yu BIAN Yi WU Ming-liang WANG Dong CHEN Nai-heng MA Hao-wei WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第1期64-78,共15页
The high temperature(HT)thermal stability and mechanical properties of Al-5%Cu(AC)and Al-5%Cu-0.2%Mn-0.2 Zr%(ACMZ)alloys from 573 to 673 K were systematically studied.The results displayed that micro-alloying addition... The high temperature(HT)thermal stability and mechanical properties of Al-5%Cu(AC)and Al-5%Cu-0.2%Mn-0.2 Zr%(ACMZ)alloys from 573 to 673 K were systematically studied.The results displayed that micro-alloying additions of Zr and Mn elements have presented a significant role in stabilizing the main strengthening metastableθ′precipitates at a temperature as high as 573 K.Simultaneously,the HT tensile test demonstrated that ACMZ alloy retained their strength of(88.6±8.8)MPa,which was much higher than that of AC alloy((32.5±0.8)MPa)after the thermal exposure at 573 K for 200 h.Finally,the underlying mechanisms of strength and ductility enhancement mechanism of the ACMZ alloy at HT were discussed in detail. 展开更多
关键词 Al-Cu alloy micro-alloying thermal stability precipitate evolution high-temperature mechanical properties
下载PDF
Effect of Sr modification on microstructure and thermal conductivity of hypoeutectic Al−Si alloys 被引量:17
5
作者 Jun-qi GAN Yu-jian HUANG +1 位作者 Cheng WEN Jun DU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第11期2879-2890,共12页
Trace amount of Sr(0.05 wt.%)was added into the hypoeutectic Al−Si(3−12 wt.%Si)alloys to modify their microstructure and improve thermal conductivity.The results showed that the thermal conductivity of hypoeutectic Al... Trace amount of Sr(0.05 wt.%)was added into the hypoeutectic Al−Si(3−12 wt.%Si)alloys to modify their microstructure and improve thermal conductivity.The results showed that the thermal conductivity of hypoeutectic Al−Si alloys was improved by Sr modification,and the increment and increasing rate of the thermal conductivity gradually increased with Si content increasing.The improvement of thermal conductivity was primarily related to the morphology variation of eutectic Si phases.In Sr-modified Al−Si alloys,the morphology of eutectic Si phases was a mixed morphology of fiber structure and fine flaky structure,and the proportion of the fine flaky eutectic Si phases gradually decreased with Si content increasing.Under the Si content reaching 9 wt.%,the proportion of fine flaky eutectic Si phases was nearly negligible in Sr-modified alloys.Correspondingly,the increment and increasing rate of thermal conductivity of Sr-modified alloys reached the maximum and tended to be stable. 展开更多
关键词 hypoeutectic Al−Si alloy Sr modification eutectic Si morphology thermal conductivity Al/Si interface
下载PDF
STUDY ON THE SURFACE MODIFICATION OF NANO-TiO_2 BY GRAFTING PMMA/PBMA AND ITS THERMAL STABILITY 被引量:3
6
作者 宇海银 Jia-shanGu JunDu Ming-yunGuan 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2005年第3期243-247,共5页
The surface of nano-TiO_2 was encapsulated with hydroxyl-propyl-methyl cellulose(HPMC),and then cograftedwith acrylates.Conditions of absorbing and grafting have been studied.Modified nano-TiO_2 particles were charact... The surface of nano-TiO_2 was encapsulated with hydroxyl-propyl-methyl cellulose(HPMC),and then cograftedwith acrylates.Conditions of absorbing and grafting have been studied.Modified nano-TiO_2 particles were characterized byFT-IR spectra,TEM and TG analysis.It was convinced from FT-IR studies that both methyl methacrylate(MMA)and butyl-methacrylate(BMA)were co-grafted onto the surface of nano-TiO_2 particles.TEM images show that the surface of nano-TiO_2 particles was successfully modified by a thick layer of film-like polymer.TG results demonstrate that the decompositiontemperature of HPMC-g-PMMA/PBMA,which has been grafted onto the surface of nano-TiO_2,is 56.9 K higher than that ofHPMC-g-PMMA/PBMA. 展开更多
关键词 Hydroxyl-propyl-methyl cellulose Nano-TiO_2 particles Surface modification Cograft polymerization thermal stability.
下载PDF
Research progress in interface modification and thermal conduction behavior of diamond/metal composites 被引量:7
7
作者 Ping Zhu Pingping Wang +5 位作者 Puzhen Shao Xiu Lin Ziyang Xiu Qiang Zhang Equo Kobayashi Gaohui Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第2期200-211,共12页
Diamond/metal composites are widely used in aerospace and electronic packaging fields due to their outstanding high thermal conductivity and low expansion.However,the difference in chemical properties leads to interfa... Diamond/metal composites are widely used in aerospace and electronic packaging fields due to their outstanding high thermal conductivity and low expansion.However,the difference in chemical properties leads to interface incompatibility between diamond and metal,which has a considerable impact on the performance of the composites.To improve the interface compatibility between diamond and metal,it is necessary to modify the interface of composites.This paper reviews the experimental research on interface modification and the application of computational simulation in diamond/metal composites.Combining computational simulation with experimental methods is a promising way to promote diamond/metal composite interface modification research. 展开更多
关键词 diamond/metal interface modification thermal conductivity computational simulation
下载PDF
Surface modification of magnesium alloys using thermal and solid-state cold spray processes:Challenges and latest progresses 被引量:5
8
作者 Mohammadreza Daroonparvar Hamid Reza Bakhsheshi-Rad +8 位作者 Abbas Saberi Mahmood Razzaghi Ashish K Kasar Seeram Ramakrishna Pradeep L.Menezes Manoranjan Misra Ahmad Fauzi Ismail Safian Sharif Filippo Berto 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第8期2025-2061,共37页
Potential engineering applications of magnesium(Mg)and Mg-based alloys,as the lightest structural metal,have made them a popular subject of study.However,the inferior corrosion and wear characteristics significantly l... Potential engineering applications of magnesium(Mg)and Mg-based alloys,as the lightest structural metal,have made them a popular subject of study.However,the inferior corrosion and wear characteristics significantly limit their application range.It is widely recognized that surface treatment is the most commonly utilized technique for remarkably improving a substrate’s surface characteristics.Numerous methods have been introduced for the surface treatment of Mg and Mg-based alloys to improve their corrosion behavior and tribological performance.Among these,thermal spray(TS)technology provides several methods for deposition of various functional metallic,ceramic,cermet,or other coatings tailored to particular conditions.Recent researches have shown the tremendous potential for thermal spray coated Mg alloys for biomedical and industrial applications.In this context,the cold spray(CS)method,as a comparatively new TS coating technique,can generate the coating layer using kinetic energy rather than combined thermal and kinetic energies,like the high-velocity oxy-fuel(HVOF)spray method.Moreover,the CS process,as a revolutionary method,is able to repair and refurbish with a faster turnaround time;it also provides solutions that do not require dealing with the thermal stresses that are part of the other repair processes,such as welding or other TS processes using a high-temperature flame.In this review paper,the recently designed coatings that are specifically applied to Mg alloys(primarily for industrial applications)employing various coating processes are reviewed.Because of the increased utilization of CS technology for both 3D printed(additively manufactured)coatings and repair of structurally critical components,the most recent CS methods for the surface treatment,repair,and refurbishment of Mg alloys as well as their benefits and restrictions are then discussed and reviewed in detail.Lastly,the prospects of this field of study are briefly discussed,along with a summary of the presented work. 展开更多
关键词 Mg-based alloys Surface modification thermal and cold spray processes Corrosion behavior Wear resistance
下载PDF
Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite 被引量:3
9
作者 Zi-Rui Jia Zhen-Guo Gao +3 位作者 Di Lan Yong-Hong Cheng Guang-Lei Wu Hong-Jing Wu 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第11期332-339,共8页
Epoxy-based composites containing montmorillonite(MMT)modified by silylation reaction withγ-aminopropyltriethoxysilane(γ-APTES)and 3-(glycidyloxypropyl)trimethoxysilane(GPTMS)are successfully prepared.The effects of... Epoxy-based composites containing montmorillonite(MMT)modified by silylation reaction withγ-aminopropyltriethoxysilane(γ-APTES)and 3-(glycidyloxypropyl)trimethoxysilane(GPTMS)are successfully prepared.The effects of filler loading and surface modification on the electrical and thermal properties of the epoxy/MMT composites are investigated.Compared with the pure epoxy resin,the epoxy/MMT composite,whether MMT is surface-treated or not,shows low dielectric permittivity,low dielectric loss,and enhanced dielectric strength.The MMT in the epoxy/MMT composite also influences the thermal properties of the composite by improving the thermal conductivity and stability.Surface functionalization of MMT not only conduces to the better dispersion of the nanoparticles,but also significantly affects the electric and thermal properties of the hybrid by influencing the interfaces between MMT and epoxy resin.Improved interfaces are good for enhancing the electric and thermal properties of nanocomposites.What is more,the MMT modified with GPTMS rather thanγ-APTES is found to have greater influence on improving the interface between the MMT filler and polymer matrices,thus resulting in lower dielectric loss,lower electric conductivity,higher breakdown strength,lower thermal conductivity,and higher thermal stability. 展开更多
关键词 modified epoxy resin surface modification electric property thermal property
下载PDF
High-temperature thermal stability of C/C−ZrC−SiC composites via region labeling method 被引量:2
10
作者 Zheng PENG Chun-mao MIAO +5 位作者 Wei SUN Yong-long XU Hai-kun CHEN Yu-feng LIU Hong-bo ZHANG Xiang XIONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第10期3349-3361,共13页
To investigate the thermal stability of ceramic-matrix composites,three kinds of C/C−ZrC−SiC composites with different Zr/Si molar ratios were synthesized by reactive melt infiltration.Employing region labeling method... To investigate the thermal stability of ceramic-matrix composites,three kinds of C/C−ZrC−SiC composites with different Zr/Si molar ratios were synthesized by reactive melt infiltration.Employing region labeling method,the high-temperature thermal stability of the composites was systematically studied by changing the temperature and holding time of thermal treatment.Results show that the mass loss rate of low Si composites has a growth trend with increasing temperature,and a crystal transformation from β-SiC toα-SiC occurs in the composites.In the calibrated area,SiC phase experiences Ostwald ripening and volume change with location migration,while ZrC phase experiences a re-sintering process with diffusion.Moreover,it is found that increasing temperature has a more obvious effect on the thermal stability than extending holding time,which is mainly attributed to the faster diffusion rate of atoms. 展开更多
关键词 thermal stability ceramic-matrix composites reactive melt infiltration high-temperature thermal treatment region labeling method
下载PDF
Thermal stability and oil absorption of aluminum hydroxide treated by dry modification with phosphoric acid 被引量:3
11
作者 周向阳 李昌林 +3 位作者 霍登伟 李劼 伍上元 刘业翔 《Journal of Central South University of Technology》 EI 2007年第6期779-782,共4页
The dry modification of aluminum hydroxide powders with phosphoric acid and the effects of modification of technological conditions on thermal stability, morphology and oil absorption of aluminum hydroxide powders wer... The dry modification of aluminum hydroxide powders with phosphoric acid and the effects of modification of technological conditions on thermal stability, morphology and oil absorption of aluminum hydroxide powders were investigated. The results show that the increase of mass ratio of phosphoric acid to aluminum hydroxide, the decrease of mass concentration of phosphoric acid and prolongation of mixing time are favorable to the improvement of thermal stability of aluminum hydroxide; when the mass ratio of phosphoric acid to aluminum hydroxide is 5:100, the mass concentration of phosphoric acid is 200 g/L and the mixing time is 10 min, the initial temperature of loss of crystal water in aluminum hydroxide rises from about 192.10 to 208.66 ℃, but the dry modification results in the appearance of agglomeration and macro-aggregate in the modified powders, and the oil absorption of modified powders becomes higher than that of original aluminum hydroxide. 展开更多
关键词 aluminum hydroxide phosphoric acid thermal stability oil absorption dry modification
下载PDF
Study on Modification of Ultra-Stable Zeolite Prepared by Hydrothermal Method 被引量:2
12
作者 Zhang Weilin Zhou Lingping +4 位作者 Shen Shimin Li Zheng Zhu Yuxia Tian Huiping Long Jun 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2007年第2期55-59,共5页
The ultra-stable zeolite DASY-0.0 was prepared by hydrothermal method in commercial scale. Its structure was further modified via the treatment for cleaning of pores (CP). The zeolite samples before and after CP tre... The ultra-stable zeolite DASY-0.0 was prepared by hydrothermal method in commercial scale. Its structure was further modified via the treatment for cleaning of pores (CP). The zeolite samples before and after CP treating were analyzed and characterized by XRF, XRD, NMR, IR, BET and DTA. The results showed that, in comparison with the conventional ultra-stable zeolite DASY-0.0 prepared by the hydrothermal process, the CP-modified zeolite SOY0 exhibited a higher relative crystallinity, a larger surface area and pore volume, a higher thermal stability and contained less amorohous non-framework A1. 展开更多
关键词 ZEOLITE ultra-stable modification thermal stability
下载PDF
Microstructure studies of air-plasma-spray-deposited CoNiCrAlY coatings before and after thermal cyclic loading for high-temperature application 被引量:6
13
作者 Dipak Kumar K.N.Pandey Dipak Kumar Das 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第8期934-942,共9页
In the present study, bond-coats for thermal barrier coatings were deposited via air plasma spraying(APS) techniques onto Inconel 800 and Hastelloy C-276 alloy substrates. Scanning electron microscopy(SEM), transm... In the present study, bond-coats for thermal barrier coatings were deposited via air plasma spraying(APS) techniques onto Inconel 800 and Hastelloy C-276 alloy substrates. Scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), and atomic force microscopy(AFM) were used to investigate the phases and microstructure of the as-sprayed, APS-deposited Co Ni Cr Al Y bond-coatings. The aim of this work was to study the suitability of the bond-coat materials for high temperature applications. Confirmation of nanoscale grains of the γ/γ′-phase was obtained by TEM, high-resolution TEM, and AFM. We concluded that these changes result from the plastic deformation of the bond-coat during the deposition, resulting in Co Ni Cr Al Y bond-coatings with excellent thermal cyclic resistance suitable for use in high-temperature applications. Cyclic oxidative stability was observed to also depend on the underlying metallic alloy substrate. 展开更多
关键词 thermal barrier coatings coating structure plasma spraying thermal cycle high-temperature applications microstructure studies
下载PDF
High-Temperature Corrosion of Protective Coatings for Boiler Tubes in Thermal Power Plants 被引量:2
14
作者 徐连勇 荆洪阳 霍立兴 《Transactions of Tianjin University》 EI CAS 2005年第3期183-189,共7页
High-temperature corrosion is a serious problem for the water-wall tubes of boilers used in thermal power plants. Oxidation, sulfidation and molten salt corrosion are main corrosion ways.Thereinto, the most severe cor... High-temperature corrosion is a serious problem for the water-wall tubes of boilers used in thermal power plants. Oxidation, sulfidation and molten salt corrosion are main corrosion ways.Thereinto, the most severe corrosion occurs in molten salt corrosion environment. Materials rich in oxides formers, such as chromium and aluminum, are needed to resist corrosion in high-temperature and corrosive environment, but processability of such bulk alloys is very limited. High velocity electric arc spraying (HVAS) technology is adopted to produce coatings with high corrosion resistance. By comparison, NiCr (Ni-45Cr-4Ti) is recommended as a promising alloy coating for the water-wall tubes, which can even resist molten salt corrosion attack. In the study of corrosion mechanism, the modern material analysis methods, such as scanning electron microscopy (SEM), X-ray diffractometry (XRD) and energy dispersive spectrometry (EDS), are used. It is found that the corrosion resistances of NiCr and FeCrAI coatings are much better than that of 20g steel, that the NiCr coatings have the best anti-corrosion properties, and that the NiCr coatings have slightly lower pores than FeCrAI coatings.It is testified that corrosion resistance of coatings is mainly determined by chromium content, and the microstructure of a coating is as important as the chemical composition of the material. In addition, the fracture mechanisms of coatings in the cycle of heating and cooling are put forward. The difference of the thermal physical properties between coatings and base metals results in the thermal stress inside the coatings. Consequently, the coatings spall from the base metal. 展开更多
关键词 high-temperature corrosion high velocity electric arc spraying (HVAS) COATING boiler tubes thermal shock test
下载PDF
Easily Obtaining Excellent Performance High-voltage LiCoO_(2)via Pr_(6)O_(11)Modification
15
作者 Yongcong Huang Chenjie Xu +7 位作者 Jingguo Gao Liao Shen Qian Liu Guiying Zhao Qingshui Xie Yingbin Lin Jiaxin Li Zhigao Huang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期34-44,共11页
Developing an effective method to synthesize high-performance high-voltage LiCoO_(2) is essential for its industrialization in lithium batteries(LIBs).This work proposes a simple mass-produced strategy for the first t... Developing an effective method to synthesize high-performance high-voltage LiCoO_(2) is essential for its industrialization in lithium batteries(LIBs).This work proposes a simple mass-produced strategy for the first time,that is,negative temperature coefficient thermosensitive Pr_(6)O_(11) nanoparticles are uniformly modified on LiCoO_(2) to prepare LiCoO_(2)@Pr_(6)O_(11)(LCO@PrO)via a liquid-phase mixing combined with annealing method.Tested at 274 mA g−1,the modified LCO@PrO electrodes deliver excellent 4.5 V high-voltage cycling performance with capacity retention ratios of 90.8%and 80.5%at 25 and 60℃,being much larger than those of 22.8%and 63.2%for bare LCO electrodes.Several effective strategies were used to clearly unveil the performance enhancement mechanism induced by Pr_(6)O_(11) modification.It is discovered that Pr_(6)O_(11) can improve interface compatibility,exhibit improved conductivity at elevated temperature,thus enhance the Li^(+)diffusion kinetics,and suppress the phase transformation of LCO and its resulting mechanical stresses.The 450 mAh LCO@PrO‖graphite pouch cells show excellent LIB performance and improved thermal safety characteristics.Importantly,the energy density of such pouch cell was increased even by~42%at 5 C.This extremely convenient technology is feasible for producing high-energy density LIBs with negligible cost increase,undoubtedly providing important academic inspiration for industrialization. 展开更多
关键词 high-voltage LiCoO_(2) pouch cell Pr_(6)O_(11)modification simple massproduction thermal safety
下载PDF
Research on thermal insulation materials properties under HTHP conditions for deep oil and gas reservoir rock ITP-Coring 被引量:1
16
作者 Zhi-Qiang He He-Ping Xie +4 位作者 Ling Chen Jian-Ping Yang Bo Yu Zi-Jie Wei Ming-Zhong Gao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2625-2637,共13页
Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability... Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development. 展开更多
关键词 Deep oil and gas reservoir rock In situ temperature-preserved coring(ITPCoring) Hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials) high-temperature and high-pressure(HTHP) Physical and mechanical properties
下载PDF
Thermal stability and oil absorption of aluminum hydroxide treated by dry modification with different modifiers 被引量:5
17
作者 周向阳 李昌林 +2 位作者 霍登伟 李劼 伍上元 《中国有色金属学会会刊:英文版》 EI CSCD 2008年第4期908-912,共5页
The thermal stability, particle size and morphology and oil absorption of aluminum hydroxide(ATH) treated by drymodification with three different modifiers were investigated. The experimental results show that the the... The thermal stability, particle size and morphology and oil absorption of aluminum hydroxide(ATH) treated by drymodification with three different modifiers were investigated. The experimental results show that the thermal stability of ATHpowder is markedly improved by dry modification technology with the following modifiers such as phosphoric acid, polyacrylic acidand the mixture of phosphoric acid and polyacrylic acid. The best effect comes from pure phosphoric acid, and the initial temperaturefor the loss of crystal water of ATH powder modified with pure polyacrylic acid can reach about 202 ℃ that is approximately 10 ℃higher than that of ATH powder before modification. The phenomena of agglomeration and macro-aggregate badly exist in ATHpowder modified with the modifiers containing phosphoric acid. The growth of particles and agglomerations of powders are notevident in ATH powder modified with pure polyacrylic acid. The oil absorption of ATH powder modified with the modifierscontaining phosphoric acid is apparently larger than that of original ATH powder and ATH powder modified with pure polyacrylicacid. The oil absorption of the ATH powder modified with pure polyacrylic acid is slightly smaller than that of original ATH powder. 展开更多
关键词 氢氧化铝 干燥 聚丙烯酸 热稳定性 吸油量
下载PDF
Fabrication of Silane and Desulfurization Ash Composite Modified Polyurethane and Its Interfacial Binding Mechanism
18
作者 吴旺华 CHEN Shuichang +4 位作者 YE Haodong 李世迁 LIN Yuanzhi 陈庆华 XIAO Liren 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期288-297,共10页
Polyurethane/desulfurization ash(PU/DA)composites were synthesized using"one-pot method",with the incorporation of a silane coupling agent(KH550)as a"molecular bridge"to facilitate the integration ... Polyurethane/desulfurization ash(PU/DA)composites were synthesized using"one-pot method",with the incorporation of a silane coupling agent(KH550)as a"molecular bridge"to facilitate the integration of DA as hard segments into the PU molecular chain.The effects of DA content(φ)on the mechanical properties,thermal stability,and hydrophobicity of PU,both before and after the addition of KH550,were thoroughly examined.The results of microscopic mechanism analysis confirmed that KH550 chemically modified the surface of DA,facilitating its incorporation into the polyurethane molecular chain,thereby significantly enhancing the compatibility and dispersion of DA within the PU matrix.When the mass fraction of modified DA(MDA)reached 12%,the mechanical properties,thermal stability,and hydrophobicity of the composites were substantially improved,with the tensile strength reaching 14.9 MPa,and the contact angle measuring 100.6°. 展开更多
关键词 POLYURETHANE silane coupling agent desulfurization ash modification mechanical property HYDROPHOBICITY thermal stability
下载PDF
Improving thermal conductivity of Mg-Si-Zn-Cu alloy through minimizing electron scattering at phase interface
19
作者 Lu Chen Shulin Lü +2 位作者 Jianyu Li Wei Guo Shusen Wu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3717-3728,共12页
The primary cause of the decrease in thermal conductivity of conventional thermal conductive magnesium alloys is electron scattering brought on by solute atoms.However,the impact of phase interface on thermal conducti... The primary cause of the decrease in thermal conductivity of conventional thermal conductive magnesium alloys is electron scattering brought on by solute atoms.However,the impact of phase interface on thermal conductivity of magnesium alloys is usually disregarded.This study has developed a Mg-Si-Zn-Cu alloy with high thermal conductivity that is distinguished by having a very low solute atom content and a significant number of phase interfaces.The thermal conductivity of the Mg^(-1).38Si-0.5Zn-0.5Cu alloy raises from its untreated value of 133.2 W/(m·K)to 142.2 W/(m·K),which is 91%of the thermal conductivity of pure Mg.This is accomplished by subjecting the alloy to both 0.8wt%Ce modification and T6 heat treatment.The morphology of eutectic Mg_(2)Si phase is changed by Ce modification and heat treatment,and as a result,the scattering of electrons at the Mg_(2)Si/Mg interface is reduced,resulting in increase of the alloy’s thermal conductivity. 展开更多
关键词 thermal conductivity Ce modification Mg_(2)Si Heat treatment
下载PDF
Structural Modification and Thermal and Structural Analysis of the Divertor in HL-2A
20
作者 蒋婧 刘德权 +1 位作者 程发银 冉红 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第5期607-610,共4页
The re-design of the adoptable structure and the cooling manner of the divertor in the HL-2A tokamak is based on the parameters confirmed by the optimum divertor configuration and the primary modification scheme. The ... The re-design of the adoptable structure and the cooling manner of the divertor in the HL-2A tokamak is based on the parameters confirmed by the optimum divertor configuration and the primary modification scheme. The characteristics of the new divertor system include the double shear joint design on the domes and the outer target plates as well as the poloidal flow with toroidal manifolds. The results of the thermal and structural analysis of the outer target plates show that the design of the poloidal flow with toroidal manifolds can improve the capability of the target plates to withstand the heat loads, and the double shear joint design is compatible with the stress intensity requirements by the electromagnetic loads due to halo currents. 展开更多
关键词 DIVERTOR modification thermal analysis structural analysis
下载PDF
上一页 1 2 55 下一页 到第
使用帮助 返回顶部