期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Research on the width of filling body in gob-side entry retaining with high-water materials 被引量:10
1
作者 Chang Qingliang Tang Weijun +1 位作者 Xu Ying Zhou Huaqiang 《International Journal of Mining Science and Technology》 EI CSCD 2018年第3期519-524,共6页
To determine the filling body's width along the gob-side remained roadway which is underneath the gob,the authors analyzed the interaction mechanism between the roof and the supporting body along the remained road... To determine the filling body's width along the gob-side remained roadway which is underneath the gob,the authors analyzed the interaction mechanism between the roof and the supporting body along the remained roadway, based on the elastic thin plate theory of the stope roof. The stress state and mechanical response of the filling body along the remained roadway were studied. Specifically, firstly, the supporting pressure of the coal pillar which is on one side of the gob-side remained roadway was deduced.Also, an equation that is used to calculate the width of the balance area in the stress limit state was acquired. Then, an equation that is used to calculate the roof cutting force on one side of the supporting body was obtained. By using FLAC3D, the authors investigated the displacement field and stress field response laws of rock masses around the roadway with different filling body's widths. The results show that with the filling body's width increasing, the supporting ability of the filling body increases.Meanwhile, the rock mass displacement around the roadway and the filling body deformation decrease.The better the filling body's supporting effect is, the higher the roof cutting force will be. When the filling body's width is larger than 3.0 m, its internal bearing ability becomes stable and the filling body's deformation became non-apparent. Finally, analysis shows that the filling body's width should be 2.5 m.Furthermore, the authors conducted field tests in the supply roadway 1204, using high-water materials and acquired expected outcomes. 展开更多
关键词 Gob-side entry retaining high-water materials Numerical simulation Support along the roadway
下载PDF
Creep Property of Solidifying Backfill Body of High-Water Material
2
作者 杨宝贵 孙恒虎 《International Journal of Mining Science and Technology》 SCIE EI 1999年第2期140-143,共4页
On the basis of the creep test of bigh-water materisl solidifying backfill body(abb. HW body), This paper discusses its creep properties- The visco-elasto-plastic model, which shows the creep properties of HW body, is... On the basis of the creep test of bigh-water materisl solidifying backfill body(abb. HW body), This paper discusses its creep properties- The visco-elasto-plastic model, which shows the creep properties of HW body, is developed, and the creep contitutive equations are deduced. The visco-elastoplastic model is proved by the experiments and practice. 展开更多
关键词 high-water material solidifying BACKFILL BODY creep PROPERTY visco-elastic-plastic PROPERTY
下载PDF
THE RESEARCH OF RHEOLOGICAL PROPERTIES OF STOWING SLURRY WITH HIGH-WATER MATERIALSOLIDIFYING TAILINGS
3
作者 杨本生 刘文永 《Journal of Coal Science & Engineering(China)》 1996年第2期33-38,共6页
High-water material, tailings from goldmine and water are mixed into a new slurry.Testing of rheological properties of stowing slurries A and B is made to determine type and rheological parameters of the slurry. The m... High-water material, tailings from goldmine and water are mixed into a new slurry.Testing of rheological properties of stowing slurries A and B is made to determine type and rheological parameters of the slurry. The main factors influencing rheological properties of the slurry are analyzed and the rational concentration and empirical resistance calculating formula of pipe line transportation are presented. 展开更多
关键词 stowing slurry of high-water material solidifying tailings yielding stress structure viscosity transporting concentration
下载PDF
Stability analysis and control technology of gob‑side entry retaining with double roadways by flling with high‑water material in gently inclined coal seam
4
作者 Shengrong Xie En Wang +3 位作者 Dongdong Chen Hui Li Zaisheng Jiang Hongzeng Yang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第4期147-164,共18页
To ameliorate the defects of insufcient support resistance of traditional roadside flling bodies for gob-side entry retaining(GER),overcome the inability to adapt to the deformation of surrounding rock,and isolate the... To ameliorate the defects of insufcient support resistance of traditional roadside flling bodies for gob-side entry retaining(GER),overcome the inability to adapt to the deformation of surrounding rock,and isolate the goaf efectively,a new type of high-water material as a roadside flling body for GER technology with double roadways was proposed.The instability analysis and control technology of GER with double roadways by flling high-water material into a gently inclined coal seam were studied.The basic mechanical properties of the new high-water material were investigated through laboratory experiments,and their main advantages were identifed.The reasonable width of the roadside flling wall of a high-water material was obtained by combining ground pressure observation and theoretical calculations.The distribution characteristics of the stress and plastic zone of surrounding rock of GER after being stabilized by the disturbance of the working face were studied using numerical simulations,and the failure range of GER by flling with high-water material was revealed.Based on this,a coupling control technology of anchor cables and bolts+single props+metal mesh+anchor bolts is proposed.Through the coupling methods of arranging borehole peeping and observing the convergences of surrounding rock,the results demonstrate that GER with double roadways by flling with a 1.8-m-wide high-water material has a good control efect.The above research will play an active role in promoting the application of high-water materials in GER roadside flling. 展开更多
关键词 high-water material Gob-side entry retaining with double roadways Stability analysis Gently inclined coal seam Control technology
下载PDF
Coal and gas outburst prevention using new high water content cement slurry for injection into the coal seam 被引量:3
5
作者 Zhou Peiling Zhang Yinghua +3 位作者 Huang Zhi'an Gao Yukun Wang Hui Luo Qiang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第4期669-673,共5页
As coal and gas outburst is one of the most serious mine disasters, it is very important to at least control it if not prevent it from occurring. Injecting cement slurry or grouting into the coal seam can strengthen t... As coal and gas outburst is one of the most serious mine disasters, it is very important to at least control it if not prevent it from occurring. Injecting cement slurry or grouting into the coal seam can strengthen the seam, increase its rigidity coefficient(f), and reduce the volumetric expansion due to gas energy release.This paper reports the results of laboratory experiments on cement-based high water content slurry having different water-cement ratios(W/C) to be used for coal injection. The results show that as the W/C increases, the mobility of the slurry and its setting time increase. The compressive strength and rupture strength, however, are reduced. Furthermore, high W/C grout shows early strength after 7 days, which can be 80% of its 14-day compressive strength. To achieve rapid setting and early strength, the addition of Na_2SiO_3has proven to give the best result, when the concentration of the additive is 3%. The initial and final setting times are 13 and 21 min shorter than samples without Na_2SiO_3, while the compressive strength is more than double. As a retarder, the initial setting time can be extended to 83 min when tartaric acid of 0.4% concentration is added. Through the orthogonal experiment, the optimum recipe of the new high water content slurry has been determined to be: W/C = 2, tartaric acid = 0.2%, Na_2SiO_3= 3%, and12% bentonite. Reinforcement by injection simulation experiments show that the grouting radius of the new slurry mix is 250 mm when the applied grouting pressure is 60 k Pa, 7-day rupture strength and compressive strength are 5.2 and 6.4 MPa, respectively, and are 37% and 88% higher than ordinary cement grout. It can be concluded that the newly developed slurry mix is more effective than the ordinary mix for reinforcing coal and controlling gas outburst. 展开更多
关键词 Gas outburst Setting liquid Reinforce coal high-water solidified materials Rapid setting and early strength cement RETARDER
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部