The design of cost-effective electrocatalysts is an open challenging for oxygen evolution reaction(OER)due to the“stable-oractive”dilemma.Zirconium dioxide(ZrO_(2)),a versatile and low-cost material that can be stab...The design of cost-effective electrocatalysts is an open challenging for oxygen evolution reaction(OER)due to the“stable-oractive”dilemma.Zirconium dioxide(ZrO_(2)),a versatile and low-cost material that can be stable under OER operating conditions,exhibits inherently poor OER activity from experimental observations.Herein,we doped a series of metal elements to regulate the ZrO_(2)catalytic activity in OER via spin-polarized density functional theory calculations with van der Waals interactions.Microkinetic modeling as a function of the OER activity descriptor(G_(O*)-G_(HO*))displays that 16 metal dopants enable to enhance OER activities over a thermodynamically stable ZrO_(2)surface,among which Fe and Rh(in the form of single-atom dopant)reach the volcano peak(i.e.the optimal activity of OER under the potential of interest),indicating excellent OER performance.Free energy diagram calculations,density of states,and ab initio molecular dynamics simulations further showed that Fe and Rh are the effective dopants for ZrO_(2),leading to low OER overpotential,high conductivity,and good stability.Considering cost-effectiveness,single-atom Fe doped ZrO_(2)emerged as the most promising catalyst for OER.This finding offers a valuable perspective and reference for experimental researchers to design cost-effective catalysts for the industrial-scale OER production.展开更多
The monomolecular surface layer of acceptor doped CeO_(2) may become neutral and metallic or charged and semiconducting.This is revealed in the theoretical analysis of the oxygen pressure dependence of the surface def...The monomolecular surface layer of acceptor doped CeO_(2) may become neutral and metallic or charged and semiconducting.This is revealed in the theoretical analysis of the oxygen pressure dependence of the surface defects concentration in acceptor doped ceria with two different dopant types and operated under different oxygen pressures.Recently published experimental data for highly reduced Sm0.2Ce0.8O1.9-x(SDC)containing a fixed valence dopant Sm3+are very different from those published for Pr0.1Ce0.9O_(2)-x(PCO) with the variable valence dopant Pr4+/Pr3+being reduced under milder conditions.The theoretical analysis of these experimental results fits very well the experimental results of SDC and PCO.It leads to the following predictions:the highly reduced surface of SDC is metallic and neutral,the metallic surface electron density of state is gs=0.9×10^(38)J-1·m^(-2)(1.4×1015eV^(-1)·cm^(-2)),the electron effective mass is meff,s=3.3me,and the phase diagram of the reduced surface has theα(fcc)structure as in the bulk.In PCO a double layer is predicted to be formed between the surface and the bulk with the surface being negatively charged and semiconducting.The surface of PCO maintains high Pr^(3+) defect concentration as well as relative high oxygen vacancy concentration at oxygen pressures higher than in the bulk.The reasons for the difference between a metallic and semiconducting surface layer of acceptor doped CeO_(2) are reviewed,as well as the key theoretical considerations applied in coping with this problem.For that we make use of the experimental data and theoretical analysis available for acceptor doped ceria.展开更多
Ultraviolet photodetectors(UV PDs)are widely used in civilian,scientific,and military fields due to their high sensitivity and low false alarm rates.We present a temperature-dependent Lewis acid p-type doping method f...Ultraviolet photodetectors(UV PDs)are widely used in civilian,scientific,and military fields due to their high sensitivity and low false alarm rates.We present a temperature-dependent Lewis acid p-type doping method for transition metal dichalcogenides(TMDs),which can effectively be used to extend the optical response range.The p-type doping based on surface charge transfer involves the chemical adsorption of the Lewis acid SnCl_(4)as a light absorption layer on the surface of WS_(2),significantly enhancing its UV photodetection performance.Under 365 nm laser irradiation,WS_(2)PDs exhibit response speed of 24 ms/20 ms,responsivity of 660 mA/W,detectivity of 3.3×10^(11)Jones,and external quantum efficiency of 226%.Moreover,we successfully apply this doping method to other TMDs materials(such as MoS_(2),MoSe_(2),and WSe_(2))and fabricate WS_(2) lateral p–n heterojunction PDs.展开更多
Conventional theories expect that materials under pressure exhibit expanded valence and conduction bands,leading to increased electrical conductivity.Here,we report the electrical properties of the doped 1T-TiS_(2) un...Conventional theories expect that materials under pressure exhibit expanded valence and conduction bands,leading to increased electrical conductivity.Here,we report the electrical properties of the doped 1T-TiS_(2) under high pressure by electrical resistance investigations,synchrotron x-ray diffraction,Raman scattering and theoretical calculations.Up to 70 GPa,an unusual metal-semiconductor-metal transition occurs.Our first-principles calculations suggest that the observed anti-Wilson transition from metal to semiconductor at 17 GPa is due to the electron localization induced by the intercalated Ti atoms.This electron localization is attributed to the strengthened coupling between the doped Ti atoms and S atoms,and the Anderson localization arising from the disordered intercalation.At pressures exceeding 30.5 GPa,the doped TiS_(2) undergoes a re-metallization transition initiated by a crystal structure phase transition.We assign the most probable space group as P2_(1)2_(1)2_(1).Our findings suggest that materials probably will eventually undergo the Wilson transition when subjected to sufficient pressure.展开更多
We took Co_(0.2)Ni_(0.8)-MOF-74 with bimetallic synergistic effect as the basic material,and selected rare earth ions Ho,Gd,and Er with ion radii close to Co and Ni as the research objects for doping.The influence of ...We took Co_(0.2)Ni_(0.8)-MOF-74 with bimetallic synergistic effect as the basic material,and selected rare earth ions Ho,Gd,and Er with ion radii close to Co and Ni as the research objects for doping.The influence of rare earth ion doping amount and doping type on the eNRR performance of the catalyst was explored.The experimental results show that the ammonia yield rate and Faraday efficiency doped with Co_(0.2)Ni_(0.8)-MOF-0.5Ho are the highest,reaching 1.28×10^(-10)mol·s^(-1)·cm^(-2)/39.8%,which is higher than the1.12×10^(-10)mol·s^(-1)·cm^(-2)/32.2%of Co_(0.2)Ni_(0.8)-MOF-74,and is about 14.3%/23.7%higher than that without doping,respectively.And the stability of Co_(0.2)Ni_(0.8)-MOF-0.5 Ho is good(after 80 hours of continuous testing,the current density did not significantly decrease).This is mainly due to doping,which gives Co_(0.2)Ni_(0.8)-MOF-74 a larger specific surface area and catalytic active sites.The catalyst doped at the same time has more metal cation centers,which increases the electron density of the metal centers and enhances the corresponding eNRR performance.展开更多
Utilizing single atom sites doping into metal oxides to modulate their intrinsic active sites,achieving precise selectivity control in complex organic reactions,is a highly desirable yet challenging endeavor.Meanwhile...Utilizing single atom sites doping into metal oxides to modulate their intrinsic active sites,achieving precise selectivity control in complex organic reactions,is a highly desirable yet challenging endeavor.Meanwhile,identifying the active site also represents a significant obstacle,primarily due to the intricate electronic environment of single atom site doped metal oxide.Herein,a single atom Cu doped TiO_(2)catalyst(Cu_(1)-TiO_(2)) is prepared via a simple“colloid-acid treatment”strategy,which switches aniline oxidation selectivity of TiO_(2) from azoxybenzene to nitrosobenzene,without using additives or changing solvent,while other metal or nonmetal doped TiO_(2) did not possess.Comprehensive mechanistic investigations and DFT calculations unveil that Ti-O active site is responsible for triggering the aniline to form a new PhNOH intermediate,two PhNOH condense to azoxybenzene over TiO_(2) catalyst.As for Cu_(1)-TiO_(2),the charge-specific distribution between the isolated Cu and TiO_(2) generates unique Cu_(1)-O-Ti hybridization structure with nine catalytic active sites,eight of them make PhNOH take place spontaneous dissociation to produce nitrosobenzene.This work not only unveils a new mechanistic pathway featuring the PhNOH intermediate in aniline oxidation for the first time but also presents a novel approach for constructing single-atom doped metal oxides and exploring their intricate active sites.展开更多
The hydrogen evolution reaction(HER)is a promising way to produce hydrogen,and the use of non-precious metals with an excellent electrochemical performance is vital for this.Carbon-based transition metal catalysts hav...The hydrogen evolution reaction(HER)is a promising way to produce hydrogen,and the use of non-precious metals with an excellent electrochemical performance is vital for this.Carbon-based transition metal catalysts have high activity and stability,which are important in reducing the cost of hydrogen production and promoting the development of the hydrogen production industry.However,there is a lack of discussion regarding the effect of carbon components on the performance of these electrocatalysts.This review of the literature discusses the choice of the carbon components in these catalysts and their impact on catalytic performance,including electronic structure control by heteroatom doping,morphology adjustment,and the influence of self-supporting materials.It not only analyzes the progress in HER,but also provides guidance for synthesizing high-performance carbon-based transition metal catalysts.展开更多
Polyanion-based materials are considered one of the most attractive and promising cathode materials for lithiumion batteries(LIBs)due to their good stability,safety,cost-effectiveness,suitable voltages,and minimal env...Polyanion-based materials are considered one of the most attractive and promising cathode materials for lithiumion batteries(LIBs)due to their good stability,safety,cost-effectiveness,suitable voltages,and minimal environmental impact.However,these materials suffer from poor rate capability and low-temperature performance owing to limited electronic and ionic conductivity,which restricts their practical applicability.Recent developments,such as coating material particles with carbon or a conductive polymer,crystal deformation through the doping of foreign metal ions,and the production of nanostructured materials,have significantly enhanced the electrochemical performances of these materials.The successful applications of polyanion-based materials,especially in lithium-ion batteries,have been extensively reported.This comprehensive review discusses the current progress in crystal deformation in polyanion-based cathode materials,including phosphates,fluorophosphates,pyrophosphates,borates,silicates,sulfates,fluorosilicates,and oxalates.Therefore,this review provides detailed discussions on their synthesis strategies,electrochemical performance,and the doping of various ions.展开更多
Manipulating emergent quantum phenomena is a key issue for understanding the underlying physics and contributing to possible applications.Here we study the evolution of insulating ground states of Ta_(2)Pu_(3)Te_(5) a...Manipulating emergent quantum phenomena is a key issue for understanding the underlying physics and contributing to possible applications.Here we study the evolution of insulating ground states of Ta_(2)Pu_(3)Te_(5) and Ta_(2)Ni_(3)Te_(5) under in-situ surface potassium deposition via angle-resolved photoemission spectroscopy.Our results confirm the excitonic insulator character of Ta_(2)d_(3)Te_(5).Upon surface doping,the size of its global gap decreases obviously.After a deposition time of more than 7 min,the potassium atoms induce a metal-insulator phase transition and make the system recover to a normal state.In contrast,our results show that the isostructural compound Ta_(2)Ni_(3)Te_(5) is a conventional insulator.The size of its global gap decreases upon surface doping,but persists positive throughout the doping process.Our results not only confirm the excitonic origin of the band gap in Ta_(2)Pd_(3)Te_(5),but also offer an effective method for designing functional quantum devices in the future.展开更多
Metal-organic frameworks (MOFs) have attracted much attention as adsorbents for the separation of CO2 from flue gas or natural gas. Here, a typical metal-organic framework HKUST-I(also named Cu-BTC or MOF-199) was...Metal-organic frameworks (MOFs) have attracted much attention as adsorbents for the separation of CO2 from flue gas or natural gas. Here, a typical metal-organic framework HKUST-I(also named Cu-BTC or MOF-199) was chemically reduced by doping it with alkali metals (Li, Na and K) and they were further used to investigate their CO2 adsorption capacities. The structural information, surface chemistry and thermal behavior of the prepared adsorbent samples were characterized by X-ray powder diffraction (XRD), thermo-gravimetric analysis (TGA) and nitrogen adsorption-desorption isotherm analysis. The results showed that the CO2 storage capacity of HKUST-1 doped with moderate quantities of Li+, Na+ and K+, individually, was greater than that of unmodified HKUST-1. The highest CO2 adsorption uptake of 8.64 mmol/g was obtained with 1K-HKUST-1, and it was ca. 11% increase in adsorption capacity at 298 K and 18 bar as compared with HKUST- 1. Moreover, adsorption tests showed that HKUST-1 and 1K-HKUST-1 displayed much higher adsorption capacities of CO2 than those of N2. Finally, the adsorption/desorption cycle experiment revealed that the adsorption performance of 1K-HKUST-1 was fairly stable, without obvious deterioration in the adsorption capacity of CO2 after 10 cycles.展开更多
The neutral hydrogen evolution reaction(HER)is vital in the chemical industry,and its efficiency depends on the interior character of the catalyst.Herein,work function(WF)engineering is introduced via 3d metal(Fe,Co,N...The neutral hydrogen evolution reaction(HER)is vital in the chemical industry,and its efficiency depends on the interior character of the catalyst.Herein,work function(WF)engineering is introduced via 3d metal(Fe,Co,Ni,and Cu)doping for modulating the Fermi energy level of Mo2C.The defective energy level facilitates the free water molecule adsorption and,subsequently,promotes the neutral HER efficiency.Specifically,at a current density of 10 mA/cm2,Cu-Mo2C exhibits the best HER performance with an overpotential of 78 mV,followed by Ni-Mo2C,Co-Mo2C,Fe-Mo2C,and bare Mo2C with 90,95,100,and 173 mV,respectively,and the corresponding Tafel slope values are 40,43,42,56,and 102 mV/dec.The modified WF can also lead to an enhanced photocatalytic efficiency owing to the lowered Schottky barrier and excellent carrier transition across the electrocatalyst–solution interface.When coupling the metal-doped Mo2C samples with TiO2,enhanced photocatalytic neutral HER rates are obtained in comparison to the case with bare TiO2.Typically,the HER rates are 521,404,275,224,147,and 112μmol/h for Cu,Ni,Co,Fe,bare Mo2C,and bare TiO2,respectively.Time-resolved photoluminescence spectroscopy(TRPS)and ultrafast transient absorption(TA)measurements are carried out to confirm the recombination and migration of the photogenerated carriers.The fittedτvalues from the TRPS curves are 22.6,20.5,10.1,4.7,4.0,2.5,and 1.9 ns for TiO2,TiO2-Mo2C,TiO2-Fe-Mo2C,TiO2-Fe-Mo2C,TiO2-Fe-Mo2C,TiO2-Fe-Mo2C,and TiO2-Pt,respectively.Additionally,the fittedτvalues from the TA results are 31,73,and 105 ps for the TiO2-Mo2C,TiO2-Cu-Mo2C,and TiO2-Pt samples,respectively.This work provides in-depth insights into the WF modulation of an electrocatalyst for improving the HER performance.展开更多
Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidat...Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidative coupling of methane (OCM) to higher hydrocarbons at different reaction conditions (viz. temperature, 700 and 750 ℃; CH4/O2 ratio, 4.0 and 8.0 and space velocity, 5140-20550 cm^3 ·g^-1·h^-1) have been investigated. The influence of catalyst calcination temperature on the activity/selectivity has also been investigated. The surface properties (viz. surface area, basicity/base strength distribution) and catalytic activity/selectivity of the alkali metal doped CaO catalysts are strongly influenced by the alkali metal promoter and its concentration in the alkali metal doped CaO catalysts. An addition of alkali metal promoter to CaO results in a large decrease in the surface area but a large increase in the surface basicity (strong basic sites) and the C2+ selectivity and yield of the catalysts in the OCM process. The activity and selectivity are strongly influenced by the catalyst calcination temperature. No direct relationship between surface basicity and catalytic activity/selectivity has been observed. Among the alkali metal doped CaO catalysts, Na-CaO (Na/Ca = 0.1, before calcination) catalyst (calcined at 750 ℃), showed best performance (C2+ selectivity of 68.8% with 24.7% methane conversion), whereas the poorest performance was shown by the Rb-CaO catalyst in the OCM process.展开更多
Al-doped ZnO(AZO) powders were prepared by using metal chloride precursors and the sol-gel technique. IR peaks observed at 1590 cm-1 and 1620 cm-1indicated the formation of metal chelate as a consequence of the additi...Al-doped ZnO(AZO) powders were prepared by using metal chloride precursors and the sol-gel technique. IR peaks observed at 1590 cm-1 and 1620 cm-1indicated the formation of metal chelate as a consequence of the addition of acetylacetone to the metal chloride solution. TG-DSC analysis of the AZO gels confirmed the formation of metal chelate as evidenced by the development of several weight loss peaks accompanied by the introduction of new endothermic peaks. The resulting AZO gels were annealed at 500, 600, and 800 ℃ to study the effect of annealing temperature. XRD and SEM results showed that crystallization of AZO gels takes place around 600 ℃. Hexagonal wurtzite structure was identified as the main phase for all the samples. In addition, small shift of the XRD(002) peak coupled with XPS results from the AZO powders confirmed the successful doping of the ZnO powders. Micron sized rod-like AZO powders were uniform in dimension and morphology and remained stable even at 800 ℃.展开更多
In the present work, nitrogen‐doped carbon spheres were synthesized through a simple hydro‐thermal treatment using glucose and melamine as inexpensive carbon and nitrogen sources, re‐spectively. The ratio of melami...In the present work, nitrogen‐doped carbon spheres were synthesized through a simple hydro‐thermal treatment using glucose and melamine as inexpensive carbon and nitrogen sources, re‐spectively. The ratio of melamine to glucose and annealing temperature were optimized. The final optimal sample exhibited a catalytic activity for the oxygen reduction reaction(ORR) that was supe‐rior than that of commercial 20%Pt/C in 0.1 mol/L KOH. It revealed an onset potential of –22.6 mV and a half‐wave potential of –133.6 mV (vs. Ag/AgCl), which are 7.2 and 5.9 mV more positive than those of the 20%Pt/C catalyst, respectively, as well as a limiting current density of 4.6 mA/cm^2, which is 0.2 mA/cm^2 higher than that of the 20%Pt/C catalyst. The catalyst also exhibited higher stability and superior durability against methanol than 20%Pt/C. Moreover, ORRs on this catalyst proceed through a more effective 4 e^– path. The above mentioned superiority of the as‐prepared catalyst makes it promising for fuel cells.展开更多
Photocatalytic hydrogen production based on semiconductor photocatalysts has been considered as one of the most promising strategies to resolve the global energy shortage.Graphitic carbon nitride(g‐C3N4)has been a st...Photocatalytic hydrogen production based on semiconductor photocatalysts has been considered as one of the most promising strategies to resolve the global energy shortage.Graphitic carbon nitride(g‐C3N4)has been a star visible‐light photocatalyst in this field due to its various advantages.However,pristine g‐C3N4usually exhibits limited activity.Herein,to enhance the performance of g‐C3N4,alkali metal ion(Li+,Na+,or K+)‐doped g‐C3N4are prepared via facile high‐temperature treatment.The prepared samples are characterized and analyzed using the technique of XRD,ICP‐AES,SEM,UV‐vis DRS,BET,XPS,PL,TRPL,photoelectrochemical measurements,photocatalytic tests,etc.The resultant doped photocatalysts show enhanced visible‐light photocatalytic activities for hydrogen production,benefiting from the increased specific surface areas(which provide more active sites),decreased band gaps for extended visible‐light absorption,and improved electronic structures for efficient charge transfer.In particular,because of the optimal tuning of both microstructure and electronic structure,the Na‐doped g‐C3N4shows the most effective utilization of photogenerated electrons during the water reduction process.As a result,the highest photocatalytic performance is achieved over the Na‐doped g‐C3N4photocatalyst(18.7?mol/h),3.7times that of pristine g‐C3N4(5.0?mol/h).This work gives a systematic study for the understanding of doping effect of alkali metals in semiconductor photocatalysis.展开更多
By using the first-principles calculations, the electronic Structure and quantum transport properties of metallic carbon nanotubes with B/N pairs co-doping have been investigated. It is shown that the total energies o...By using the first-principles calculations, the electronic Structure and quantum transport properties of metallic carbon nanotubes with B/N pairs co-doping have been investigated. It is shown that the total energies of metallic carbon nanotubes are sensitive to the doping sites of the B/N pairs. The energy gaps of the doped metallic carbon nanotubes decrease with decreasing the concentration of the B/N pair not only along the tube axis but also around the tube. Moreover, the I-V characteristics and transmissions of the doped tubes are studied. Our results reveal that the conducting ability of the doped tube decreases with increasing the concentrations of the B/N pairs due to symmetry breaking of the system. This fact opens a new way to modulate band structures of metallic carbon nanotubes by doping B/N pair with suitable concentration and the novel characteristics are potentially useful in future applications.展开更多
The electronic density of states and band structures of doped and un-doped anatase TiO2 were studied by the Linearized Augmented Plane Wave method based on the density functional theory. The calculation shows that the...The electronic density of states and band structures of doped and un-doped anatase TiO2 were studied by the Linearized Augmented Plane Wave method based on the density functional theory. The calculation shows that the band structures of TiO2 crystals doped with transition metal atoms become narrower. Interesting, an excursion towards high energy level with increasing atomic number in the same element period could be observed after doping with transition metal atoms.展开更多
Studies on three-dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium metal anodes(LMAs).However,there is still insufficient evidence for a k...Studies on three-dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium metal anodes(LMAs).However,there is still insufficient evidence for a key factor to achieve their high electrochemical performance.Here,the effects of nanopores and sulfur doping on carbon-based nanoporous host(CNH)electrode materials for LMAs were investigated using natural polymer-derived CNHs.Homogeneous pore-filling behaviors of lithium metal in the nanopores of the CNH electrode materials were first observed by ex situ scanning electron microscopy analysis,where the protective lithium metal nucleation and growth process led to significantly high Coulombic efficiency(CE)of~99.4%and stable 600 cycles.In addition,a comparison study of CNH and sulfurdoped CNH(S-CNH)electrodes,which differ only in the presence or absence of sulfur,revealed that sulfur doping can cause lower electrochemical series resistance,higher CE value,and better cycling stability in a wide range of current densities and number of cycles.Moreover,S-CNH-based LMAs showed high electrochemical performance in full-cell Li-S battery tests using a sulfur copolymer cathode,where a high energy density of 1370Wh kgelectrode−1 and an excellent power density of 4120Wkgelectrode−1 were obtained.展开更多
Inefficient charge separation and limited light absorption are two critical issues associated with high‐efficiency photocatalytic H2production using TiO2.Surface defects within a certain concentration range in photoc...Inefficient charge separation and limited light absorption are two critical issues associated with high‐efficiency photocatalytic H2production using TiO2.Surface defects within a certain concentration range in photocatalyst materials are beneficial for photocatalytic activity.In this study,surface defects(oxygen vacancies and metal cation replacement defects)were induced with a facile and effective approach by surface doping with low‐cost transition metals(Co,Ni,Cu,and Mn)on ultrafine TiO2.The obtained surface‐defective TiO2exhibited a3–4‐fold improved activity compared to that of the original ultrafine TiO2.In addition,a H2production rate of3.4μmol/h was obtained using visible light(λ>420nm)irradiation.The apparent quantum yield(AQY)at365nm reached36.9%over TiO2‐Cu,significantly more than the commercial P25TiO2.The enhancement of photocatalytic H2production activity can be attributed to improved rapid charge separation efficiency andexpanded light absorption window.This hydrothermal treatment with transition metal was proven to be a very facile and effective method for obtaining surface defects.展开更多
The practical applications of aqueous Zn metal batteries are currently restricted by the inherent drawbacks of Zn such as the hydrogen evolution reaction,sluggish kinetics,and dendrite formation.To address these probl...The practical applications of aqueous Zn metal batteries are currently restricted by the inherent drawbacks of Zn such as the hydrogen evolution reaction,sluggish kinetics,and dendrite formation.To address these problems,herein,a limitedly Zn-doped MgF_(2)interphase comprising an upper region of pure,porous MgF_(2)and a lower region of gradient Zn-doped MgF_(2)is achieved via radio frequency sputtering technique.The porous MgF_(2)region is a polar insulator whose high corrosion resistance facilitates the de-solvation of the solvated Zn ions and suppression of hydrogen evolution,resulting in Zn metal electrodes with a low interfacial resistance.The Zn-doped MgF_(2)region facilitates fast transfer kinetics and homogeneous deposition of Zn ions owing to the interfacial polarization between the Zn dopant and MgF_(2)matrix,and the high concentration of the Zn dopant on the surface of the metal substrate as fine nuclei.Consequently,a symmetric cell incorporating the proposed Zn metal exhibits low overpotentials of~27.2 and~99.7 mV without Zn dendrites over 250 to 8000 cycles at current densities of 1.0 and 10.0 mA cm−2,respectively.The developed Zn/MnO2 full cell exhibits superior capacity retentions of 97.5%and 84.0%with average Coulombic efficiencies of 99.96%after 1000 and 3000 cycles,respectively.展开更多
基金the funding support from the Research Grants Council of the Hong Kong Special Administrative Region,China[Project No.CityU11308923]the Basic Research Project from Shenzhen Science and Technology Innovation Committee in Shenzhen,China(No.JCYJ20210324134012034)+5 种基金the Applied Research Grant of City University of Hong Kong(project No.of 9667247)Chow Sang Sang Group Research Fund of City University of Hong Kong(project No.9229123)the funding supported by the Seed Collaborative Research Fund Scheme of State Key Laboratory of Marine Pollution which receives regular research funding from Innovation and Technology Commission(ITC)of the Hong Kong SAR Governmentthe JSPS KAKENHI(No.JP23K13703 and JP23KF0102)the high-level science and technology talents project of Lvliang City(No.2022RC07)foundation of Shanxi supercomputing center of China(No.11sxsc202301).
文摘The design of cost-effective electrocatalysts is an open challenging for oxygen evolution reaction(OER)due to the“stable-oractive”dilemma.Zirconium dioxide(ZrO_(2)),a versatile and low-cost material that can be stable under OER operating conditions,exhibits inherently poor OER activity from experimental observations.Herein,we doped a series of metal elements to regulate the ZrO_(2)catalytic activity in OER via spin-polarized density functional theory calculations with van der Waals interactions.Microkinetic modeling as a function of the OER activity descriptor(G_(O*)-G_(HO*))displays that 16 metal dopants enable to enhance OER activities over a thermodynamically stable ZrO_(2)surface,among which Fe and Rh(in the form of single-atom dopant)reach the volcano peak(i.e.the optimal activity of OER under the potential of interest),indicating excellent OER performance.Free energy diagram calculations,density of states,and ab initio molecular dynamics simulations further showed that Fe and Rh are the effective dopants for ZrO_(2),leading to low OER overpotential,high conductivity,and good stability.Considering cost-effectiveness,single-atom Fe doped ZrO_(2)emerged as the most promising catalyst for OER.This finding offers a valuable perspective and reference for experimental researchers to design cost-effective catalysts for the industrial-scale OER production.
基金financially supported by the Technion V.P.for Research Fund(No.2023320)。
文摘The monomolecular surface layer of acceptor doped CeO_(2) may become neutral and metallic or charged and semiconducting.This is revealed in the theoretical analysis of the oxygen pressure dependence of the surface defects concentration in acceptor doped ceria with two different dopant types and operated under different oxygen pressures.Recently published experimental data for highly reduced Sm0.2Ce0.8O1.9-x(SDC)containing a fixed valence dopant Sm3+are very different from those published for Pr0.1Ce0.9O_(2)-x(PCO) with the variable valence dopant Pr4+/Pr3+being reduced under milder conditions.The theoretical analysis of these experimental results fits very well the experimental results of SDC and PCO.It leads to the following predictions:the highly reduced surface of SDC is metallic and neutral,the metallic surface electron density of state is gs=0.9×10^(38)J-1·m^(-2)(1.4×1015eV^(-1)·cm^(-2)),the electron effective mass is meff,s=3.3me,and the phase diagram of the reduced surface has theα(fcc)structure as in the bulk.In PCO a double layer is predicted to be formed between the surface and the bulk with the surface being negatively charged and semiconducting.The surface of PCO maintains high Pr^(3+) defect concentration as well as relative high oxygen vacancy concentration at oxygen pressures higher than in the bulk.The reasons for the difference between a metallic and semiconducting surface layer of acceptor doped CeO_(2) are reviewed,as well as the key theoretical considerations applied in coping with this problem.For that we make use of the experimental data and theoretical analysis available for acceptor doped ceria.
基金the National Nat-ural Science Foundation of China(Grant Nos.12025503,U23B2072,12074293,and 12275198)the Funda-mental Research Funds for the Center Universities(Grant Nos.2042024kf0001 and 2042023kf0196).
文摘Ultraviolet photodetectors(UV PDs)are widely used in civilian,scientific,and military fields due to their high sensitivity and low false alarm rates.We present a temperature-dependent Lewis acid p-type doping method for transition metal dichalcogenides(TMDs),which can effectively be used to extend the optical response range.The p-type doping based on surface charge transfer involves the chemical adsorption of the Lewis acid SnCl_(4)as a light absorption layer on the surface of WS_(2),significantly enhancing its UV photodetection performance.Under 365 nm laser irradiation,WS_(2)PDs exhibit response speed of 24 ms/20 ms,responsivity of 660 mA/W,detectivity of 3.3×10^(11)Jones,and external quantum efficiency of 226%.Moreover,we successfully apply this doping method to other TMDs materials(such as MoS_(2),MoSe_(2),and WSe_(2))and fabricate WS_(2) lateral p–n heterojunction PDs.
基金supported by the National Natural Science Foundation of China (Grant No. 12304072)Program for Science and Technology Innovation Team in Zhejiang (Grant No. 2021R01004)+1 种基金Natural Science Foundation of Ningbo(Grant No. 2021J121)supported by the User Experiment Assist System of Shanghai Synchrotron Radiation Facility (SSRF)。
文摘Conventional theories expect that materials under pressure exhibit expanded valence and conduction bands,leading to increased electrical conductivity.Here,we report the electrical properties of the doped 1T-TiS_(2) under high pressure by electrical resistance investigations,synchrotron x-ray diffraction,Raman scattering and theoretical calculations.Up to 70 GPa,an unusual metal-semiconductor-metal transition occurs.Our first-principles calculations suggest that the observed anti-Wilson transition from metal to semiconductor at 17 GPa is due to the electron localization induced by the intercalated Ti atoms.This electron localization is attributed to the strengthened coupling between the doped Ti atoms and S atoms,and the Anderson localization arising from the disordered intercalation.At pressures exceeding 30.5 GPa,the doped TiS_(2) undergoes a re-metallization transition initiated by a crystal structure phase transition.We assign the most probable space group as P2_(1)2_(1)2_(1).Our findings suggest that materials probably will eventually undergo the Wilson transition when subjected to sufficient pressure.
基金Funded by the Central Government Guides Local Funds for Scientific and Technological Development(No.2023ZYQ004)the Hunan Provincial Natural Science Foundation of China(No.2021JJ50036)the Hunan Provincial Key Research and Development Plan(No.2023GK2083)。
文摘We took Co_(0.2)Ni_(0.8)-MOF-74 with bimetallic synergistic effect as the basic material,and selected rare earth ions Ho,Gd,and Er with ion radii close to Co and Ni as the research objects for doping.The influence of rare earth ion doping amount and doping type on the eNRR performance of the catalyst was explored.The experimental results show that the ammonia yield rate and Faraday efficiency doped with Co_(0.2)Ni_(0.8)-MOF-0.5Ho are the highest,reaching 1.28×10^(-10)mol·s^(-1)·cm^(-2)/39.8%,which is higher than the1.12×10^(-10)mol·s^(-1)·cm^(-2)/32.2%of Co_(0.2)Ni_(0.8)-MOF-74,and is about 14.3%/23.7%higher than that without doping,respectively.And the stability of Co_(0.2)Ni_(0.8)-MOF-0.5 Ho is good(after 80 hours of continuous testing,the current density did not significantly decrease).This is mainly due to doping,which gives Co_(0.2)Ni_(0.8)-MOF-74 a larger specific surface area and catalytic active sites.The catalyst doped at the same time has more metal cation centers,which increases the electron density of the metal centers and enhances the corresponding eNRR performance.
文摘Utilizing single atom sites doping into metal oxides to modulate their intrinsic active sites,achieving precise selectivity control in complex organic reactions,is a highly desirable yet challenging endeavor.Meanwhile,identifying the active site also represents a significant obstacle,primarily due to the intricate electronic environment of single atom site doped metal oxide.Herein,a single atom Cu doped TiO_(2)catalyst(Cu_(1)-TiO_(2)) is prepared via a simple“colloid-acid treatment”strategy,which switches aniline oxidation selectivity of TiO_(2) from azoxybenzene to nitrosobenzene,without using additives or changing solvent,while other metal or nonmetal doped TiO_(2) did not possess.Comprehensive mechanistic investigations and DFT calculations unveil that Ti-O active site is responsible for triggering the aniline to form a new PhNOH intermediate,two PhNOH condense to azoxybenzene over TiO_(2) catalyst.As for Cu_(1)-TiO_(2),the charge-specific distribution between the isolated Cu and TiO_(2) generates unique Cu_(1)-O-Ti hybridization structure with nine catalytic active sites,eight of them make PhNOH take place spontaneous dissociation to produce nitrosobenzene.This work not only unveils a new mechanistic pathway featuring the PhNOH intermediate in aniline oxidation for the first time but also presents a novel approach for constructing single-atom doped metal oxides and exploring their intricate active sites.
文摘The hydrogen evolution reaction(HER)is a promising way to produce hydrogen,and the use of non-precious metals with an excellent electrochemical performance is vital for this.Carbon-based transition metal catalysts have high activity and stability,which are important in reducing the cost of hydrogen production and promoting the development of the hydrogen production industry.However,there is a lack of discussion regarding the effect of carbon components on the performance of these electrocatalysts.This review of the literature discusses the choice of the carbon components in these catalysts and their impact on catalytic performance,including electronic structure control by heteroatom doping,morphology adjustment,and the influence of self-supporting materials.It not only analyzes the progress in HER,but also provides guidance for synthesizing high-performance carbon-based transition metal catalysts.
文摘Polyanion-based materials are considered one of the most attractive and promising cathode materials for lithiumion batteries(LIBs)due to their good stability,safety,cost-effectiveness,suitable voltages,and minimal environmental impact.However,these materials suffer from poor rate capability and low-temperature performance owing to limited electronic and ionic conductivity,which restricts their practical applicability.Recent developments,such as coating material particles with carbon or a conductive polymer,crystal deformation through the doping of foreign metal ions,and the production of nanostructured materials,have significantly enhanced the electrochemical performances of these materials.The successful applications of polyanion-based materials,especially in lithium-ion batteries,have been extensively reported.This comprehensive review discusses the current progress in crystal deformation in polyanion-based cathode materials,including phosphates,fluorophosphates,pyrophosphates,borates,silicates,sulfates,fluorosilicates,and oxalates.Therefore,this review provides detailed discussions on their synthesis strategies,electrochemical performance,and the doping of various ions.
基金Project supported by the Ministry of Science and Technology of China (Grant No. 2022YFA1403800)the National Natural Science Foundation of China (Grant Nos. U2032204,12188101, and U22A6005)+2 种基金the Chinese Academy of Sciences (Grant No. XDB33000000)the Synergetic Extreme Condition User Facility (SECUF)the Center for Materials Genome。
文摘Manipulating emergent quantum phenomena is a key issue for understanding the underlying physics and contributing to possible applications.Here we study the evolution of insulating ground states of Ta_(2)Pu_(3)Te_(5) and Ta_(2)Ni_(3)Te_(5) under in-situ surface potassium deposition via angle-resolved photoemission spectroscopy.Our results confirm the excitonic insulator character of Ta_(2)d_(3)Te_(5).Upon surface doping,the size of its global gap decreases obviously.After a deposition time of more than 7 min,the potassium atoms induce a metal-insulator phase transition and make the system recover to a normal state.In contrast,our results show that the isostructural compound Ta_(2)Ni_(3)Te_(5) is a conventional insulator.The size of its global gap decreases upon surface doping,but persists positive throughout the doping process.Our results not only confirm the excitonic origin of the band gap in Ta_(2)Pd_(3)Te_(5),but also offer an effective method for designing functional quantum devices in the future.
文摘Metal-organic frameworks (MOFs) have attracted much attention as adsorbents for the separation of CO2 from flue gas or natural gas. Here, a typical metal-organic framework HKUST-I(also named Cu-BTC or MOF-199) was chemically reduced by doping it with alkali metals (Li, Na and K) and they were further used to investigate their CO2 adsorption capacities. The structural information, surface chemistry and thermal behavior of the prepared adsorbent samples were characterized by X-ray powder diffraction (XRD), thermo-gravimetric analysis (TGA) and nitrogen adsorption-desorption isotherm analysis. The results showed that the CO2 storage capacity of HKUST-1 doped with moderate quantities of Li+, Na+ and K+, individually, was greater than that of unmodified HKUST-1. The highest CO2 adsorption uptake of 8.64 mmol/g was obtained with 1K-HKUST-1, and it was ca. 11% increase in adsorption capacity at 298 K and 18 bar as compared with HKUST- 1. Moreover, adsorption tests showed that HKUST-1 and 1K-HKUST-1 displayed much higher adsorption capacities of CO2 than those of N2. Finally, the adsorption/desorption cycle experiment revealed that the adsorption performance of 1K-HKUST-1 was fairly stable, without obvious deterioration in the adsorption capacity of CO2 after 10 cycles.
文摘The neutral hydrogen evolution reaction(HER)is vital in the chemical industry,and its efficiency depends on the interior character of the catalyst.Herein,work function(WF)engineering is introduced via 3d metal(Fe,Co,Ni,and Cu)doping for modulating the Fermi energy level of Mo2C.The defective energy level facilitates the free water molecule adsorption and,subsequently,promotes the neutral HER efficiency.Specifically,at a current density of 10 mA/cm2,Cu-Mo2C exhibits the best HER performance with an overpotential of 78 mV,followed by Ni-Mo2C,Co-Mo2C,Fe-Mo2C,and bare Mo2C with 90,95,100,and 173 mV,respectively,and the corresponding Tafel slope values are 40,43,42,56,and 102 mV/dec.The modified WF can also lead to an enhanced photocatalytic efficiency owing to the lowered Schottky barrier and excellent carrier transition across the electrocatalyst–solution interface.When coupling the metal-doped Mo2C samples with TiO2,enhanced photocatalytic neutral HER rates are obtained in comparison to the case with bare TiO2.Typically,the HER rates are 521,404,275,224,147,and 112μmol/h for Cu,Ni,Co,Fe,bare Mo2C,and bare TiO2,respectively.Time-resolved photoluminescence spectroscopy(TRPS)and ultrafast transient absorption(TA)measurements are carried out to confirm the recombination and migration of the photogenerated carriers.The fittedτvalues from the TRPS curves are 22.6,20.5,10.1,4.7,4.0,2.5,and 1.9 ns for TiO2,TiO2-Mo2C,TiO2-Fe-Mo2C,TiO2-Fe-Mo2C,TiO2-Fe-Mo2C,TiO2-Fe-Mo2C,and TiO2-Pt,respectively.Additionally,the fittedτvalues from the TA results are 31,73,and 105 ps for the TiO2-Mo2C,TiO2-Cu-Mo2C,and TiO2-Pt samples,respectively.This work provides in-depth insights into the WF modulation of an electrocatalyst for improving the HER performance.
文摘Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidative coupling of methane (OCM) to higher hydrocarbons at different reaction conditions (viz. temperature, 700 and 750 ℃; CH4/O2 ratio, 4.0 and 8.0 and space velocity, 5140-20550 cm^3 ·g^-1·h^-1) have been investigated. The influence of catalyst calcination temperature on the activity/selectivity has also been investigated. The surface properties (viz. surface area, basicity/base strength distribution) and catalytic activity/selectivity of the alkali metal doped CaO catalysts are strongly influenced by the alkali metal promoter and its concentration in the alkali metal doped CaO catalysts. An addition of alkali metal promoter to CaO results in a large decrease in the surface area but a large increase in the surface basicity (strong basic sites) and the C2+ selectivity and yield of the catalysts in the OCM process. The activity and selectivity are strongly influenced by the catalyst calcination temperature. No direct relationship between surface basicity and catalytic activity/selectivity has been observed. Among the alkali metal doped CaO catalysts, Na-CaO (Na/Ca = 0.1, before calcination) catalyst (calcined at 750 ℃), showed best performance (C2+ selectivity of 68.8% with 24.7% methane conversion), whereas the poorest performance was shown by the Rb-CaO catalyst in the OCM process.
基金Funded by the Project of Instituto Politecnico Nacional(SIPIPN-20182176)
文摘Al-doped ZnO(AZO) powders were prepared by using metal chloride precursors and the sol-gel technique. IR peaks observed at 1590 cm-1 and 1620 cm-1indicated the formation of metal chelate as a consequence of the addition of acetylacetone to the metal chloride solution. TG-DSC analysis of the AZO gels confirmed the formation of metal chelate as evidenced by the development of several weight loss peaks accompanied by the introduction of new endothermic peaks. The resulting AZO gels were annealed at 500, 600, and 800 ℃ to study the effect of annealing temperature. XRD and SEM results showed that crystallization of AZO gels takes place around 600 ℃. Hexagonal wurtzite structure was identified as the main phase for all the samples. In addition, small shift of the XRD(002) peak coupled with XPS results from the AZO powders confirmed the successful doping of the ZnO powders. Micron sized rod-like AZO powders were uniform in dimension and morphology and remained stable even at 800 ℃.
文摘In the present work, nitrogen‐doped carbon spheres were synthesized through a simple hydro‐thermal treatment using glucose and melamine as inexpensive carbon and nitrogen sources, re‐spectively. The ratio of melamine to glucose and annealing temperature were optimized. The final optimal sample exhibited a catalytic activity for the oxygen reduction reaction(ORR) that was supe‐rior than that of commercial 20%Pt/C in 0.1 mol/L KOH. It revealed an onset potential of –22.6 mV and a half‐wave potential of –133.6 mV (vs. Ag/AgCl), which are 7.2 and 5.9 mV more positive than those of the 20%Pt/C catalyst, respectively, as well as a limiting current density of 4.6 mA/cm^2, which is 0.2 mA/cm^2 higher than that of the 20%Pt/C catalyst. The catalyst also exhibited higher stability and superior durability against methanol than 20%Pt/C. Moreover, ORRs on this catalyst proceed through a more effective 4 e^– path. The above mentioned superiority of the as‐prepared catalyst makes it promising for fuel cells.
基金supported by the National Natural Science Foundation of of China(51472191,21407115,21773179)the Natural Science Foundation of Hubei Province of China(2017CFA031)the Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices,Ministry of Education(JDGD-201509)~~
文摘Photocatalytic hydrogen production based on semiconductor photocatalysts has been considered as one of the most promising strategies to resolve the global energy shortage.Graphitic carbon nitride(g‐C3N4)has been a star visible‐light photocatalyst in this field due to its various advantages.However,pristine g‐C3N4usually exhibits limited activity.Herein,to enhance the performance of g‐C3N4,alkali metal ion(Li+,Na+,or K+)‐doped g‐C3N4are prepared via facile high‐temperature treatment.The prepared samples are characterized and analyzed using the technique of XRD,ICP‐AES,SEM,UV‐vis DRS,BET,XPS,PL,TRPL,photoelectrochemical measurements,photocatalytic tests,etc.The resultant doped photocatalysts show enhanced visible‐light photocatalytic activities for hydrogen production,benefiting from the increased specific surface areas(which provide more active sites),decreased band gaps for extended visible‐light absorption,and improved electronic structures for efficient charge transfer.In particular,because of the optimal tuning of both microstructure and electronic structure,the Na‐doped g‐C3N4shows the most effective utilization of photogenerated electrons during the water reduction process.As a result,the highest photocatalytic performance is achieved over the Na‐doped g‐C3N4photocatalyst(18.7?mol/h),3.7times that of pristine g‐C3N4(5.0?mol/h).This work gives a systematic study for the understanding of doping effect of alkali metals in semiconductor photocatalysis.
基金supported by the Major Research Plan from the Ministry of Science and Technology of China (Grant No. 2011CB921900)the China Postdoctoral Science Special Foundation (Grant No. 201003009)+2 种基金the China Postdoctoral Science Foundation (GrantNo. 20090460145)the Fundamental Research Funds for the Central Universities (Grant No. 201012200053)the Science and Technology Program of Hunan Province of China (Grant No. 2010DFJ411)
文摘By using the first-principles calculations, the electronic Structure and quantum transport properties of metallic carbon nanotubes with B/N pairs co-doping have been investigated. It is shown that the total energies of metallic carbon nanotubes are sensitive to the doping sites of the B/N pairs. The energy gaps of the doped metallic carbon nanotubes decrease with decreasing the concentration of the B/N pair not only along the tube axis but also around the tube. Moreover, the I-V characteristics and transmissions of the doped tubes are studied. Our results reveal that the conducting ability of the doped tube decreases with increasing the concentrations of the B/N pairs due to symmetry breaking of the system. This fact opens a new way to modulate band structures of metallic carbon nanotubes by doping B/N pair with suitable concentration and the novel characteristics are potentially useful in future applications.
文摘The electronic density of states and band structures of doped and un-doped anatase TiO2 were studied by the Linearized Augmented Plane Wave method based on the density functional theory. The calculation shows that the band structures of TiO2 crystals doped with transition metal atoms become narrower. Interesting, an excursion towards high energy level with increasing atomic number in the same element period could be observed after doping with transition metal atoms.
基金National Research Foundation of Korea,Grant/Award Numbers:2019R1A2C1084836,2021R1A4A2001403。
文摘Studies on three-dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium metal anodes(LMAs).However,there is still insufficient evidence for a key factor to achieve their high electrochemical performance.Here,the effects of nanopores and sulfur doping on carbon-based nanoporous host(CNH)electrode materials for LMAs were investigated using natural polymer-derived CNHs.Homogeneous pore-filling behaviors of lithium metal in the nanopores of the CNH electrode materials were first observed by ex situ scanning electron microscopy analysis,where the protective lithium metal nucleation and growth process led to significantly high Coulombic efficiency(CE)of~99.4%and stable 600 cycles.In addition,a comparison study of CNH and sulfurdoped CNH(S-CNH)electrodes,which differ only in the presence or absence of sulfur,revealed that sulfur doping can cause lower electrochemical series resistance,higher CE value,and better cycling stability in a wide range of current densities and number of cycles.Moreover,S-CNH-based LMAs showed high electrochemical performance in full-cell Li-S battery tests using a sulfur copolymer cathode,where a high energy density of 1370Wh kgelectrode−1 and an excellent power density of 4120Wkgelectrode−1 were obtained.
基金supported by the Double First‐rate Subject‐Food Science and Engineering Program of Hebei Province (2018SPGCA18)Young Tip‐top Talents Plan of Universities and Colleges in Hebei Province of China (BJ2017026)the Specific Foundation for Doctor in Hebei Agriculture University of China (ZD201709)~~
文摘Inefficient charge separation and limited light absorption are two critical issues associated with high‐efficiency photocatalytic H2production using TiO2.Surface defects within a certain concentration range in photocatalyst materials are beneficial for photocatalytic activity.In this study,surface defects(oxygen vacancies and metal cation replacement defects)were induced with a facile and effective approach by surface doping with low‐cost transition metals(Co,Ni,Cu,and Mn)on ultrafine TiO2.The obtained surface‐defective TiO2exhibited a3–4‐fold improved activity compared to that of the original ultrafine TiO2.In addition,a H2production rate of3.4μmol/h was obtained using visible light(λ>420nm)irradiation.The apparent quantum yield(AQY)at365nm reached36.9%over TiO2‐Cu,significantly more than the commercial P25TiO2.The enhancement of photocatalytic H2production activity can be attributed to improved rapid charge separation efficiency andexpanded light absorption window.This hydrothermal treatment with transition metal was proven to be a very facile and effective method for obtaining surface defects.
基金supported by research grants from the National Research Foundation(NRF-2019H1D3A1A01069779)funded by the Ministry of Science and ICT,Republic of Korea,and by the Institutional Program(2E31863)and Bridge Program-KIST(2V09284).
文摘The practical applications of aqueous Zn metal batteries are currently restricted by the inherent drawbacks of Zn such as the hydrogen evolution reaction,sluggish kinetics,and dendrite formation.To address these problems,herein,a limitedly Zn-doped MgF_(2)interphase comprising an upper region of pure,porous MgF_(2)and a lower region of gradient Zn-doped MgF_(2)is achieved via radio frequency sputtering technique.The porous MgF_(2)region is a polar insulator whose high corrosion resistance facilitates the de-solvation of the solvated Zn ions and suppression of hydrogen evolution,resulting in Zn metal electrodes with a low interfacial resistance.The Zn-doped MgF_(2)region facilitates fast transfer kinetics and homogeneous deposition of Zn ions owing to the interfacial polarization between the Zn dopant and MgF_(2)matrix,and the high concentration of the Zn dopant on the surface of the metal substrate as fine nuclei.Consequently,a symmetric cell incorporating the proposed Zn metal exhibits low overpotentials of~27.2 and~99.7 mV without Zn dendrites over 250 to 8000 cycles at current densities of 1.0 and 10.0 mA cm−2,respectively.The developed Zn/MnO2 full cell exhibits superior capacity retentions of 97.5%and 84.0%with average Coulombic efficiencies of 99.96%after 1000 and 3000 cycles,respectively.