期刊文献+
共找到4,709篇文章
< 1 2 236 >
每页显示 20 50 100
Research progress on the water vapor channel within the Yarlung Zsangbo Grand Canyon, China 被引量:1
1
作者 Xuelong Chen Yajing Liu +9 位作者 Yaoming Ma Xiangde Xu Xin Xu Luhan Li Dianbin Cao Qiang Zhang Gaili Wang Maoshan Li Siqiong Luo Xin Wang 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期10-15,共6页
The Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team with the“Investigation of the water vapor channel of the Yarlung Zsangbo Grand Canyon(INVC)”in the southeastern Tibetan Pl... The Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team with the“Investigation of the water vapor channel of the Yarlung Zsangbo Grand Canyon(INVC)”in the southeastern Tibetan Plateau(TP).This paper summarizes the scientific achievements obtained from the data collected by the INVC observation network and highlights the progress in investigating the development of heavy rainfall events associated with water vapor changes.The rain gauge network of the INVC can represent the impacts of the Yarlung Zsangbo Grand Canyon(YGC)topography on precipitation at the hourly scale.The microphysical characteristics of the precipitation in the YGC are different than those in the lowland area.The GPM-IMERG(Integrated MultisatellitE Retrievals for Global Precipitation Measurement)satellite precipitation data for the YGC region should be calibrated before they are used.The meridional water vapor flux through the YGC is more important than the zonal flux for the precipitation over the southeastern TP.The decreased precipitation around the YGC region is partly due to the decreased meridional water vapor flux passing through the YGC.High-resolution numerical models can benefit precipitation forecasting in this region by using a combination of specific schemes that capture the valley wind and water vapor flux along the valley floor. 展开更多
关键词 water vapor channel Land-air interaction Mountian meteorology Extreme rainfall Observation network
下载PDF
Analysis of the effect of the 2021 Semeru eruption on water vapor content and atmospheric particles using GNSS and remote sensing
2
作者 Mokhamad Nur Cahyadi Arizal Bawasir +7 位作者 Syachrul Arief Amien Widodo Meifal Rusli Deni Kusumawardani Yessi Rahmawati Ana Martina Putra Maulida Hilda Lestiana 《Geodesy and Geodynamics》 EI CSCD 2024年第1期33-41,共9页
Mount Semeru,an active volcano in East Java,Indonesia,erupted on December 4,2021,following extreme rainfall that caused an avalanche of hot pyroclastic flows and lava.The tropospheric conditions and dominant particle ... Mount Semeru,an active volcano in East Java,Indonesia,erupted on December 4,2021,following extreme rainfall that caused an avalanche of hot pyroclastic flows and lava.The tropospheric conditions and dominant particle components in the atmosphere can be monitored using Global Navigation Satellite System(GNSS)technology and remote sensing satellites.GNSS signal propagation delay in Precise Point Positioning(PPP)processing can be used to determine Zenith Tropospheric Delay(ZTD)and Precipitable Water Vapor(PWV)variables so that atmospheric conditions can be generated.In addition,by using remote sensing satellite data,it is possible to obtain rainfall data with high temporal resolution as well as the dominant particle and gas content values during eruptions.During the eruption period,the high value of PWV was dominated by the high intensity of precipitation during the rainy season.High rainfall before the eruption caused activity inside the mountain to increase,which occurred in avalanche type eruption.Apart from that,the atmosphere around Semeru was also dominated by SO_(2)content,which spreaded for tens of kilometers.SO_(2)content began to be detected significantly by remote sensing sensors on December 7,2021.In this study,deformation and atmospheric monitoring were also carried out using low-cost GNSS at the Semeru Monitoring Station on September 9-15,2022.The results of the ZTD and ZWD values show the dominance of the wet component,which is directly proportional to rainfall activity in this period. 展开更多
关键词 Semeru GNSS water vapor RAINFALL SO_(2)
下载PDF
Linkage between precipitation isotopes and water vapor sources in the monsoon margin:Evidence from arid areas of Northwest China
3
作者 CHEN Fenli ZHANG Qiuyan +3 位作者 WANG Shengjie CHEN Jufan GAO Minyan Mohd Aadil BHAT 《Journal of Arid Land》 SCIE CSCD 2024年第3期355-372,共18页
The isotope composition in precipitation has been widely considered as a tracer of monsoon activity.Compared with the coastal region,the monsoon margin usually has limited precipitation with large fluctuation and is u... The isotope composition in precipitation has been widely considered as a tracer of monsoon activity.Compared with the coastal region,the monsoon margin usually has limited precipitation with large fluctuation and is usually sensitive to climate change.The water resource management in the monsoon margin should be better planned by understanding the composition of precipitation isotope and its influencing factors.In this study,the precipitation samples were collected at five sampling sites(Baiyin City,Kongtong District,Maqu County,Wudu District,and Yinchuan City)of the monsoon margin in the northwest of China in 2022 to analyze the characteristics of stable hydrogen(δD)and oxygen(δ18O)isotopes.We analyzed the impact of meteorological factors(temperature,precipitation,and relative humidity)on the composition of precipitation isotope at daily level by regression analysis,utilized the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)-based backward trajectory model to simulate the air mass trajectory of precipitation events,and adopted the potential source contribution function(PSCF)and concentration weighted trajectory(CWT)to analyze the water vapor sources.The results showed that compared with the global meteoric water line(GMWL),the slope of the local meteoric water line(LMWL;δD=7.34δ^(18)O-1.16)was lower,indicating the existence of strong regional evaporation in the study area.Temperature significantly contributed toδ18O value,while relative humidity had a significant negative effect onδ18O value.Through the backward trajectory analysis,we found eight primary locations that were responsible for the water vapor sources of precipitation in the study area,of which moisture from the Indian Ocean to South China Sea(ITSC)and the western continental(CW)had the greatest influence on precipitation in the study area.The hydrogen and oxygen isotopes in precipitation are significantly influenced by the sources and transportation paths of air mass.In addition,the results of PSCF and CWT analysis showed that the water vapor source areas were primarily distributed in the south and northwest direction of the study area. 展开更多
关键词 water vapor monsoon margin stable water isotope transport trajectory air mass d-excess Δ18O δD
下载PDF
Consistency of Tropospheric Water Vapor between Reanalyses and Himawari-8/AHI Measurements over East Asia
4
作者 Di DI Jun LI +3 位作者 Yunheng XUE Min MIN Bo LI Zhenglong LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期19-38,共20页
High spatiotemporal resolution radiances from the advanced imagers onboard the new generation of geostationary weather satellites provide a unique opportunity to evaluate the abilities of various reanalysis datasets t... High spatiotemporal resolution radiances from the advanced imagers onboard the new generation of geostationary weather satellites provide a unique opportunity to evaluate the abilities of various reanalysis datasets to depict multilayer tropospheric water vapor(WV),thereby enhancing our understanding of the deficiencies of WV in reanalysis datasets.Based on daily measurements from the Advanced Himawari Imager(AHI)onboard the Himawari-8 satellite in 2016,the bias features of multilayer WV from six reanalysis datasets over East Asia are thoroughly evaluated.The assessments show that wet biases exist in the upper troposphere in all six reanalysis datasets;in particular,these biases are much larger in summer.Overall,we find better depictions of WV in the middle troposphere than in the upper troposphere.The accuracy of WV in the ERA5 dataset is the highest,in terms of the bias magnitude,dispersion,and pattern similarity.The characteristics of the WV bias over the Tibetan Plateau are significantly different from those over other parts of East Asia.In addition,the reanalysis datasets all capture the shift of the subtropical high very well,with ERA5 performing better overall. 展开更多
关键词 AHI reanalysis dataset multilayer water vapor assessment radiative transfer model
下载PDF
Thermo-Economic Performance of Geothermal Driven High-Temperature Flash Tank Vapor Injection Heat Pump System:A Comparison Study
5
作者 Huashan Li Xiaoshuang Zhao +2 位作者 Sihao Huang Lingbao Wang Jiongcong Chen 《Energy Engineering》 EI 2023年第8期1817-1835,共19页
Process heating constitutes a significant share of final energy consumption in the industrial sector around the world.In this paper,a high-temperature heat pump(HTHP)using flash tank vapor injection technology(FTVI)is... Process heating constitutes a significant share of final energy consumption in the industrial sector around the world.In this paper,a high-temperature heat pump(HTHP)using flash tank vapor injection technology(FTVI)is proposed to develop low-temperature geothermal source for industrial process heating with temperature above 100°C.With heat sink output temperatures between 120°C and 150°C,the thermo-economic performance of the FTVI HTHP system using R1234ze(Z)as refrigerant is analyzed and also compared to the single-stage vapor compression(SSVC)system by employing the developed mathematical model.The coefficient of performance(COP),exergy efficiency(ηexe),net present value(NPV)and payback period(PBP)are used as performance indicators.The results show that under the typical working conditions,the COP andηexe of FTVI HTHP system are 3.00 and 59.66%,respectively,and the corresponding NPV and PBP reach 8.13×106 CNY and 4.13 years,respectively.Under the high-temperature heating conditions,the thermo-economic performance of the FTVI HTHP system is significantly better than that of the SSVC system,and the larger the temperature lift,the greater the thermo-economic advantage of the FTVI HTHP system.Additionally,the FTVI HTHP system is more capable than the SSVC system in absorbing the financial risks associated with changes of electricity price and natural gas price. 展开更多
关键词 Geothermal water high-temperature heat pump flash tank vapor injection thermo-economic performance
下载PDF
Validation of the Relationship between Precipitable Water and Surface Vapor Pressure by Means of Reanalysis Data
6
作者 张凯静 戴新刚 《Meteorological and Environmental Research》 CAS 2010年第5期1-6,27,共7页
By means of ERA-40, JRA-25, NCEP/NCAR and NCEP/DOE reanalysis data, empirical relations between precipitable water and surface vapor pressure in spatial and temporal scale were calculated. The reliabilities of precipi... By means of ERA-40, JRA-25, NCEP/NCAR and NCEP/DOE reanalysis data, empirical relations between precipitable water and surface vapor pressure in spatial and temporal scale were calculated. The reliabilities of precipitable water from reanalysis data were validated based on comparing different W-e empirical relations of various reanalysis data, in order to provide basis and reference for reasonable application. The results showed that W-e empirical relation of ERA-40 was closest to that of sounding data in China, and precipitable water from ERA-40 was the most credible. The worldwide comparison among W-e empirical relations of four reanalysis data showed that there was little difference in annual mean W-e empirical relations in the middle latitudes and great differences in low and high latitudes. Seasonal mean W-e empirical relations in the middle latitudes of the northern Hemisphere had little difference in spring, autumn and winter, but great difference in summer. Therefore, the reliabilities of precipitable water from reanalysis data in spring, autumn and winter in the middle latitudes of the northern hemisphere were higher than other areas and seasons. W-e empirical relations of NCEP/NCAR and NCEP/DOE had good stability in different years, while there was poor stability in ERA-40 and JRA-25. 展开更多
关键词 Reanalysis data Surface vapor pressure Precipitable water Statistical relationship China
下载PDF
Evaluation of Liquid Water Content in Thermal Efficient Heating Mechanism Using Water Vapor for Industrial Furnace
7
作者 Seigo Sakai 《Journal of Mechanics Engineering and Automation》 2017年第3期160-164,共5页
Thermal efficiency has improved by using high-temperature vapor produced by spraying water vapor along with flame from a burner. This study aims to apply high-temperature steam heating mechanism in a high-efficient in... Thermal efficiency has improved by using high-temperature vapor produced by spraying water vapor along with flame from a burner. This study aims to apply high-temperature steam heating mechanism in a high-efficient industrial furnace and household gas range. Past studies in this laboratory show that the heat transfer is promoted due to the appropriate amount of water content in each convection, radiation heat transfer. Then, water vapor-added industrial metal melting furnace has been researched. However, the existing furnace was intended to evaluate only the effect of water vapor except measuring surrounding environment, for example temperature and humidity. In this study, the effect of surrounding environment to the furnace is examined, and possibility of heat transfer enhancement is estimated. As a result, surrounding experimental condition has little effect on the change of heating ability, while this experimental furnace shows gradual degradation of heating ability in every experimental trial. Then optimum amount of water supply to the apparatus was discussed. Too much water injection leads to more consumption of heat as latent heat of water in phase change, and exceeds the effect of water vapor in heat transfer. There is a possibility of suitable total water supply, despite that there is no significant change in gas usage in water injection case compared with no water injection. 展开更多
关键词 high-temperature water vapor thermal radiation convective heat transfer heat transfer enhancement.
下载PDF
Relations of Water Vapor Transport from Indian Monsoon with That over East Asia and the Summer Rainfall in China 被引量:56
8
作者 张人禾 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第5期1005-1017,共13页
A diagnostic study is made to investigate the relationship between water vapor transport from Indian monsoon and that over East Asia in Northern summer. It is found that water vapor transport from Indian monsoon is in... A diagnostic study is made to investigate the relationship between water vapor transport from Indian monsoon and that over East Asia in Northern summer. It is found that water vapor transport from Indian monsoon is inverse to that over East Asia. More (less) Indian monsoon water vapor transport corresponds to less (more) water vapor transport over East Asia and less (more) rainfall in the middle and lower reaches of the Yangtze River valley. The Indian summer monsoon water vapor transport is closely related to the intensity of the western Pacific subtropical high in its southwestern part. The stronger (weaker) the Indian summer monsoon water vapor transport, the weaker (stronger) the western Pacific subtropical high in its southwestern part, which leads to less (more) water vapor transport to East Asia, and thus less (more) rainfall in the middle and lower reaches of the Yangtze River valley. Analysis of the out-going longwave radiation anomalies suggests that the convective heating anomalies over the Indian Ocean may have significant impact not only on the Indian monsoon, but also on the East Asian monsoon. 展开更多
关键词 water vapor transport Indian monsoon East Asian monsoon
下载PDF
The Recent Interdecadal and Interannual Variation of Water Vapor Transport over Eastern China 被引量:22
9
作者 孙博 祝亚丽 王会军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第5期1039-1048,共10页
The climatological characteristics and interdecadal variability of the water vapor transport and budget over the Yellow River-Huaihe River valleys (YH1) and the Yangtze River-Huaihe River valleys (YH2) of East Chi... The climatological characteristics and interdecadal variability of the water vapor transport and budget over the Yellow River-Huaihe River valleys (YH1) and the Yangtze River-Huaihe River valleys (YH2) of East China were investigated in this study,using the NCEP/NCAR monthly mean reanalysis datasets from 1979 to 2009.Changes in the water vapor transport pattern occurred during the late 1990s over YH1 (YH2) that corresponded with the recent interdecadal changes in the eastern China summer precipitation pattern.The net moisture influx in the YH1 increased and the net moisture influx in the YH2 decreased during 2000-2009 in comparison to 1979-1999.Detailed features in the moisture flux and transport changes across the four boundaries were explored.The altered water vapor transport over the two domains can be principally attributed to the additive effects of the changes in the confluent southwesterly moisture flow by the Indian summer monsoon and East Asian summer monsoon (related with the eastward recession of the western Pacific subtropical high).The altered water vapor transport over YH1 was also partly caused by the weakened midlatitude westerlies. 展开更多
关键词 water vapor transport interdecadal variability summer monsoon midlatitude westerlies
下载PDF
Preliminary Results of 4-D Water Vapor Tomography in the Troposphere Using GPS 被引量:11
10
作者 毕研盟 毛节泰 李成才 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第4期551-560,共10页
Slant-path water vapor amounts (SWV) from a station to all the GPS (Global Positioning System) satellites in view can be estimated by using a ground-based GPS receiver. In this paper, a tomographic method was util... Slant-path water vapor amounts (SWV) from a station to all the GPS (Global Positioning System) satellites in view can be estimated by using a ground-based GPS receiver. In this paper, a tomographic method was utilized to retrieve the local horizontal and vertical structure of water vapor over a local GPS receiver network using SWV amounts as observables in the tomography. The method of obtaining SWV using ground-based GPS is described first, and then the theory of tomography using GPS is presented. A water vapor tomography experiment was made using a small GPS network in the Beijing region. The tomographic results were analyzed in two ways: (1) a pure GPS method, i.e., only using GPS observables as input to the tomography, (2) combining GPS observables with vertical constraints or a priori information, which come from average radiosonde measurements over three days. It is shown that the vertical structure of water vapor is well resolved with a priori information. Comparisons of profiles between radiosondes and GPS show that the RMS error of the tomography is about 1-2 mm. It is demonstrated that the tomography can monitor the evolution of tropospheric water vapor in space and time. The vertical resolution of the tomography is tested with layer thicknesses of 600 m, 800 m and 1000 m. Comparisons with radiosondes show that the result from a resolution of 800 m is slightly better than results from the other two resolutions in the experiment. Water vapor amounts recreated from the tomography field agree well with precipitable water vapor (PWV) calculated using GPS delays. Hourly tomographic results are also shown using the resolution of 800 m. Water vapor characteristics under the background of heavy rainfall development are analyzed using these tomographic results. The water vapor spatio-temporal structures derived from the GPS network show a great potential in the investigation of weather disasters. 展开更多
关键词 GPS slant path water vapor TOMOGRAPHY
下载PDF
The Water Vapor Transport Model at the Regional Boundaryduring the Meiyu Period 被引量:11
11
作者 徐祥德 苗秋菊 +1 位作者 王继志 张雪金 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第3期333-342,共10页
The water vapor transport model at the regional boundary in the Meiyu period is put forward through diagnostic analysis. The numerical simulation on the water vapor transport at the boundary of China in the heavy rain... The water vapor transport model at the regional boundary in the Meiyu period is put forward through diagnostic analysis. The numerical simulation on the water vapor transport at the boundary of China in the heavy rainfall period during June–July 1998 shows that the feature of water vapor transport in June is different from that in July. The main body of the water cycle that forms the torrential rain in the Yangtze River Valley is made up of water vapor transport at the western and southern boundaries of the China region in June, whereas the water vapor flow at the western boundary in middle Tibet turns out to be the main body of water vapor sources in July. The water vapor transport at the western boundary of the Tibetan Plateau and the southern boundary of China plays an important role in the torrential rain in the Yangtze River Valley. The temporal and spatial distribution characteristics of water vapor flow at the regional boundary and their theoretical model would provide the scientific proof for the heavy rain forecasts in the Yangtze River Valley. 展开更多
关键词 water vapor flow torrential rain Yangtze River Valley Meiyu period
下载PDF
Characteristics of the Mean Water Vapor Transport over Monsoon Asia 被引量:11
12
作者 伊兰 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1995年第2期195-206,共12页
Based on ECMWF monthly mean data from January 1980 to December 1989,characterishcs of the three-dimensional structure of the mean water vapor transport over Monsoon Asia are described,and the more forportant features ... Based on ECMWF monthly mean data from January 1980 to December 1989,characterishcs of the three-dimensional structure of the mean water vapor transport over Monsoon Asia are described,and the more forportant features of the different regional water vapor transport in the indian Monsoon region and the East AsianMonsoon region are analyzed.It is found that there is a moist tongue extending from the equator POleWard to the Asian Monsoon region.The three-dimensional distributions of the mean water vapor transport fields over the entire globe renect clearly the asymmetry of the Asian Monsoon system,and the existence of a counterrHadley monsoon circulation.The moisture conver-gened(divergence) area in Asia coincides with the connuellt(diffiuent) zone of the monsoon cjrculahon.Furthermore,the moist featllres of the tWo sub-regions of the Asian Monsoon area are different both in their magnitudes and in their seasonal variations. 展开更多
关键词 water vapor transport East Asian monsoon water balance
下载PDF
Water Vapor Transport and Cross-Equatorial Flow over the Asian-Australia Monsoon Region Simulated by CMIP5 Climate Models 被引量:7
13
作者 宋亚娟 乔方利 +1 位作者 宋振亚 姜春飞 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第3期726-738,共13页
The summer mean water vapor transport (WVT) and cross-equatorial flow (CEF) over the Asian- Australian monsoon region simulated by 22 coupled atmospheric-oceanic general circulation models (AOGCMs) from the Worl... The summer mean water vapor transport (WVT) and cross-equatorial flow (CEF) over the Asian- Australian monsoon region simulated by 22 coupled atmospheric-oceanic general circulation models (AOGCMs) from the World Climate Research Programme's Coupled Model Intercomparison Project Phase 5 (CMIP5) were evaluated. Based on climatology of the twentieth-century simulations, most of models have a reason- ably realistic representation of summer monsoon WVT characterized by southeast water vapor conveyor belt over the South Indian Ocean and southwest belt from the Arabian Sea to the East Asian. The correlation coefficients between NCEP reanalysis and simulations of BCC-CSMI-1, BNU-ESM, CanESM2, FGOALS-s2, MIROC4h and MPI-ESM-LR are up to 0.8. The simulated CEF depicted by the meridional wind along the equator includes the Somali jet and eastern CEF in low atmosphere and the reverse circulation in upper atmosphere, which were generally consistent with NCEP reanalysis. Multi-model ensemble means (MME) can reproduce more reasonable climatological features in spatial distribution both of WVT and CEF. Ten models with more reasonable WVT simulations were selected for future projection studies, including BCC- CSMI-1, BNU-ESM, CanESM2, CCSM4, FGOALS-s2, FIO-ESM, GFDL-ESM2G, MRIOCS, MPI-ESM-LR and NorESM-1M. Analysis based on the future projection experiments in RCP (Representative Concentra- tion Pathway) 2.6, RCP4.5, RCP6 and RCP8.5 show that the global warming forced by different RCP scenarios will results in enhanced WVT over the Indian area and the west Pacific and weaken WVT in the low latitudes of tropical Indian Ocean. 展开更多
关键词 CMIP5 AOGCMs water vapor transport cross-equatorial flow future projection
下载PDF
Impact of Increasing Stratospheric Water Vapor on Ozone Depletion and Temperature Change 被引量:16
14
作者 田文寿 Martyn P.CHIPPERFIELD 吕达仁 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第3期423-437,共15页
Using a detailed, fully coupled chemistry climate model (CCM), the effect of increasing stratospheric H20 on ozone and temperature is investigated. Different CCM time-slice runs have been performed to investigate th... Using a detailed, fully coupled chemistry climate model (CCM), the effect of increasing stratospheric H20 on ozone and temperature is investigated. Different CCM time-slice runs have been performed to investigate the chemical and radiative impacts of an assumed 2 ppmv increase in H20. The chemical effects of this H20 increase lead to an overall decrease of the total column ozone (TCO) by ~1% in the tropics and by a maximum of 12% at southern high latitudes. At northern high latitudes, the TCO is increased by only up to 5% due to stronger transport in the Arctic. A 2-ppmv H2O increase in the model's radiation scheme causes a cooling of the tropical stratosphere of no more than 2 K, but a cooling of more than 4 K at high latitudes. Consequently, the TCO is increased by about 2%-6%. Increasing stratospheric H2O, therefore, cools the stratosphere both directly and indirectly, except in the polar regions where the temperature responds differently due to feedbacks between ozone and H2O changes. The combined chemical and radiative effects of increasing H2O may give rise to more cooling in the tropics and middle latitudes but less cooling in the polar stratosphere. The combined effects of H2O increases on ozone tend to offset each other, except in the Arctic stratosphere where both the radiative and chemical impacts give rise to increased ozone. The chemical and radiative effects of increasing H2O cause dynamical responses in the stratosphere with an evident hemispheric asymmetry. In terms of ozone recovery, increasing the stratospheric H2O is likely to accelerate the recovery in the northern high latitudes and delay it in the southern high latitudes. The modeled ozone recovery is more significant between 2000 ~2050 than between 2050~2100, driven mainly by the larger relative change in chlorine in the earlier period. 展开更多
关键词 stratospheric water vapor temperature change ozone depletion chemistry-climate model
下载PDF
Meteorological applications of precipitable water vapor measurements retrieved by the national GNSS network of China 被引量:8
15
作者 Liang Hong Cao Yunchang +3 位作者 Wan Xiaomin Xu Zhifang Wang Haishen Hu Heng 《Geodesy and Geodynamics》 2015年第2期135-142,共8页
In this study, the Global Navigation Satellite System (GNSS) network of China is discussed, which can be used to monitor atmospheric precipitable water vapor (PWV). By the end of 2013, the network had 952 GNSS sit... In this study, the Global Navigation Satellite System (GNSS) network of China is discussed, which can be used to monitor atmospheric precipitable water vapor (PWV). By the end of 2013, the network had 952 GNSS sites, including 260 belonging to the Crustal Movement Observation Network of China (CMONOC) and 692 belonging to the China Meteorological Administration GNSS network (CMAGN). Additionally, GNSS observation collecting and data processing procedures are presented and PWV data quality control methods are investigated. PWV levels as determined by GNSS and radiosonde are compared. The results show that GNSS estimates are generally in good agreement with measurements of radio- sondes and water vapor radiometers (WVR). The PWV retrieved by the national GNSS network is used in weather forecasting, assimilation of data into numerical weather prediction models, the validation of PWV estimates by radiosonde, and plum rain monitoring. The network is also used to monitor the total ionospheric electron content. 展开更多
关键词 Precipitable water vapor (PWV) Global navigation satellite system(GNSS) Crustal Movement ObservationNetwork of China (CMONOC)China meteorological administra-tion GNSS network (CMAGN) water vapor radiometers (WVR) Quality control Meteorological application Assimilation
下载PDF
Temperature Dependency of Water Vapor Permeability of Shape Memory Polyurethane 被引量:6
16
作者 曾跃民 胡金莲 严灏景 《Journal of Donghua University(English Edition)》 EI CAS 2002年第3期52-57,共6页
Solution-cast films of shape memory polyurethane have been investigated.Differential scanning calorimetry, DMA, tensile test, water vapor permeability and the shape memory effect were carried out to characterize these... Solution-cast films of shape memory polyurethane have been investigated.Differential scanning calorimetry, DMA, tensile test, water vapor permeability and the shape memory effect were carried out to characterize these polyurethane membranes. Samples cast at higher temperatures contained more hard segment in the crystalline state than a sample cast at lower temperature. The change in the water vapor permeability (WVP) of SMPU films with respect to the temperature follows an S-shaped curve, and increases abruptly at T m of the soft segment for the fractional free volume (FFV, the ratio of free volume and specific volume in polymers) increased linearly with temperature. The water vapor permeability dependency of the temperature and humidity contribute to the result of the change of diffusion and solubility with the surrounding air condition. The diffusion coefficient (D) are the function of temperature and show good fit the Arrhenius form but show different parameter values when above and below T g. The crystalline state hard-segment is necessary for the good shape memory 展开更多
关键词 polyurethane water vapor permeability temperature dependency SHAPE memory.
下载PDF
Retrieval of Water Vapor Profiles with Radio Occultation Measurements Using an Artificial Neural Network 被引量:4
17
作者 王鑫 吕达仁 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第5期759-764,共6页
A new method applying an artificial neural network (ANN) to retrieve water vapor profiles in the troposphere is presented. In this paper, a fully-connected, three-layer network based on the backpropagation algorithm... A new method applying an artificial neural network (ANN) to retrieve water vapor profiles in the troposphere is presented. In this paper, a fully-connected, three-layer network based on the backpropagation algorithm is constructed. Month, latitude, altitude and bending angle are chosen as the input vectors and water vapor pressure as the output vector. There are 130 groups of occultation measurements from June to November 2002 in the dataset. Seventy pairs of bending angles and water vapor pressure profiles are used to train the ANN, and the sixty remaining pairs of profiles are applied to the validation of the retrieval. By comparing the retrieved profiles with the corresponding ones from the Information System and Data Center of the Challenging Mini-Satellite Payload for Geoscientific Research and Application (CHAMP-ISDC), it can be concluded that the ANN is relatively convenient and accurate. Its results can be provided as the first guess for the iterative methods or the non-linear optimal estimation inverse method. 展开更多
关键词 radio occultation water vapor artificial neural network BACK-PROPAGATION
下载PDF
Interannual and Interdecadal Variability of Atmospheric Water Vapor Transport in the Haihe River Basin 被引量:12
18
作者 WEI Jie LIN Zhao-Hui +1 位作者 XIA Jun TAO Shi-Yan 《Pedosphere》 SCIE CAS CSCD 2005年第5期585-594,共10页
The seasonal mean atmospheric precipitable water and water vapor transport over the Haihe River Basin (HRB) in North China with a focus on their interannual to interdecadal variability, and then the relationships of... The seasonal mean atmospheric precipitable water and water vapor transport over the Haihe River Basin (HRB) in North China with a focus on their interannual to interdecadal variability, and then the relationships of the interannual and interdecadal variability of the water cycle over the HRB to the Pacific Decadal Oscillation (PDO) and E1 Nino-Southern Oscillation (ENSO) phenomena were investigated using the observational and National Centers for Environmental Prediction (NCEP) reanalysis data. There was a strong interdecadal variability for the water cycle (such as precipitation and water vapor transport) over the region, with an abrupt change occurring mostly in the mid 1970s. The intensity of the East Asian summer monsoon largely affected the atmospheric water vapor transport. Generally, the net meridional convergence of the water vapor flux over the region was relatively large before 1965, and it declined gradually from then on with a further notable decrease since mid 1970s. Zonal water vapor transport was similar to meridional, but with a much smaller magnitude and no noteworthy turning in the mid 1970s. Results also suggested that the wind field played an important role in the water vapor transport over the HRB before the mid 1960s, and the interdecadal variability of the water cycle (precipitation, water vapor transport, etc.) in the summer was related to the PDO; however, interannual variation of the water vapor transport could also be related to the ENSO phenomena. 展开更多
关键词 interannual variability interdecadal variability Haihe River Basin water vapor transport
下载PDF
Isotopic composition of precipitation over Arid Northwestern China and its implications for the water vapor origin 被引量:20
19
作者 柳鉴容 宋献方 +3 位作者 孙晓敏 袁国富 刘鑫 王仕琴 《Journal of Geographical Sciences》 SCIE CSCD 2009年第2期164-174,共11页
In order to reveal the characteristics and climatic controls on the stable isotopic composition of precipitation over Arid Northwestern China, eight stations have been selected from Chinese Network of Isotopes in Prec... In order to reveal the characteristics and climatic controls on the stable isotopic composition of precipitation over Arid Northwestern China, eight stations have been selected from Chinese Network of Isotopes in Precipitation(CHNIP).During the year 2005 and 2006, monthly precipitation samples have been collected and analyzed for the composition of δD and δ18O.The established local meteoric water line δD=7.42δ18O+1.38, based on the 95 obtained monthly composite samples, could be treated as isotopic input function across the region.The deviations of slope and intercept from the Global Meteoric Water Line indicated the specific regional meteorological conditions.The monthly δ18O values were characterized by a positive correlation with surface air temperature(δ18O(‰) =0.33 T(℃)-13.12).The amount effect visualized during summer period(δ18O(‰) =-0.04P(mm)-3.44) though not appeared at a whole yearly-scale.Spatial distributions of δ18O have properly portrayed the atmospheric circulation background in each month over Arid Northwestern China.The quan-titative simulation of δ18O, which involved a Rayleigh fractionation and a kinetic fractionation, demonstrated that the latter one was the dominating function of condensation of raindrops.Furthermore, the raindrop suffered a re-evaporation during falling processes, and the precipitation vapor might have been mixed with a quantity of local recycled water vapor.Multiple linear regression equations and a δ18O-T relation have been gained by using meteorological parameters and δ18O data to evaluate physical controls on the long-term data.The established δ18O-T relation, which has been based on the present-day precipitation, could be considered as a first step of quantitatively reconstructing the historical environmental climate. 展开更多
关键词 Arid Northwestern China (ANC) Δ^18O PRECIPITATION water vapor origin
下载PDF
REMOTE SENSING OF WATER VAPOR CONTENT USING GROUND-BASED GPS DATA 被引量:2
20
作者 Liu Yanxiong Chen Yongqi Liu Jingnan 《Geo-Spatial Information Science》 2000年第3期64-68,共5页
Spatial and temporal resolution of water vapor content is useful in improving the accuracy of short_term weather prediction.Dense and continuously tracking regional GPS arrays will play an important role in remote sen... Spatial and temporal resolution of water vapor content is useful in improving the accuracy of short_term weather prediction.Dense and continuously tracking regional GPS arrays will play an important role in remote sensing atmospheric water vapor content.In this study,a piecewise linear solution method was proposed to estimate the precipitable water vapor (PWV) content from ground_based GPS observations in Hong Kong.To evaluate the solution accuracy of the water vapor content sensed by GPS,the upper air sounding data (radiosonde) that are collected locally was used to calculate the precipitable water vapor during the same period.One_month results of PWV from both ground_based GPS sensing technique and radiosonde method are in agreement within 1~2 mm.This encouraging result will motivate the GPS meteorology application based on the establishment of a dense GPS array in Hong Kong. 展开更多
关键词 GPS water vapor CONTENT precipitable water vapor
下载PDF
上一页 1 2 236 下一页 到第
使用帮助 返回顶部