An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is us...An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is used to design the unit cel,i.e.,the single-layer QZS(SL-QZS)meta-structure.Second,the stiffness feature of the unit cell is investigated and verified through static experiments.Third,the unit cells are stacked one by one along the direction of vibration isolation,and thus the ML-QZS meta-structure is constructed.Fourth,the dynamic modeling of the ML-QZS vibration isolation metastructure is conducted,and the dynamic responses are obtained from the equations of motion,and verified by finite element(FE)simulations.Finally,a prototype of the ML-QZS vibration isolation meta-structure is fabricated by additive manufacturing,and the vibration isolation performance is evaluated experimentally.The results show that the vibration isolation performance substantially enhances when the number of unit cells increases.More importantly,the ML-QZS meta-structure can be easily extended in the direction of vibration isolation when the unit cells are properly stacked.Hence,the ML-FQZS vibration isolation meta-structure should be a fascinating solution for highly efficient vibration isolation performance at low frequency.展开更多
Solar steam generation(SSG)is widely regarded as one of the most sustainable technologies for seawater desalination.However,salt fouling severely compromises the evaporation performance and lifetime of evaporators,lim...Solar steam generation(SSG)is widely regarded as one of the most sustainable technologies for seawater desalination.However,salt fouling severely compromises the evaporation performance and lifetime of evaporators,limiting their practical applications.Herein,we propose a hierarchical salt-rejection(HSR)strategy to prevent salt precipitation during long-term evaporation while maintaining a rapid evaporation rate,even in high-salinity brine.The salt diffusion process is segmented into three steps—insulation,branching diffusion,and arterial transport—that significantly enhance the salt-resistance properties of the evaporator.Moreover,the HSR strategy overcomes the tradeoff between salt resistance and evaporation rate.Consequently,a high evaporation rate of 2.84 kg m^(-2) h^(-1),stable evaporation for 7 days cyclic tests in 20 wt%NaCl solution,and continuous operation for 170 h in natural seawater under 1 sun illumination were achieved.Compared with control evaporators,the HSR evaporator exhibited a>54%enhancement in total water evaporation mass during 24 h continuous evaporation in 20 wt%salt water.Furthermore,a water collection device equipped with the HSR evaporator realized a high water purification rate(1.1 kg m^(-2) h^(-1)),highlighting its potential for agricultural applications.展开更多
Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected por...Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected pore volume)on rock properties,pore structure and oil displacement efficiency of an oilfield in the western South China Sea.The results show an increase in the permeability of rocks along with particle migration,an increase in the pore volume and the average pore throat radius,and enhanced heterogeneity after high-multiple water injection.Compared with normal water injection methods,a high-multiple water injection is more effective in improving the oil displacement efficiency.The degree of recovery increases faster in the early stage due to the expansion of the swept area,and the transition from oil-wet to water-wet.The degree of recovery increases less in the late stage due to various factors,including the enhancement of heterogeneity in the rocks.Considering both the economic aspect and the production limit of water flooding,it is recommended to adopt other technologies to further enhance oil recovery after 300 PV water injection.展开更多
Design and synthesis of superior cost-effective non-fullerene acceptors(NFAs)are still big challenges for facilitating the commercialization of organic solar cells(OSCs),yet to be realized.Herein,two medium bandgap fu...Design and synthesis of superior cost-effective non-fullerene acceptors(NFAs)are still big challenges for facilitating the commercialization of organic solar cells(OSCs),yet to be realized.Herein,two medium bandgap fully non-fused ring electron acceptors(NFREAs,medium bandgap,i,e.,1,3-1,8 eV),namely PTR-2Cl and PTR-4Cl are synthesized with only four steps by using intramolecular noncovalent interaction central core,structured alkyl side chain orientation linking units and flanking with different electron-withdrawing end group.Among them,PTR-4C1 exhibits increased average electrostatic potential(ESP)difference with polymer donor,enhanced crystallinity and compactπ-πstacking compared with the control molecule PTR-2CI.As a result,the PTR-4Cl-based OSC achieved an impressive power conversion efficiency(PCE)of 14.72%,with a much higher open-circuit voltage(V_(OC))of 0.953 V and significantly improved fill factor(FF)of 0.758,demonstrating one of the best acceptor material in the top-performing fully NFREA-based OSCs with both high PCE and V_(OC).Notably,PTR-4Cl-based cells maintain a good T_80lifetime of its initial PCE after over 936 h under a continuous thermal annealing treatment and over1300 h T_(80)lifetime without encapsulation.This work provides a cost-effective design strategy for NFREAs on obtaining high V_(OC),efficient exciton dissociation,and ordered molecular packing and thus high-efficiency and stable OSCs.展开更多
Nucleophile oxidation reaction(NOR), represented by ethanol oxidation reaction(EOR), is a promising pathway to replace oxygen evolution reaction(OER). EOR can effectively reduce the driving voltage of hydrogen product...Nucleophile oxidation reaction(NOR), represented by ethanol oxidation reaction(EOR), is a promising pathway to replace oxygen evolution reaction(OER). EOR can effectively reduce the driving voltage of hydrogen production in direct water splitting. In this work, large current and high efficiency of EOR on a Ni, Fe layered double hydroxide(NiFe-LDH) catalyst were simultaneously achieved by a facile fluorination strategy. F in NiFe-LDH can reduce the activation energy of the dehydrogenation reaction, thus promoting the deprotonation process of NiFe-LDH to achieve a lower EOR onset potential. It also weakens the absorption of OH-and nucleophile electrooxidation products on the surface of NiFe-LDH at a higher potential, achieving a high current density and EOR selectivity, according to density functional theory calculations. Based on our experiment results, the optimized fluorinated NiFe-LDH catalyst achieves a low potential of 1.386 V to deliver a 10 mA cm^(-2)EOR. Moreover, the Faraday efficiency is greater than 95%, with a current density ranging from 10 to 250 mA cm^(-2). This work provides a promising pathway for an efficient and cost-effective NOR catalyst design for economic hydrogen production.展开更多
Perovskite materials have drawn a lot of interest recently due to their potential to increase solar cell efficiency. This study uses the solar cell capacitance simulator (SCAPS-1D) to develop and simulate a perovskite...Perovskite materials have drawn a lot of interest recently due to their potential to increase solar cell efficiency. This study uses the solar cell capacitance simulator (SCAPS-1D) to develop and simulate a perovskite solar cell made of semiconductor materials. The design that has been suggested is Al:ZnO/ZnO/CdS/CsSnCl<sub>3</sub> and MoS<sub>2</sub>. The analysis focuses on how different characteristics of the material affect the device’s performance. The analysis of the data reveals that the architecture had 26.15% power conversion efficiency (PCE). The solar cell creates an interest in developing a non-toxic solar cell with low manufacturing costs, outstanding conversion efficiency, and stability.展开更多
The interfaces of perovskite solar cells(PSCs)are well known to be rich in deep-level carrier traps,which serve as non-radiative recombination centers and limit the open-circuit voltage(Voc)and power conversion effici...The interfaces of perovskite solar cells(PSCs)are well known to be rich in deep-level carrier traps,which serve as non-radiative recombination centers and limit the open-circuit voltage(Voc)and power conversion efficiency(PCE)of PSCs.Defect chemistry and surface passivators have been researched extensively and mainly focused on the neutralization of uncoordinated lead or anion defects.Herein,a novel brominated passivator 2-bromophenethylammonium iodide(2-Br-PEAI)is introduced for a multi-functional passivation effect at the perovskite interface.The brominated species readily form 2D perovskite on top of the 3D perovskite and multi-interact with the 3D perovskite surface.Apart from the halide vacancy filling and anion bonding ability,the Br atoms on the benzene ring can interact with the FA cations via strong hydrogen bonding N-H…Br and interact with the[PbI_(6)]^(4−)inorganic framework.The interface defects in the PSCs are well passivated,minimizing non-radiative recombination and enhancing device performance.As a result,a champion PCE of 24.22%was achieved with high V_(oc)and fill factor.In addition,modified devices also showed enhanced operational stability(retention of>95%initial PCE after 400 h)and humidity resistance(>90%initial PCE maintained after 1500 h under~50%RH).展开更多
Shannong 116 is a strong gluten,high yield and multi-resistance wheat variety bred by Shandong Agricultural University,which was approved by the State in 2021 and by Shandong Province in 2022.Shannong 116 combines the...Shannong 116 is a strong gluten,high yield and multi-resistance wheat variety bred by Shandong Agricultural University,which was approved by the State in 2021 and by Shandong Province in 2022.Shannong 116 combines the excellent characteristics of the female parent(strong gluten,disease resistance and early maturity)and the male parent(high yield,water saving and lodging resistance),with a plant height of 76.9 cm,compact plant type,orderly spike layer and good maturity performance,which is suitable for large-scale promotion and market order planting in Huanghuai wheat area.In this paper,the characteristics of Shannong 116 are analyzed,and cultivation technical measures for high yield,high quality and high efficiency are put forward,in order to provide a technical support for the popularization and application of the variety.展开更多
In recent years the synchronous reluctance machines(SynRMs)have received much attention.They have some good features such as high torque density,high reliability and low cost.This paper aims to give an overview of Syn...In recent years the synchronous reluctance machines(SynRMs)have received much attention.They have some good features such as high torque density,high reliability and low cost.This paper aims to give an overview of SynRMs with particular emphasis on the history,research status and industrial application.Besides,concept and basic operating principles of such machines are also described.Moreover,some hot spots of the research on the SynRMs are introduced.Several methods to improve the average torque and reduce torque ripple of the SynRMs in the past literatures are presented including topology design and control strategies.An overview of the methods from different aspects to realize high efficiency for the SynRMs is given which contain rotor optimization,winding configuration,material improvement,control schemes and so on.Some approaches suitable for high speed application are also introduced.It can be seen that the SynRMs have broad development prospects and great potential in industrial application.展开更多
Qingshu 9 was approved and formally named as a new potato variety by Qinghai Crop Variety Approval Committee in December 2006. It has outstanding features of high quality, high yield, drought resistance, and disease r...Qingshu 9 was approved and formally named as a new potato variety by Qinghai Crop Variety Approval Committee in December 2006. It has outstanding features of high quality, high yield, drought resistance, and disease resistance. Hanzhong Institute of Agricultural Sciences introduced Qingshu 9 from Dingxi County in Gansu Province in 2010. Through years of experiments and demonstrations, the average yield of Qingshu can reach up to 53.14 t/hm^2 with the maximum yield to 63.77 t/hm^2.展开更多
Studies for many years have indicated that the seed yield of (Glycine max L. Merr.) soybean can be increased by increasing photosynthetic efficiency. The yield of cultivars with high photosynthetic efficiency (HPE) in...Studies for many years have indicated that the seed yield of (Glycine max L. Merr.) soybean can be increased by increasing photosynthetic efficiency. The yield of cultivars with high photosynthetic efficiency (HPE) increased by 30% - 40% in comparison with the cultivars with normal photosynthetic efficiency, indicating that the breeding of soybean by increasing RPE may have a bright prospect. HPE breeding can be used as the temporal monitoring in the breeding process to avoid the divergency of the predetermined goal, although HPE breeding does not shorten the breeding time. It was observed that limited C-4 pathway exists in soybean leaf and pod, suggesting that by increasing the genetic expression of some C-4 enzymes in C-3 crops through traditional or genetic engineering techniques, new breakthroughs in increasing the photosynthetic efficiency of C-3 plant may be practicable in the future.展开更多
Two new AlTiN coated cemented carbide drills with Al content of 40% and 55% in weight are developed for high efficiency dry drilling of 40Cr. By studying tool durability, machined hole quality, tool wear mechanism, ch...Two new AlTiN coated cemented carbide drills with Al content of 40% and 55% in weight are developed for high efficiency dry drilling of 40Cr. By studying tool durability, machined hole quality, tool wear mechanism, chip deformation, and lubrication, the dry drilling performance of the two kinds of coated drills is analyzed. Experimental results show that the AlTiN coated drills are suitable for high efficiency dry drilling and can obtain higher quality of machined holes. The tool durability of the drill with 55% Al content is 1. 3 times of that of the drill with 40% Al content at the cutting speed of 90 m/min. The wear mechanism of two AlTiN coatings are studied in experiments. During dry drilling process, oxidative wear appears in both two kinds of drills. The oxide film is formed on the top of the coated drill containing Al content of 55%. And the oxide film helps to increase its high temperature resistance and decrease the coating flaking, thus the drill is failed because of coating subsidence. The drill with less Al content is failed due to peeling and breakage. The lubricated condition in dry drilling is improved by the high Al content coating. It helps to reduce the cutting deformation and benefits to improve the quality of machined holes. The AlTiN coating with higher Al content shows longer tool life and higher quality of machined holes in high efficiency dry drilling. Its tool life increases by 30% compared with that of the coating with less Al content.展开更多
[Objective] This study aimed to investigate differences in phosphorus effi-ciency between two-rowed barley and multiple-rowed barley and differences in phos-phorus efficiency among various agronomic traits, and to exp...[Objective] This study aimed to investigate differences in phosphorus effi-ciency between two-rowed barley and multiple-rowed barley and differences in phos-phorus efficiency among various agronomic traits, and to explore the relationship be-tween agronomic traits and row type with phosphorus efficiency. [Method] Under available phosphorus mass fractions of 1.32 and 36.6 mg/kg, 172 barley varieties, including 79 two-rowed foreign barley, 22 multiple-rowed foreign barley, 58 two-rowed Chinese barley and 13 multiple-rowed Chinese barley, were selected to com-pare differences in phosphorus efficiency-related agronomic traits. Plant height, spike length, number of unfil ed grains, number of unfil ed grains, main panicle weight, to-tal panicle weight, total stem weight, weight of aerial part and heading stage were surveyed for statistical analysis. [Result] The results showed that, various agronomic traits were larger under fertilization condition than under non-fertilization condition ex-cept number of unfil ed grains and heading stage. Plant high, spike length, weight of aerial part and heading stage varied greatly under non-fertilization condition; number of fil ed grains, number of unfil ed grains and total stem weight varied greatly under fertilization condition. In two-rowed barley, plant height and number of fil ed grains of Chinese varieties were higher than those of foreign varieties, while other agronomic traits such as spike length, number of unfil ed grains, main panicle weight, total panicle weight, total stem weight, weight of aerial part and heading stage of foreign varieties were higher than those of Chinese varieties. Spike length and weight of aerial part in multiple-rowed and two-rowed foreign barley were higher than those in Chinese barley. In multiple-rowed barley, plant height, number of unfil ed grains, total panicle weight and total stem weight of foreign varieties were higher under non-fer-tilization condition and lower under fertilization condition compared with those of Chi-nese varieties; number of fil ed grains, main panicle weight and heading stage of foreign varieties were lower under non-fertilization condition and higher under fertil-ization condition compared with those of Chinese varieties. [Conclusion] Heading stage, number of fil ed grains, number of unfil ed grains and total stem weight are more sensitive to phosphorus efficiency. Multiple-rowed barley is more sensitive to phosphorus efficiency than two-rowed barley.展开更多
Green manufacturing (GM) and high efficiency machining technology are inevitable trends in the field of advanced manufacturing of the 21st century. To ensure green and high-efficiency machining, a new high efficienc...Green manufacturing (GM) and high efficiency machining technology are inevitable trends in the field of advanced manufacturing of the 21st century. To ensure green and high-efficiency machining, a new high efficiency cooling technology-cryogenic pneumatic mist jet impinging cooling (CPMJI) technology is presented. For obtaining the best cooling effect, a little quantity of coolant is carried by high speed cryogenic air (-20 C ) and reaches the machining zone in the form of mist jet to enhance heat transfer. Experimental results indicate that under the conditions of 40 m/s in the jet impinging speed and 10 mm in the jet impinging distance, the critical heat flux(CHF) nearly reaches 6× 10^7 W/m^2, more than six times of the CHF of the grinding burn with a value of (8~10)×10^6 W/m^2.展开更多
To understand the high yield and efficiency technique in hybrid rice Zhongzheyou No. 1, we conducted the correlation analysis, regression analysis and path analysis of hybrid rice Zhongzheyou No. 1 based on the data o...To understand the high yield and efficiency technique in hybrid rice Zhongzheyou No. 1, we conducted the correlation analysis, regression analysis and path analysis of hybrid rice Zhongzheyou No. 1 based on the data of its ear, grain and weight at different yield levels. From this study, we put forward the high yield and efficiency technique in Zhongzheyou No. 1 .. on the basis of certain effective ear number, filled grains per ear should be mainly targeted with a consideration to 1 000-grain weight.展开更多
A novel AC to DC charge pump with high performance is presented. Due to the pMOS structure and threshold voltage canceling technology, the efficiency and the output voltage are greatly improved. Test results show that...A novel AC to DC charge pump with high performance is presented. Due to the pMOS structure and threshold voltage canceling technology, the efficiency and the output voltage are greatly improved. Test results show that the output voltage and power efficiency are improved by 125% and 104% respectively at 13.56MHz for a 1V sinusoidal input compared to the traditional MOS diodes structure.展开更多
The experimental investigation of axial-flow pump has been rapidly developed to meet the needs of South-to-North Water Diversion Project of China. Owing to the boundary conditions of hub, blade tip clearance, much of ...The experimental investigation of axial-flow pump has been rapidly developed to meet the needs of South-to-North Water Diversion Project of China. Owing to the boundary conditions of hub, blade tip clearance, much of the physical phenomena and laws involved in this complex flow field can't be fully determined. The flow characteristics of the high efficiency axial-flow pump have been simulated by RNG k-e turbulence model and SIMPLEC arithmetic based on FLUENT software. Numerical results indicate that the data from the prediction show agreement with the experimental results, static pressure on pressure side of blades increases slightly at circumferential direction with radius increasing, and keep almost constant at the same radial while increasing gradually from inlet to exit on the suction side along flow direction at design conditions. The static pressure, total pressure and velocity at inlet, impeller outlet and vane outlet were measured by a five-hole probe, and a contrastive experiment was done to investigate the influence of hub leakage. The experimental results show that inlet flow is almost axial and the prerotation is very small at various conditions. The meridional velocity and circulation distribution are almost identical at impeller outlet at design conditions due to steady flow and high efficiency. The residual circulation exits at downstream of the guide vane, and the circumferential velocity component increases linearly from hub to tip at small flow rate conditions. Hub leakage in adjustable blades results in the decrease of the meridional velocity and circulation at blade exit near hub. The results of numerical simulation and experiments supply important flow structure information for the high-efficiency axial-flow pump.展开更多
In order to establish methods for indentification and screening of rice genotypes with high nitrogen (N) efficiency, N absorption efficiency (NAE), N utilization efficiency (NUE) and N harvest index (NHI) in t...In order to establish methods for indentification and screening of rice genotypes with high nitrogen (N) efficiency, N absorption efficiency (NAE), N utilization efficiency (NUE) and N harvest index (NHI) in ten rice genotypes were investgated at the elongation, booting, heading and maturity stages under six N levels in a pot experiment with soil-sand mixtures at various ratios. NAE in various rice genotypes firstly increased, peaked under a medium nitrogen rate of 0.177 g/kg and then decreased, but NUE and NHI always decreased with increasing nitrogen levels. NAE in various rice genotypes ever increased with growing process and NUE indicated a descending tendency of elongation stage〉heading stage〉maturity stage〉booting stage. N level influenced rice NAE, NUE and NHI most, followed by genotype, and the both effects were significant at 0.01 level. In addition, the interaction effects of genotype and nitrogen level on rice NAE and NUE were significant at 0.01 level, but not significant on rice NHI. Because the maximum differences of NAE and NUE were found at the elongation stage, it was thought to be the most suitable stage for identification and screening these two paremeters. Therefore, the optimum conditions for identification and screening of rice NAE, NUE and NHI in a pot experiment were the nitrogen rate of 0.157 g/kg at the elongation stage, low nitrogen at the elongation stage, and the nitrogen rate of 0.277 g/kg at the maturity stage, respectively.展开更多
Objective To evaluate the performance of vaporized hydrogen peroxide (VHP) for the bio-decontamination of the high efficiency particulate air (HEPA) filter unit. Methods Self-made or commercially available bioindi...Objective To evaluate the performance of vaporized hydrogen peroxide (VHP) for the bio-decontamination of the high efficiency particulate air (HEPA) filter unit. Methods Self-made or commercially available bioindicators were placed at designated locations in the HEPA filter unit under VHP fumigation. The spores on coupons were then extracted by 0.5 h submergence in eluent followed by 200- time violent knocks. Results Due to the presence of HEPA filter in the box, spore recovery from coupons placed at the bottom of the filter downstream was significantly higher than that from coupons placed at the other locations. The gap of decontamination efficiency between the top and the bottom of the filter downstream became narrower with the exposure time extended. The decontamination efficiency of the bottom of the filter downstream only improved gently with the injection rate of H202 increased and the decontamination efficiency decreased instead when the injection rate exceeded 2.5 g/min. The commercially available bioindicators were competent to indicate the disinfection efficiency of VHP for the HEPA filter unit. Conclusion The HEPA filter unit is more difficult than common enclosure to decontaminate using VHP fumigation. Complete decontamination can be achieved by extending fumigation time. VHP fumigation can be applied for in-situ biodecontamination of the HEPA filter unit as an alternative method to formaldehyde fumigation.展开更多
The lead-free perovskite solar cells(PSCs) have drawn a great deal of research interest due to the Pb toxicity of the lead halide perovskite.CHNHSnIis a viable alternative to CHNHPbX,because it has a narrower band gap...The lead-free perovskite solar cells(PSCs) have drawn a great deal of research interest due to the Pb toxicity of the lead halide perovskite.CHNHSnIis a viable alternative to CHNHPbX,because it has a narrower band gap of 1.3 eV and a wider visible absorption spectrum than the lead halide perovskite.The progress of fabricating tin iodide PSCs with good stability has stimulated the studies of these CHNHSnIbased cells greatly.In the paper,we study the influences of various parameters on the solar cell performance through theoretical analysis and device simulation.It is found in the simulation that the solar cell performance can be improved to some extent by adjusting the doping concentration of the perovskite absorption layer and the electron affinity of the buffer and HTM,while the reduction of the defect density of the perovskite absorption layer significantly improves the cell performance.By further optimizing the parameters of the doping concentration(1.3 × 10cm~3) and the defect density(1 × 10cm~3) of perovskite absorption layer,and the electron affinity of buffer(4.0 eV) and HTM(2.6 eV),we finally obtain some encouraging results of the Jof 31.59 mA/cm~2,Vof 0.92 V,FF of 79.99%,and PCE of 23.36%.The results show that the lead-free CHNHSnIPSC is a potential environmentally friendly solar cell with high efficiency.Improving the Snstability and reducing the defect density of CHNHSnIare key issues for the future research,which can be solved by improving the fabrication and encapsulation process of the cell.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12122206 and 12272129)the Natural Science Foundation of Hunan Province of China(No.2024JJ4004)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24A020006)。
文摘An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is used to design the unit cel,i.e.,the single-layer QZS(SL-QZS)meta-structure.Second,the stiffness feature of the unit cell is investigated and verified through static experiments.Third,the unit cells are stacked one by one along the direction of vibration isolation,and thus the ML-QZS meta-structure is constructed.Fourth,the dynamic modeling of the ML-QZS vibration isolation metastructure is conducted,and the dynamic responses are obtained from the equations of motion,and verified by finite element(FE)simulations.Finally,a prototype of the ML-QZS vibration isolation meta-structure is fabricated by additive manufacturing,and the vibration isolation performance is evaluated experimentally.The results show that the vibration isolation performance substantially enhances when the number of unit cells increases.More importantly,the ML-QZS meta-structure can be easily extended in the direction of vibration isolation when the unit cells are properly stacked.Hence,the ML-FQZS vibration isolation meta-structure should be a fascinating solution for highly efficient vibration isolation performance at low frequency.
基金support provided by the Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project(HZQB-KCZYB-2020030)the Research Grants Council of Hong Kong(Project No:AoE/M-402/20.)+1 种基金the Open Project of Yunnan Precious Metals Laboratory Co.,Ltd(YPML-2023050248)the Hong Kong Innovation and Technology Commission via the Hong Kong Branch of National Precious Metals Material Engineering Research Center.
文摘Solar steam generation(SSG)is widely regarded as one of the most sustainable technologies for seawater desalination.However,salt fouling severely compromises the evaporation performance and lifetime of evaporators,limiting their practical applications.Herein,we propose a hierarchical salt-rejection(HSR)strategy to prevent salt precipitation during long-term evaporation while maintaining a rapid evaporation rate,even in high-salinity brine.The salt diffusion process is segmented into three steps—insulation,branching diffusion,and arterial transport—that significantly enhance the salt-resistance properties of the evaporator.Moreover,the HSR strategy overcomes the tradeoff between salt resistance and evaporation rate.Consequently,a high evaporation rate of 2.84 kg m^(-2) h^(-1),stable evaporation for 7 days cyclic tests in 20 wt%NaCl solution,and continuous operation for 170 h in natural seawater under 1 sun illumination were achieved.Compared with control evaporators,the HSR evaporator exhibited a>54%enhancement in total water evaporation mass during 24 h continuous evaporation in 20 wt%salt water.Furthermore,a water collection device equipped with the HSR evaporator realized a high water purification rate(1.1 kg m^(-2) h^(-1)),highlighting its potential for agricultural applications.
文摘Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected pore volume)on rock properties,pore structure and oil displacement efficiency of an oilfield in the western South China Sea.The results show an increase in the permeability of rocks along with particle migration,an increase in the pore volume and the average pore throat radius,and enhanced heterogeneity after high-multiple water injection.Compared with normal water injection methods,a high-multiple water injection is more effective in improving the oil displacement efficiency.The degree of recovery increases faster in the early stage due to the expansion of the swept area,and the transition from oil-wet to water-wet.The degree of recovery increases less in the late stage due to various factors,including the enhancement of heterogeneity in the rocks.Considering both the economic aspect and the production limit of water flooding,it is recommended to adopt other technologies to further enhance oil recovery after 300 PV water injection.
基金the financial support by Hong Kong Scholar program(XJ2021-038)Young Talent Fund of Xi’an Association for Science and Technology(959202313080)+6 种基金the Natural Science Foundation Research Project of Shaanxi Province(2022JM-269)the Postgraduate Innovation and Practical Ability Training Program of Xi’an Shiyou University(YCS21212144)the National Natural Science Foundation of China(52103221,52172048,12175298)the Shandong Provincial Natural Science Foundation(ZR2021QB179,ZR2021QB024,ZR2021ZD06)the Guangdong Natural Science Foundation of China(2023A1515012323,2023A1515010943)the National Key Research and Development Program of China(2022YFB4200400)funded by MOSTthe Fundamental Research Funds of Shandong University。
文摘Design and synthesis of superior cost-effective non-fullerene acceptors(NFAs)are still big challenges for facilitating the commercialization of organic solar cells(OSCs),yet to be realized.Herein,two medium bandgap fully non-fused ring electron acceptors(NFREAs,medium bandgap,i,e.,1,3-1,8 eV),namely PTR-2Cl and PTR-4Cl are synthesized with only four steps by using intramolecular noncovalent interaction central core,structured alkyl side chain orientation linking units and flanking with different electron-withdrawing end group.Among them,PTR-4C1 exhibits increased average electrostatic potential(ESP)difference with polymer donor,enhanced crystallinity and compactπ-πstacking compared with the control molecule PTR-2CI.As a result,the PTR-4Cl-based OSC achieved an impressive power conversion efficiency(PCE)of 14.72%,with a much higher open-circuit voltage(V_(OC))of 0.953 V and significantly improved fill factor(FF)of 0.758,demonstrating one of the best acceptor material in the top-performing fully NFREA-based OSCs with both high PCE and V_(OC).Notably,PTR-4Cl-based cells maintain a good T_80lifetime of its initial PCE after over 936 h under a continuous thermal annealing treatment and over1300 h T_(80)lifetime without encapsulation.This work provides a cost-effective design strategy for NFREAs on obtaining high V_(OC),efficient exciton dissociation,and ordered molecular packing and thus high-efficiency and stable OSCs.
基金the financial support from the National Natural Science Foundation of China (22197121)Knowledge Innovation Program of Wuhan-Basic Research (2022010801010202)Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology (FC202201)。
文摘Nucleophile oxidation reaction(NOR), represented by ethanol oxidation reaction(EOR), is a promising pathway to replace oxygen evolution reaction(OER). EOR can effectively reduce the driving voltage of hydrogen production in direct water splitting. In this work, large current and high efficiency of EOR on a Ni, Fe layered double hydroxide(NiFe-LDH) catalyst were simultaneously achieved by a facile fluorination strategy. F in NiFe-LDH can reduce the activation energy of the dehydrogenation reaction, thus promoting the deprotonation process of NiFe-LDH to achieve a lower EOR onset potential. It also weakens the absorption of OH-and nucleophile electrooxidation products on the surface of NiFe-LDH at a higher potential, achieving a high current density and EOR selectivity, according to density functional theory calculations. Based on our experiment results, the optimized fluorinated NiFe-LDH catalyst achieves a low potential of 1.386 V to deliver a 10 mA cm^(-2)EOR. Moreover, the Faraday efficiency is greater than 95%, with a current density ranging from 10 to 250 mA cm^(-2). This work provides a promising pathway for an efficient and cost-effective NOR catalyst design for economic hydrogen production.
文摘Perovskite materials have drawn a lot of interest recently due to their potential to increase solar cell efficiency. This study uses the solar cell capacitance simulator (SCAPS-1D) to develop and simulate a perovskite solar cell made of semiconductor materials. The design that has been suggested is Al:ZnO/ZnO/CdS/CsSnCl<sub>3</sub> and MoS<sub>2</sub>. The analysis focuses on how different characteristics of the material affect the device’s performance. The analysis of the data reveals that the architecture had 26.15% power conversion efficiency (PCE). The solar cell creates an interest in developing a non-toxic solar cell with low manufacturing costs, outstanding conversion efficiency, and stability.
基金supported by the National Natural Science Foundation of China(21872080)State Key Laboratory of Power System and Generation Equipment(No.SKLD21Z03,SKLD20M03)China Postdoctoral Science Foundation(No.043240004).
文摘The interfaces of perovskite solar cells(PSCs)are well known to be rich in deep-level carrier traps,which serve as non-radiative recombination centers and limit the open-circuit voltage(Voc)and power conversion efficiency(PCE)of PSCs.Defect chemistry and surface passivators have been researched extensively and mainly focused on the neutralization of uncoordinated lead or anion defects.Herein,a novel brominated passivator 2-bromophenethylammonium iodide(2-Br-PEAI)is introduced for a multi-functional passivation effect at the perovskite interface.The brominated species readily form 2D perovskite on top of the 3D perovskite and multi-interact with the 3D perovskite surface.Apart from the halide vacancy filling and anion bonding ability,the Br atoms on the benzene ring can interact with the FA cations via strong hydrogen bonding N-H…Br and interact with the[PbI_(6)]^(4−)inorganic framework.The interface defects in the PSCs are well passivated,minimizing non-radiative recombination and enhancing device performance.As a result,a champion PCE of 24.22%was achieved with high V_(oc)and fill factor.In addition,modified devices also showed enhanced operational stability(retention of>95%initial PCE after 400 h)and humidity resistance(>90%initial PCE maintained after 1500 h under~50%RH).
基金Supported by Agricultural Improved Variety Engineering Project of Shandong Province"Research on Super Wheat Breeding Technology"(LNLZ[2011]7,[2012]213)National Key Project for the Cultivation of New Varieties of Genetically Modified Organisms"Breeding of New Varieties of Genetically Modified Organisms"(2013ZX08002-003)Science and Technology Innovation Major Project of Tai an City"Breeding and Application of Breakthrough Wheat Varieties with High Yield,Wide Adaptability and Good Quality"(2022NYLZ06).
文摘Shannong 116 is a strong gluten,high yield and multi-resistance wheat variety bred by Shandong Agricultural University,which was approved by the State in 2021 and by Shandong Province in 2022.Shannong 116 combines the excellent characteristics of the female parent(strong gluten,disease resistance and early maturity)and the male parent(high yield,water saving and lodging resistance),with a plant height of 76.9 cm,compact plant type,orderly spike layer and good maturity performance,which is suitable for large-scale promotion and market order planting in Huanghuai wheat area.In this paper,the characteristics of Shannong 116 are analyzed,and cultivation technical measures for high yield,high quality and high efficiency are put forward,in order to provide a technical support for the popularization and application of the variety.
基金in part by the National Natural Science Foundation of China (NSFC) under Grant 52107046in part by the Fundamental Research Funds for the Central Universities,HUST (2021XXJS009)
文摘In recent years the synchronous reluctance machines(SynRMs)have received much attention.They have some good features such as high torque density,high reliability and low cost.This paper aims to give an overview of SynRMs with particular emphasis on the history,research status and industrial application.Besides,concept and basic operating principles of such machines are also described.Moreover,some hot spots of the research on the SynRMs are introduced.Several methods to improve the average torque and reduce torque ripple of the SynRMs in the past literatures are presented including topology design and control strategies.An overview of the methods from different aspects to realize high efficiency for the SynRMs is given which contain rotor optimization,winding configuration,material improvement,control schemes and so on.Some approaches suitable for high speed application are also introduced.It can be seen that the SynRMs have broad development prospects and great potential in industrial application.
文摘Qingshu 9 was approved and formally named as a new potato variety by Qinghai Crop Variety Approval Committee in December 2006. It has outstanding features of high quality, high yield, drought resistance, and disease resistance. Hanzhong Institute of Agricultural Sciences introduced Qingshu 9 from Dingxi County in Gansu Province in 2010. Through years of experiments and demonstrations, the average yield of Qingshu can reach up to 53.14 t/hm^2 with the maximum yield to 63.77 t/hm^2.
文摘Studies for many years have indicated that the seed yield of (Glycine max L. Merr.) soybean can be increased by increasing photosynthetic efficiency. The yield of cultivars with high photosynthetic efficiency (HPE) increased by 30% - 40% in comparison with the cultivars with normal photosynthetic efficiency, indicating that the breeding of soybean by increasing RPE may have a bright prospect. HPE breeding can be used as the temporal monitoring in the breeding process to avoid the divergency of the predetermined goal, although HPE breeding does not shorten the breeding time. It was observed that limited C-4 pathway exists in soybean leaf and pod, suggesting that by increasing the genetic expression of some C-4 enzymes in C-3 crops through traditional or genetic engineering techniques, new breakthroughs in increasing the photosynthetic efficiency of C-3 plant may be practicable in the future.
文摘Two new AlTiN coated cemented carbide drills with Al content of 40% and 55% in weight are developed for high efficiency dry drilling of 40Cr. By studying tool durability, machined hole quality, tool wear mechanism, chip deformation, and lubrication, the dry drilling performance of the two kinds of coated drills is analyzed. Experimental results show that the AlTiN coated drills are suitable for high efficiency dry drilling and can obtain higher quality of machined holes. The tool durability of the drill with 55% Al content is 1. 3 times of that of the drill with 40% Al content at the cutting speed of 90 m/min. The wear mechanism of two AlTiN coatings are studied in experiments. During dry drilling process, oxidative wear appears in both two kinds of drills. The oxide film is formed on the top of the coated drill containing Al content of 55%. And the oxide film helps to increase its high temperature resistance and decrease the coating flaking, thus the drill is failed because of coating subsidence. The drill with less Al content is failed due to peeling and breakage. The lubricated condition in dry drilling is improved by the high Al content coating. It helps to reduce the cutting deformation and benefits to improve the quality of machined holes. The AlTiN coating with higher Al content shows longer tool life and higher quality of machined holes in high efficiency dry drilling. Its tool life increases by 30% compared with that of the coating with less Al content.
基金Supported by China Agriculture Research System(CARS-05)National Natural Science Foundation of China(No.31260326)Personnel Training Plan of Technological Innovation of Yunnan Province(No.2012HB050)~~
文摘[Objective] This study aimed to investigate differences in phosphorus effi-ciency between two-rowed barley and multiple-rowed barley and differences in phos-phorus efficiency among various agronomic traits, and to explore the relationship be-tween agronomic traits and row type with phosphorus efficiency. [Method] Under available phosphorus mass fractions of 1.32 and 36.6 mg/kg, 172 barley varieties, including 79 two-rowed foreign barley, 22 multiple-rowed foreign barley, 58 two-rowed Chinese barley and 13 multiple-rowed Chinese barley, were selected to com-pare differences in phosphorus efficiency-related agronomic traits. Plant height, spike length, number of unfil ed grains, number of unfil ed grains, main panicle weight, to-tal panicle weight, total stem weight, weight of aerial part and heading stage were surveyed for statistical analysis. [Result] The results showed that, various agronomic traits were larger under fertilization condition than under non-fertilization condition ex-cept number of unfil ed grains and heading stage. Plant high, spike length, weight of aerial part and heading stage varied greatly under non-fertilization condition; number of fil ed grains, number of unfil ed grains and total stem weight varied greatly under fertilization condition. In two-rowed barley, plant height and number of fil ed grains of Chinese varieties were higher than those of foreign varieties, while other agronomic traits such as spike length, number of unfil ed grains, main panicle weight, total panicle weight, total stem weight, weight of aerial part and heading stage of foreign varieties were higher than those of Chinese varieties. Spike length and weight of aerial part in multiple-rowed and two-rowed foreign barley were higher than those in Chinese barley. In multiple-rowed barley, plant height, number of unfil ed grains, total panicle weight and total stem weight of foreign varieties were higher under non-fer-tilization condition and lower under fertilization condition compared with those of Chi-nese varieties; number of fil ed grains, main panicle weight and heading stage of foreign varieties were lower under non-fertilization condition and higher under fertil-ization condition compared with those of Chinese varieties. [Conclusion] Heading stage, number of fil ed grains, number of unfil ed grains and total stem weight are more sensitive to phosphorus efficiency. Multiple-rowed barley is more sensitive to phosphorus efficiency than two-rowed barley.
文摘Green manufacturing (GM) and high efficiency machining technology are inevitable trends in the field of advanced manufacturing of the 21st century. To ensure green and high-efficiency machining, a new high efficiency cooling technology-cryogenic pneumatic mist jet impinging cooling (CPMJI) technology is presented. For obtaining the best cooling effect, a little quantity of coolant is carried by high speed cryogenic air (-20 C ) and reaches the machining zone in the form of mist jet to enhance heat transfer. Experimental results indicate that under the conditions of 40 m/s in the jet impinging speed and 10 mm in the jet impinging distance, the critical heat flux(CHF) nearly reaches 6× 10^7 W/m^2, more than six times of the CHF of the grinding burn with a value of (8~10)×10^6 W/m^2.
文摘To understand the high yield and efficiency technique in hybrid rice Zhongzheyou No. 1, we conducted the correlation analysis, regression analysis and path analysis of hybrid rice Zhongzheyou No. 1 based on the data of its ear, grain and weight at different yield levels. From this study, we put forward the high yield and efficiency technique in Zhongzheyou No. 1 .. on the basis of certain effective ear number, filled grains per ear should be mainly targeted with a consideration to 1 000-grain weight.
文摘A novel AC to DC charge pump with high performance is presented. Due to the pMOS structure and threshold voltage canceling technology, the efficiency and the output voltage are greatly improved. Test results show that the output voltage and power efficiency are improved by 125% and 104% respectively at 13.56MHz for a 1V sinusoidal input compared to the traditional MOS diodes structure.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2007AA05Z207)National Science and Technology Support Scheme of China (Grant No. 2008BAF34B10)Jiangsu Provincial Graduate Student Innovation Foundation of China (Grant No. CX08B_064Z)
文摘The experimental investigation of axial-flow pump has been rapidly developed to meet the needs of South-to-North Water Diversion Project of China. Owing to the boundary conditions of hub, blade tip clearance, much of the physical phenomena and laws involved in this complex flow field can't be fully determined. The flow characteristics of the high efficiency axial-flow pump have been simulated by RNG k-e turbulence model and SIMPLEC arithmetic based on FLUENT software. Numerical results indicate that the data from the prediction show agreement with the experimental results, static pressure on pressure side of blades increases slightly at circumferential direction with radius increasing, and keep almost constant at the same radial while increasing gradually from inlet to exit on the suction side along flow direction at design conditions. The static pressure, total pressure and velocity at inlet, impeller outlet and vane outlet were measured by a five-hole probe, and a contrastive experiment was done to investigate the influence of hub leakage. The experimental results show that inlet flow is almost axial and the prerotation is very small at various conditions. The meridional velocity and circulation distribution are almost identical at impeller outlet at design conditions due to steady flow and high efficiency. The residual circulation exits at downstream of the guide vane, and the circumferential velocity component increases linearly from hub to tip at small flow rate conditions. Hub leakage in adjustable blades results in the decrease of the meridional velocity and circulation at blade exit near hub. The results of numerical simulation and experiments supply important flow structure information for the high-efficiency axial-flow pump.
基金supported by the National High-Tech Research&Development program(Grant No.2003AA206030)the National Natural Science Foundation of China(Grant No.30030090)
文摘In order to establish methods for indentification and screening of rice genotypes with high nitrogen (N) efficiency, N absorption efficiency (NAE), N utilization efficiency (NUE) and N harvest index (NHI) in ten rice genotypes were investgated at the elongation, booting, heading and maturity stages under six N levels in a pot experiment with soil-sand mixtures at various ratios. NAE in various rice genotypes firstly increased, peaked under a medium nitrogen rate of 0.177 g/kg and then decreased, but NUE and NHI always decreased with increasing nitrogen levels. NAE in various rice genotypes ever increased with growing process and NUE indicated a descending tendency of elongation stage〉heading stage〉maturity stage〉booting stage. N level influenced rice NAE, NUE and NHI most, followed by genotype, and the both effects were significant at 0.01 level. In addition, the interaction effects of genotype and nitrogen level on rice NAE and NUE were significant at 0.01 level, but not significant on rice NHI. Because the maximum differences of NAE and NUE were found at the elongation stage, it was thought to be the most suitable stage for identification and screening these two paremeters. Therefore, the optimum conditions for identification and screening of rice NAE, NUE and NHI in a pot experiment were the nitrogen rate of 0.157 g/kg at the elongation stage, low nitrogen at the elongation stage, and the nitrogen rate of 0.277 g/kg at the maturity stage, respectively.
基金supported by the Research Fund from the Ministry of Science and Technology of the People’s Republic of China, 2009ZX10004-502 and 2009ZX10004-709
文摘Objective To evaluate the performance of vaporized hydrogen peroxide (VHP) for the bio-decontamination of the high efficiency particulate air (HEPA) filter unit. Methods Self-made or commercially available bioindicators were placed at designated locations in the HEPA filter unit under VHP fumigation. The spores on coupons were then extracted by 0.5 h submergence in eluent followed by 200- time violent knocks. Results Due to the presence of HEPA filter in the box, spore recovery from coupons placed at the bottom of the filter downstream was significantly higher than that from coupons placed at the other locations. The gap of decontamination efficiency between the top and the bottom of the filter downstream became narrower with the exposure time extended. The decontamination efficiency of the bottom of the filter downstream only improved gently with the injection rate of H202 increased and the decontamination efficiency decreased instead when the injection rate exceeded 2.5 g/min. The commercially available bioindicators were competent to indicate the disinfection efficiency of VHP for the HEPA filter unit. Conclusion The HEPA filter unit is more difficult than common enclosure to decontaminate using VHP fumigation. Complete decontamination can be achieved by extending fumigation time. VHP fumigation can be applied for in-situ biodecontamination of the HEPA filter unit as an alternative method to formaldehyde fumigation.
基金supported by the Graduate Student Education Teaching Reform Project,China(Grant No.JG201512)the Young Teachers Research Project of Yanshan University,China(Grant No.13LGB028)
文摘The lead-free perovskite solar cells(PSCs) have drawn a great deal of research interest due to the Pb toxicity of the lead halide perovskite.CHNHSnIis a viable alternative to CHNHPbX,because it has a narrower band gap of 1.3 eV and a wider visible absorption spectrum than the lead halide perovskite.The progress of fabricating tin iodide PSCs with good stability has stimulated the studies of these CHNHSnIbased cells greatly.In the paper,we study the influences of various parameters on the solar cell performance through theoretical analysis and device simulation.It is found in the simulation that the solar cell performance can be improved to some extent by adjusting the doping concentration of the perovskite absorption layer and the electron affinity of the buffer and HTM,while the reduction of the defect density of the perovskite absorption layer significantly improves the cell performance.By further optimizing the parameters of the doping concentration(1.3 × 10cm~3) and the defect density(1 × 10cm~3) of perovskite absorption layer,and the electron affinity of buffer(4.0 eV) and HTM(2.6 eV),we finally obtain some encouraging results of the Jof 31.59 mA/cm~2,Vof 0.92 V,FF of 79.99%,and PCE of 23.36%.The results show that the lead-free CHNHSnIPSC is a potential environmentally friendly solar cell with high efficiency.Improving the Snstability and reducing the defect density of CHNHSnIare key issues for the future research,which can be solved by improving the fabrication and encapsulation process of the cell.