Topological Dirac semimetals are a parent state from which other exotic topological phases of matter, such as Weyl semimetals and topological insulators, can emerge. In this study, we investigate a Dirac semimetal pos...Topological Dirac semimetals are a parent state from which other exotic topological phases of matter, such as Weyl semimetals and topological insulators, can emerge. In this study, we investigate a Dirac semimetal possessing sixfold rotational symmetry and hosting higher-order topological hinge Fermi arc states, which is irradiated by circularly polarized light. Our findings reveal that circularly polarized light splits each Dirac node into a pair of Weyl nodes due to the breaking of time-reversal symmetry, resulting in the realization of the Weyl semimetal phase. This Weyl semimetal phase exhibits rich boundary states, including two-dimensional surface Fermi arc states and hinge Fermi arc states confined to six hinges.Furthermore, by adjusting the incident direction of the circularly polarized light, we can control the degree of tilt of the resulting Weyl cones, enabling the realization of different types of Weyl semimetals.展开更多
Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thi...Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.展开更多
This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic(CCE)model.The underlying CCE model lacks a closed-form exact so...This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic(CCE)model.The underlying CCE model lacks a closed-form exact solution.Numerical solutions obtained through traditional finite difference schemes do not ensure the preservation of the model’s necessary properties,such as positivity,boundedness,and feasibility.Therefore,the development of structure-preserving semi-analytical approaches is always necessary.This research introduces an intelligently supervised computational paradigm to solve the underlying CCE model’s physical properties by formulating an equivalent unconstrained optimization problem.Singularity-free safe Padérational functions approximate the mathematical shape of state variables,while the model’s physical requirements are treated as problem constraints.The primary model of the governing differential equations is imposed to minimize the error between approximate solutions.An evolutionary algorithm,the Genetic Algorithm with Multi-Parent Crossover(GA-MPC),executes the optimization task.The resulting method is the Evolutionary Safe PadéApproximation(ESPA)scheme.The proof of unconditional convergence of the ESPA scheme on the CCE model is supported by numerical simulations.The performance of the ESPA scheme on the CCE model is thoroughly investigated by considering various orders of non-singular Padéapproximants.展开更多
In this paper,Let M_(n)denote the maximum of logarithmic general error distribution with parameter v≥1.Higher-order expansions for distributions of powered extremes M_(n)^(p)are derived under an optimal choice of nor...In this paper,Let M_(n)denote the maximum of logarithmic general error distribution with parameter v≥1.Higher-order expansions for distributions of powered extremes M_(n)^(p)are derived under an optimal choice of normalizing constants.It is shown that M_(n)^(p),when v=1,converges to the Frechet extreme value distribution at the rate of 1/n,and if v>1 then M_(n)^(p)converges to the Gumbel extreme value distribution at the rate of(loglogn)^(2)=(log n)^(1-1/v).展开更多
In the current information society, the dissemination mechanisms and evolution laws of individual or collective opinions and their behaviors are the research hot topics in the field of opinion dynamics. First, in this...In the current information society, the dissemination mechanisms and evolution laws of individual or collective opinions and their behaviors are the research hot topics in the field of opinion dynamics. First, in this paper, a two-layer network consisting of an individual-opinion layer and a collective-opinion layer is constructed, and a dissemination model of opinions incorporating higher-order interactions(i.e. OIHOI dissemination model) is proposed. Furthermore, the dynamic equations of opinion dissemination for both individuals and groups are presented. Using Lyapunov's first method,two equilibrium points, including the negative consensus point and positive consensus point, and the dynamic equations obtained for opinion dissemination, are analyzed theoretically. In addition, for individual opinions and collective opinions,some conditions for reaching negative consensus and positive consensus as well as the theoretical expression for the dissemination threshold are put forward. Numerical simulations are carried to verify the feasibility and effectiveness of the proposed theoretical results, as well as the influence of the intra-structure, inter-connections, and higher-order interactions on the dissemination and evolution of individual opinions. The main results are as follows.(i) When the intra-structure of the collective-opinion layer meets certain characteristics, then a negative or positive consensus is easier to reach for individuals.(ii) Both negative consensus and positive consensus perform best in mixed type of inter-connections in the two-layer network.(iii) Higher-order interactions can quickly eliminate differences in individual opinions, thereby enabling individuals to reach consensus faster.展开更多
Vanadium dioxide VO_(2) is a strongly correlated material that undergoes a metal-to-insulator transition around 340 K.In order to describe the electron correlation effects in VO_(2), the DFT+U method is commonly emplo...Vanadium dioxide VO_(2) is a strongly correlated material that undergoes a metal-to-insulator transition around 340 K.In order to describe the electron correlation effects in VO_(2), the DFT+U method is commonly employed in calculations.However, the choice of the Hubbard U parameter has been a subject of debate and its value has been reported over a wide range. In this paper, taking focus on the phase transition behavior of VO_(2), the Hubbard U parameter for vanadium oxide is determined by using the quasi-harmonic approximation(QHA). First-principles calculations demonstrate that the phase transition temperature can be modulated by varying the U values. The phase transition temperature can be well reproduced by the calculations using the Perdew–Burke–Ernzerhof functional combined with the U parameter of 1.5eV. Additionally,the calculated band structure, insulating or metallic properties, and phonon dispersion with this U value are in line with experimental observations. By employing the QHA to determine the Hubbard U parameter, this study provides valuable insights into the phase transition behavior of VO_(2). The findings highlight the importance of electron correlation effects in accurately describing the properties of this material. The agreement between the calculated results and experimental observations further validates the chosen U value and supports the use of the DFT+U method in studying VO_(2).展开更多
The escalating need for reliability analysis(RA)and reliability-based design optimization(RBDO)within engineering challenges has prompted the advancement of saddlepoint approximationmethods(SAM)tailored for such probl...The escalating need for reliability analysis(RA)and reliability-based design optimization(RBDO)within engineering challenges has prompted the advancement of saddlepoint approximationmethods(SAM)tailored for such problems.This article offers a detailed overview of the general SAM and summarizes the method characteristics first.Subsequently,recent enhancements in the SAM theoretical framework are assessed.Notably,the mean value first-order saddlepoint approximation(MVFOSA)bears resemblance to the conceptual framework of the mean value second-order saddlepoint approximation(MVSOSA);the latter serves as an auxiliary approach to the former.Their distinction is rooted in the varying expansion orders of the performance function as implemented through the Taylor method.Both the saddlepoint approximation and third-moment(SATM)and saddlepoint approximation and fourth-moment(SAFM)strategies model the cumulant generating function(CGF)by leveraging the initial random moments of the function.Although their optimal application domains diverge,each method consistently ensures superior relative precision,enhanced efficiency,and sustained stability.Every method elucidated is exemplified through pertinent RA or RBDO scenarios.By juxtaposing them against alternative strategies,the efficacy of these methods becomes evident.The outcomes proffered are subsequently employed as a foundation for contemplating prospective theoretical and practical research endeavors concerning SAMs.The main purpose and value of this article is to review the SAM and reliability-related issues,which can provide some reference and inspiration for future research scholars in this field.展开更多
Covert communication technology makes wireless communication more secure,but it also provides more opportunities for illegal users to transmit harmful information.In order to detect the illegal covert communication of...Covert communication technology makes wireless communication more secure,but it also provides more opportunities for illegal users to transmit harmful information.In order to detect the illegal covert communication of the lawbreakers in real time for subsequent processing,this paper proposes a Gamma approximation-based detection method for multi-antenna covert communication systems.Specifically,the Gamma approximation property is used to calculate the miss detection rate and false alarm rate of the monitor firstly.Then the optimization problem to minimize the sum of the missed detection rate and the false alarm rate is proposed.The optimal detection threshold and the minimum error detection probability are solved according to the properties of the Lambert W function.Finally,simulation results are given to demonstrate the effectiveness of the proposed method.展开更多
This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By i...This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.展开更多
The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical significance.The main objective of nonlinear filt...The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical significance.The main objective of nonlinear filtering is to infer the states of a nonlinear dynamical system of interest based on the available noisy measurements. In recent years, the advance of network communication technology has not only popularized the networked systems with apparent advantages in terms of installation,cost and maintenance, but also brought about a series of challenges to the design of nonlinear filtering algorithms, among which the communication constraint has been recognized as a dominating concern. In this context, a great number of investigations have been launched towards the networked nonlinear filtering problem with communication constraints, and many samplebased nonlinear filters have been developed to deal with the highly nonlinear and/or non-Gaussian scenarios. The aim of this paper is to provide a timely survey about the recent advances on the sample-based networked nonlinear filtering problem from the perspective of communication constraints. More specifically, we first review three important families of sample-based filtering methods known as the unscented Kalman filter, particle filter,and maximum correntropy filter. Then, the latest developments are surveyed with stress on the topics regarding incomplete/imperfect information, limited resources and cyber security.Finally, several challenges and open problems are highlighted to shed some lights on the possible trends of future research in this realm.展开更多
This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encounter...This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.展开更多
Cultivating students'higher-order thinking is one of the important goals of modern education,and innovative teaching model is an effective way to achieve this goal.Aiming at the inadequacy of the existing moral di...Cultivating students'higher-order thinking is one of the important goals of modern education,and innovative teaching model is an effective way to achieve this goal.Aiming at the inadequacy of the existing moral dilemma stories approach in the transformation of knowledge and behavior,this research constructs a new Project Based Learning-Ethical Dilemma Stories(PBL-EDS)Teaching Model applicable to China's secondary education stage based on the innovative features of the moral dilemma stories approach on the core competencies,taking the chemistry subject as an example to carry out practice,and puts forward suggestions for the implementation of the teaching model.Chemistry as an example to carry out the practice,and suggestions are made for the implementation of the teaching model.展开更多
This paper is devoted to find the numerical solutions of one dimensional general nonlinear system of third-order boundary value problems (BVPs) for the pair of functions using Galerkin weighted residual method. We der...This paper is devoted to find the numerical solutions of one dimensional general nonlinear system of third-order boundary value problems (BVPs) for the pair of functions using Galerkin weighted residual method. We derive mathematical formulations in matrix form, in detail, by exploiting Bernstein polynomials as basis functions. A reasonable accuracy is found when the proposed method is used on few examples. At the end of the study, a comparison is made between the approximate and exact solutions, and also with the solutions of the existing methods. Our results converge monotonically to the exact solutions. In addition, we show that the derived formulations may be applicable by reducing higher order complicated BVP into a lower order system of BVPs, and the performance of the numerical solutions is satisfactory. .展开更多
Recovering the low-rank structure of data matrix from sparse errors arises in the principal component pursuit (PCP). This paper exploits the higher-order generalization of matrix recovery, named higher-order princip...Recovering the low-rank structure of data matrix from sparse errors arises in the principal component pursuit (PCP). This paper exploits the higher-order generalization of matrix recovery, named higher-order principal component pursuit (HOPCP), since it is critical in multi-way data analysis. Unlike the convexification (nuclear norm) for matrix rank function, the tensorial nuclear norm is stil an open problem. While existing preliminary works on the tensor completion field provide a viable way to indicate the low complexity estimate of tensor, therefore, the paper focuses on the low multi-linear rank tensor and adopt its convex relaxation to formulate the convex optimization model of HOPCP. The paper further propose two algorithms for HOPCP based on alternative minimization scheme: the augmented Lagrangian alternating direction method (ALADM) and its truncated higher-order singular value decomposition (ALADM-THOSVD) version. The former can obtain a high accuracy solution while the latter is more efficient to handle the computationally intractable problems. Experimental results on both synthetic data and real magnetic resonance imaging data show the applicability of our algorithms in high-dimensional tensor data processing.展开更多
Neighboring optimal guidance,a method to obtain a suboptimal guidance law by approximately solving the first-order necessary conditions based on a nominal trajectory,is widely used in the aerospace field due to its hi...Neighboring optimal guidance,a method to obtain a suboptimal guidance law by approximately solving the first-order necessary conditions based on a nominal trajectory,is widely used in the aerospace field due to its high computational efficiency and low resource usage.For more advanced scenarios,the existing methods still have a problem that the guidance accuracy and optimality will seriously degrade when the actual state largely deviates from the nominal trajectory.This is mainly caused by the approximate description of the first-order conditions in terms of total flight time and nonlinear constraints.To address this problem,a higher-order neighboring optimal guidance method is proposed.First,a novel total flight time updating strategy,together with a normalized time scale,is presented that transforms the optimal problem with free total flight time into a more tractable optimal problem with fixed total flight time.Then,using the vector partial derivative method,a higher-order approximation is adopted,instead of the first-order approximation,to accurately describe the nonlinear dynamical and terminal constraints,thus obtaining a polynomially constrained quadratic optimal problem.Finally,to numerically solve the polynomially constrained quadratic optimal problem,a Newton-type iterative algorithm based on the orthogonal decomposition is designed.Through the iterative solution within each guidance period,the corrections to control quantities and total flight time are generated.The proposed method is applied to a launch vehicle orbital injection problem,and simulation results show that it achieves high accuracy of orbital injection and optimality of performance index.展开更多
Accurate estimation of regional winter wheat yields is essential for understanding the food production status and ensuring national food security.However,using the existing remote sensing-based crop yield models to ac...Accurate estimation of regional winter wheat yields is essential for understanding the food production status and ensuring national food security.However,using the existing remote sensing-based crop yield models to accurately reproduce the inter-annual and spatial variations in winter wheat yields remains challenging due to the limited ability to acquire irrigation information in water-limited regions.Thus,we proposed a new approach to approximating irrigations of winter wheat over the North China Plain(NCP),where irrigation occurs extensively during the winter wheat growing season.This approach used irrigation pattern parameters(IPPs)to define the irrigation frequency and timing.Then,they were incorporated into a newly-developed process-based and remote sensing-driven crop yield model for winter wheat(PRYM–Wheat),to improve the regional estimates of winter wheat over the NCP.The IPPs were determined using statistical yield data of reference years(2010–2015)over the NCP.Our findings showed that PRYM–Wheat with the optimal IPPs could improve the regional estimate of winter wheat yield,with an increase and decrease in the correlation coefficient(R)and root mean square error(RMSE)of 0.15(about 37%)and 0.90 t ha–1(about 41%),respectively.The data in validation years(2001–2009 and 2016–2019)were used to validate PRYM–Wheat.In addition,our findings also showed R(RMSE)of 0.80(0.62 t ha–1)on a site level,0.61(0.91 t ha–1)for Hebei Province on a county level,0.73(0.97 t ha–1)for Henan Province on a county level,and 0.55(0.75 t ha–1)for Shandong Province on a city level.Overall,PRYM–Wheat can offer a stable and robust approach to estimating regional winter wheat yield across multiple years,providing a scientific basis for ensuring regional food security.展开更多
We investigate the rotating wave approximation applied in the high-spin quantum system driven by a linearly polarized alternating magnetic field in the presence of quadrupole interactions.The conventional way to apply...We investigate the rotating wave approximation applied in the high-spin quantum system driven by a linearly polarized alternating magnetic field in the presence of quadrupole interactions.The conventional way to apply the rotating wave approximation in a driven high-spin system is to assume the dynamics being restricted in the reduced Hilbert space.However,when the driving strength is relatively strong or the driving is off resonant,the leakage from the target resonance subspace cannot be neglected for a multi-level quantum system.We propose the correct formalism to apply the rotating wave approximation in the full Hilbert space by taking this leakage into account.By estimating the operator fidelity of the time propagator,our formalism applied in the full Hilbert space unambiguously manifests great advantages over the conventional method applied in the reduced Hilbert space.展开更多
A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in...A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion.展开更多
In this paper, two different methods are used to study the cyclic structure solution and the optimal approximation of the quaternion Stein equation AXB - X = F . Firstly, the matrix equation equivalent to the ta...In this paper, two different methods are used to study the cyclic structure solution and the optimal approximation of the quaternion Stein equation AXB - X = F . Firstly, the matrix equation equivalent to the target structure matrix is constructed by using the complex decomposition of the quaternion matrix, to obtain the necessary and sufficient conditions for the existence of the cyclic solution of the equation and the expression of the general solution. Secondly, the Stein equation is converted into the Sylvester equation by adding the necessary parameters, and the condition for the existence of a cyclic solution and the expression of the equation’s solution are then obtained by using the real decomposition of the quaternion matrix and the Kronecker product of the matrix. At the same time, under the condition that the solution set is non-empty, the optimal approximation solution to the given quaternion circulant matrix is obtained by using the property of Frobenius norm property. Numerical examples are given to verify the correctness of the theoretical results and the feasibility of the proposed method. .展开更多
We study sufficient conditions on radial and non-radial weight functions on the upper half-plane that guarantee norm approximation of functions in weighted Bergman,weighted Dirichlet,and weighted Besov spaces on the u...We study sufficient conditions on radial and non-radial weight functions on the upper half-plane that guarantee norm approximation of functions in weighted Bergman,weighted Dirichlet,and weighted Besov spaces on the upper half-plane by dilatations and eventually by analytic polynomials.展开更多
基金Project supported by the National Key R&D Program of China (Grant No. 2022YFA1403700)the National Natural Science Foundation of China (Grant Nos. 12074108 and 12347101)+3 种基金the Chongqing Natural Science Foundation (Grant No. CSTB2022NSCQ-MSX0568)the Fundamental Research Funds for the Central Universities (Grant No. 2023CDJXY048)the Natural Science Foundation of Jiangsu Province(Grant No. BK20230066)the Jiangsu Shuang Chuang Project (Grant No. JSSCTD202209)。
文摘Topological Dirac semimetals are a parent state from which other exotic topological phases of matter, such as Weyl semimetals and topological insulators, can emerge. In this study, we investigate a Dirac semimetal possessing sixfold rotational symmetry and hosting higher-order topological hinge Fermi arc states, which is irradiated by circularly polarized light. Our findings reveal that circularly polarized light splits each Dirac node into a pair of Weyl nodes due to the breaking of time-reversal symmetry, resulting in the realization of the Weyl semimetal phase. This Weyl semimetal phase exhibits rich boundary states, including two-dimensional surface Fermi arc states and hinge Fermi arc states confined to six hinges.Furthermore, by adjusting the incident direction of the circularly polarized light, we can control the degree of tilt of the resulting Weyl cones, enabling the realization of different types of Weyl semimetals.
基金Project supported by the Natural Science Foundation of Jilin Province of China(Grant Nos.20240402081GH and 20220101012JC)the National Natural Science Foundation of China(Grant No.42074139)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA202308)。
文摘Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.
文摘This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic(CCE)model.The underlying CCE model lacks a closed-form exact solution.Numerical solutions obtained through traditional finite difference schemes do not ensure the preservation of the model’s necessary properties,such as positivity,boundedness,and feasibility.Therefore,the development of structure-preserving semi-analytical approaches is always necessary.This research introduces an intelligently supervised computational paradigm to solve the underlying CCE model’s physical properties by formulating an equivalent unconstrained optimization problem.Singularity-free safe Padérational functions approximate the mathematical shape of state variables,while the model’s physical requirements are treated as problem constraints.The primary model of the governing differential equations is imposed to minimize the error between approximate solutions.An evolutionary algorithm,the Genetic Algorithm with Multi-Parent Crossover(GA-MPC),executes the optimization task.The resulting method is the Evolutionary Safe PadéApproximation(ESPA)scheme.The proof of unconditional convergence of the ESPA scheme on the CCE model is supported by numerical simulations.The performance of the ESPA scheme on the CCE model is thoroughly investigated by considering various orders of non-singular Padéapproximants.
文摘In this paper,Let M_(n)denote the maximum of logarithmic general error distribution with parameter v≥1.Higher-order expansions for distributions of powered extremes M_(n)^(p)are derived under an optimal choice of normalizing constants.It is shown that M_(n)^(p),when v=1,converges to the Frechet extreme value distribution at the rate of 1/n,and if v>1 then M_(n)^(p)converges to the Gumbel extreme value distribution at the rate of(loglogn)^(2)=(log n)^(1-1/v).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.72031009 and 61473338)。
文摘In the current information society, the dissemination mechanisms and evolution laws of individual or collective opinions and their behaviors are the research hot topics in the field of opinion dynamics. First, in this paper, a two-layer network consisting of an individual-opinion layer and a collective-opinion layer is constructed, and a dissemination model of opinions incorporating higher-order interactions(i.e. OIHOI dissemination model) is proposed. Furthermore, the dynamic equations of opinion dissemination for both individuals and groups are presented. Using Lyapunov's first method,two equilibrium points, including the negative consensus point and positive consensus point, and the dynamic equations obtained for opinion dissemination, are analyzed theoretically. In addition, for individual opinions and collective opinions,some conditions for reaching negative consensus and positive consensus as well as the theoretical expression for the dissemination threshold are put forward. Numerical simulations are carried to verify the feasibility and effectiveness of the proposed theoretical results, as well as the influence of the intra-structure, inter-connections, and higher-order interactions on the dissemination and evolution of individual opinions. The main results are as follows.(i) When the intra-structure of the collective-opinion layer meets certain characteristics, then a negative or positive consensus is easier to reach for individuals.(ii) Both negative consensus and positive consensus perform best in mixed type of inter-connections in the two-layer network.(iii) Higher-order interactions can quickly eliminate differences in individual opinions, thereby enabling individuals to reach consensus faster.
基金supported by the National Natural Science Foundation of China (Grant Nos.21933006 and 21773124)the Fundamental Research Funds for the Central Universities Nankai University (Grant Nos.010-63233001,63221346,63213042,and ZB22000103)+1 种基金the support from the China Postdoctoral Science Foundation (Grant No.2021M691674)the Hefei National Laboratory for Physical Sciences at the Microscale (Grant No.KF2020105)。
文摘Vanadium dioxide VO_(2) is a strongly correlated material that undergoes a metal-to-insulator transition around 340 K.In order to describe the electron correlation effects in VO_(2), the DFT+U method is commonly employed in calculations.However, the choice of the Hubbard U parameter has been a subject of debate and its value has been reported over a wide range. In this paper, taking focus on the phase transition behavior of VO_(2), the Hubbard U parameter for vanadium oxide is determined by using the quasi-harmonic approximation(QHA). First-principles calculations demonstrate that the phase transition temperature can be modulated by varying the U values. The phase transition temperature can be well reproduced by the calculations using the Perdew–Burke–Ernzerhof functional combined with the U parameter of 1.5eV. Additionally,the calculated band structure, insulating or metallic properties, and phonon dispersion with this U value are in line with experimental observations. By employing the QHA to determine the Hubbard U parameter, this study provides valuable insights into the phase transition behavior of VO_(2). The findings highlight the importance of electron correlation effects in accurately describing the properties of this material. The agreement between the calculated results and experimental observations further validates the chosen U value and supports the use of the DFT+U method in studying VO_(2).
基金funded by the National Natural Science Foundation of China under Grant No.52175130the Sichuan Science and Technology Program under Grants Nos.2022YFQ0087 and 2022JDJQ0024+1 种基金the Guangdong Basic and Applied Basic Research Foundation under Grant No.2022A1515240010the Students Go Abroad for Scientific Research and Internship Funding Program of University of Electronic Science and Technology of China.
文摘The escalating need for reliability analysis(RA)and reliability-based design optimization(RBDO)within engineering challenges has prompted the advancement of saddlepoint approximationmethods(SAM)tailored for such problems.This article offers a detailed overview of the general SAM and summarizes the method characteristics first.Subsequently,recent enhancements in the SAM theoretical framework are assessed.Notably,the mean value first-order saddlepoint approximation(MVFOSA)bears resemblance to the conceptual framework of the mean value second-order saddlepoint approximation(MVSOSA);the latter serves as an auxiliary approach to the former.Their distinction is rooted in the varying expansion orders of the performance function as implemented through the Taylor method.Both the saddlepoint approximation and third-moment(SATM)and saddlepoint approximation and fourth-moment(SAFM)strategies model the cumulant generating function(CGF)by leveraging the initial random moments of the function.Although their optimal application domains diverge,each method consistently ensures superior relative precision,enhanced efficiency,and sustained stability.Every method elucidated is exemplified through pertinent RA or RBDO scenarios.By juxtaposing them against alternative strategies,the efficacy of these methods becomes evident.The outcomes proffered are subsequently employed as a foundation for contemplating prospective theoretical and practical research endeavors concerning SAMs.The main purpose and value of this article is to review the SAM and reliability-related issues,which can provide some reference and inspiration for future research scholars in this field.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.62101441)Young Talent fund of University Association for Science and Technology in Shaanxi,China(Grant No.20210111)+4 种基金National Key Research and Development Program of China(Grant No.2021YFC2203503)the Fundamental Research Funds for the Central Universities(Grant No.QTZX23065)the Key Research and Development Program of Shaanxi in Industrial Domain(Grant No.2021GY-103)the National Key Laboratory Foundation 2022-JCJQ-LB-006(Grant No.6142411222203)the graduate innovation fund of Xi’an University of Posts and Electrical University(Grand No.CXJJZL2023002)。
文摘Covert communication technology makes wireless communication more secure,but it also provides more opportunities for illegal users to transmit harmful information.In order to detect the illegal covert communication of the lawbreakers in real time for subsequent processing,this paper proposes a Gamma approximation-based detection method for multi-antenna covert communication systems.Specifically,the Gamma approximation property is used to calculate the miss detection rate and false alarm rate of the monitor firstly.Then the optimization problem to minimize the sum of the missed detection rate and the false alarm rate is proposed.The optimal detection threshold and the minimum error detection probability are solved according to the properties of the Lambert W function.Finally,simulation results are given to demonstrate the effectiveness of the proposed method.
基金the National Natural Science Foundation of China(62273058,U22A2045)the Key Science and Technology Projects of Jilin Province(20200401075GX)the Youth Science and Technology Innovation and Entrepreneurship Outstanding Talents Project of Jilin Province(20230508043RC)。
文摘This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.
基金supported in part by the National Key R&D Program of China (2022ZD0116401,2022ZD0116400)the National Natural Science Foundation of China (62203016,U2241214,T2121002,62373008,61933007)+2 种基金the China Postdoctoral Science Foundation (2021TQ0009)the Royal Society of the UKthe Alexander von Humboldt Foundation of Germany。
文摘The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical significance.The main objective of nonlinear filtering is to infer the states of a nonlinear dynamical system of interest based on the available noisy measurements. In recent years, the advance of network communication technology has not only popularized the networked systems with apparent advantages in terms of installation,cost and maintenance, but also brought about a series of challenges to the design of nonlinear filtering algorithms, among which the communication constraint has been recognized as a dominating concern. In this context, a great number of investigations have been launched towards the networked nonlinear filtering problem with communication constraints, and many samplebased nonlinear filters have been developed to deal with the highly nonlinear and/or non-Gaussian scenarios. The aim of this paper is to provide a timely survey about the recent advances on the sample-based networked nonlinear filtering problem from the perspective of communication constraints. More specifically, we first review three important families of sample-based filtering methods known as the unscented Kalman filter, particle filter,and maximum correntropy filter. Then, the latest developments are surveyed with stress on the topics regarding incomplete/imperfect information, limited resources and cyber security.Finally, several challenges and open problems are highlighted to shed some lights on the possible trends of future research in this realm.
基金financially supported by the National Key R&D Program (2022YFB4201302)Guang Dong Basic and Applied Basic Research Foundation (2022A1515240057)the Huaneng Technology Funds (HNKJ20-H88).
文摘This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.
基金supported by the Macao Foundation's research project"An Empirical Study on the Training Standards for Innovative Talents in the Guangdong-Hong Kong-Macao Greater Bay Area"(MF2315)the 2021 General Project of the 14th Five-Year Plan of Philosophy and Social Sciences of Guangdong Province of China(Number:GD21CJY08).
文摘Cultivating students'higher-order thinking is one of the important goals of modern education,and innovative teaching model is an effective way to achieve this goal.Aiming at the inadequacy of the existing moral dilemma stories approach in the transformation of knowledge and behavior,this research constructs a new Project Based Learning-Ethical Dilemma Stories(PBL-EDS)Teaching Model applicable to China's secondary education stage based on the innovative features of the moral dilemma stories approach on the core competencies,taking the chemistry subject as an example to carry out practice,and puts forward suggestions for the implementation of the teaching model.Chemistry as an example to carry out the practice,and suggestions are made for the implementation of the teaching model.
文摘This paper is devoted to find the numerical solutions of one dimensional general nonlinear system of third-order boundary value problems (BVPs) for the pair of functions using Galerkin weighted residual method. We derive mathematical formulations in matrix form, in detail, by exploiting Bernstein polynomials as basis functions. A reasonable accuracy is found when the proposed method is used on few examples. At the end of the study, a comparison is made between the approximate and exact solutions, and also with the solutions of the existing methods. Our results converge monotonically to the exact solutions. In addition, we show that the derived formulations may be applicable by reducing higher order complicated BVP into a lower order system of BVPs, and the performance of the numerical solutions is satisfactory. .
基金supported by the National Natural Science Foundationof China(51275348)
文摘Recovering the low-rank structure of data matrix from sparse errors arises in the principal component pursuit (PCP). This paper exploits the higher-order generalization of matrix recovery, named higher-order principal component pursuit (HOPCP), since it is critical in multi-way data analysis. Unlike the convexification (nuclear norm) for matrix rank function, the tensorial nuclear norm is stil an open problem. While existing preliminary works on the tensor completion field provide a viable way to indicate the low complexity estimate of tensor, therefore, the paper focuses on the low multi-linear rank tensor and adopt its convex relaxation to formulate the convex optimization model of HOPCP. The paper further propose two algorithms for HOPCP based on alternative minimization scheme: the augmented Lagrangian alternating direction method (ALADM) and its truncated higher-order singular value decomposition (ALADM-THOSVD) version. The former can obtain a high accuracy solution while the latter is more efficient to handle the computationally intractable problems. Experimental results on both synthetic data and real magnetic resonance imaging data show the applicability of our algorithms in high-dimensional tensor data processing.
基金This study was co-supported by the National Natural Science Foundation of China(No.62103014).
文摘Neighboring optimal guidance,a method to obtain a suboptimal guidance law by approximately solving the first-order necessary conditions based on a nominal trajectory,is widely used in the aerospace field due to its high computational efficiency and low resource usage.For more advanced scenarios,the existing methods still have a problem that the guidance accuracy and optimality will seriously degrade when the actual state largely deviates from the nominal trajectory.This is mainly caused by the approximate description of the first-order conditions in terms of total flight time and nonlinear constraints.To address this problem,a higher-order neighboring optimal guidance method is proposed.First,a novel total flight time updating strategy,together with a normalized time scale,is presented that transforms the optimal problem with free total flight time into a more tractable optimal problem with fixed total flight time.Then,using the vector partial derivative method,a higher-order approximation is adopted,instead of the first-order approximation,to accurately describe the nonlinear dynamical and terminal constraints,thus obtaining a polynomially constrained quadratic optimal problem.Finally,to numerically solve the polynomially constrained quadratic optimal problem,a Newton-type iterative algorithm based on the orthogonal decomposition is designed.Through the iterative solution within each guidance period,the corrections to control quantities and total flight time are generated.The proposed method is applied to a launch vehicle orbital injection problem,and simulation results show that it achieves high accuracy of orbital injection and optimality of performance index.
基金supported by the National Natural Science Foundation of China(42101382 and 41901342)the Shandong Provincial Natural Science Foundation(ZR2020QD016)the National Key Research and Development Program of China(2016YFD0300101).
文摘Accurate estimation of regional winter wheat yields is essential for understanding the food production status and ensuring national food security.However,using the existing remote sensing-based crop yield models to accurately reproduce the inter-annual and spatial variations in winter wheat yields remains challenging due to the limited ability to acquire irrigation information in water-limited regions.Thus,we proposed a new approach to approximating irrigations of winter wheat over the North China Plain(NCP),where irrigation occurs extensively during the winter wheat growing season.This approach used irrigation pattern parameters(IPPs)to define the irrigation frequency and timing.Then,they were incorporated into a newly-developed process-based and remote sensing-driven crop yield model for winter wheat(PRYM–Wheat),to improve the regional estimates of winter wheat over the NCP.The IPPs were determined using statistical yield data of reference years(2010–2015)over the NCP.Our findings showed that PRYM–Wheat with the optimal IPPs could improve the regional estimate of winter wheat yield,with an increase and decrease in the correlation coefficient(R)and root mean square error(RMSE)of 0.15(about 37%)and 0.90 t ha–1(about 41%),respectively.The data in validation years(2001–2009 and 2016–2019)were used to validate PRYM–Wheat.In addition,our findings also showed R(RMSE)of 0.80(0.62 t ha–1)on a site level,0.61(0.91 t ha–1)for Hebei Province on a county level,0.73(0.97 t ha–1)for Henan Province on a county level,and 0.55(0.75 t ha–1)for Shandong Province on a city level.Overall,PRYM–Wheat can offer a stable and robust approach to estimating regional winter wheat yield across multiple years,providing a scientific basis for ensuring regional food security.
基金the National Key Research and Development Program of China(Grant Nos.2017YFA0304202 and 2017YFA0205700)the National Natural Science Foundation of China(Grant Nos.11875231 and 11935012)the Fundamental Research Funds for the Central Universities(Grant No.2018FZA3005).
文摘We investigate the rotating wave approximation applied in the high-spin quantum system driven by a linearly polarized alternating magnetic field in the presence of quadrupole interactions.The conventional way to apply the rotating wave approximation in a driven high-spin system is to assume the dynamics being restricted in the reduced Hilbert space.However,when the driving strength is relatively strong or the driving is off resonant,the leakage from the target resonance subspace cannot be neglected for a multi-level quantum system.We propose the correct formalism to apply the rotating wave approximation in the full Hilbert space by taking this leakage into account.By estimating the operator fidelity of the time propagator,our formalism applied in the full Hilbert space unambiguously manifests great advantages over the conventional method applied in the reduced Hilbert space.
基金supported by the General Program of the National Natural Science Foundation of China(Grant No.52074295)the Special Fund for Basic Scientific Research Business Expenses of Central Universities(Grant No.2022YJSSB06)supported by State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and technology,Beijing,China(Grant No.SKLGDUEK202217).
文摘A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion.
文摘In this paper, two different methods are used to study the cyclic structure solution and the optimal approximation of the quaternion Stein equation AXB - X = F . Firstly, the matrix equation equivalent to the target structure matrix is constructed by using the complex decomposition of the quaternion matrix, to obtain the necessary and sufficient conditions for the existence of the cyclic solution of the equation and the expression of the general solution. Secondly, the Stein equation is converted into the Sylvester equation by adding the necessary parameters, and the condition for the existence of a cyclic solution and the expression of the equation’s solution are then obtained by using the real decomposition of the quaternion matrix and the Kronecker product of the matrix. At the same time, under the condition that the solution set is non-empty, the optimal approximation solution to the given quaternion circulant matrix is obtained by using the property of Frobenius norm property. Numerical examples are given to verify the correctness of the theoretical results and the feasibility of the proposed method. .
文摘We study sufficient conditions on radial and non-radial weight functions on the upper half-plane that guarantee norm approximation of functions in weighted Bergman,weighted Dirichlet,and weighted Besov spaces on the upper half-plane by dilatations and eventually by analytic polynomials.