Nonlinear characteristic fault detection and diagnosis method based on higher-order statistical(HOS) is an effective data-driven method, but the calculation costs much for a large-scale process control system. An HOS-...Nonlinear characteristic fault detection and diagnosis method based on higher-order statistical(HOS) is an effective data-driven method, but the calculation costs much for a large-scale process control system. An HOS-ISM fault diagnosis framework combining interpretative structural model(ISM) and HOS is proposed:(1) the adjacency matrix is determined by partial correlation coefficient;(2) the modified adjacency matrix is defined by directed graph with prior knowledge of process piping and instrument diagram;(3) interpretative structural for large-scale process control system is built by this ISM method; and(4) non-Gaussianity index, nonlinearity index, and total nonlinearity index are calculated dynamically based on interpretative structural to effectively eliminate uncertainty of the nonlinear characteristic diagnostic method with reasonable sampling period and data window. The proposed HOS-ISM fault diagnosis framework is verified by the Tennessee Eastman process and presents improvement for highly non-linear characteristic for selected fault cases.展开更多
It is important to specify the occurrence and cause of failure of machines without stopping the machines because of increased use of various complex industrial systems. In this study, two new diagnosis methods based o...It is important to specify the occurrence and cause of failure of machines without stopping the machines because of increased use of various complex industrial systems. In this study, two new diagnosis methods based on the correlation information between sound and vibration emitted from the machine are derived. First, a diagnostic method which can detect the part of machine with fault among the assumed several faults is proposed by measuring simultaneously the time series data on sound and vibration. Next, a diagnosis method based on the estimation of the changing information of correlation between sound and vibration is considered by using prior information in only normal situation. The effectiveness of the proposed theory is experimentally confirmed by applying it to the observed data emitted from a rotational machine driven by an electric motor.展开更多
Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thi...Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.展开更多
To capture the presence of speech embedded in nonspeech events and background noise in shortwave non-cooperative communication, an algorithm for speech-stream detection in noisy environments is presented based on Empi...To capture the presence of speech embedded in nonspeech events and background noise in shortwave non-cooperative communication, an algorithm for speech-stream detection in noisy environments is presented based on Empirical Mode Decomposition (EMD) and statistical properties of higher-order cumulants of speech signals. With the EMD, the noise signals can be decomposed into different numbers of IMFs. Then, the fourth-order cumulant ( FOC ) can be used to extract the desired feature of statistical properties for IMF components. Since the higher-order eumulants are blind for Gaussian signals, the proposed method is especially effective regarding the problem of speech-stream detection, where the speech signal is distorted by Gaussian noise. With the self-adaptive decomposition by EMD, the proposed method can also work well for non-Gaussian noise. The experiments show that the proposed algorithm can suppress different noise types with different SNRs, and the algorithm is robust in real signal tests.展开更多
Topological Dirac semimetals are a parent state from which other exotic topological phases of matter, such as Weyl semimetals and topological insulators, can emerge. In this study, we investigate a Dirac semimetal pos...Topological Dirac semimetals are a parent state from which other exotic topological phases of matter, such as Weyl semimetals and topological insulators, can emerge. In this study, we investigate a Dirac semimetal possessing sixfold rotational symmetry and hosting higher-order topological hinge Fermi arc states, which is irradiated by circularly polarized light. Our findings reveal that circularly polarized light splits each Dirac node into a pair of Weyl nodes due to the breaking of time-reversal symmetry, resulting in the realization of the Weyl semimetal phase. This Weyl semimetal phase exhibits rich boundary states, including two-dimensional surface Fermi arc states and hinge Fermi arc states confined to six hinges.Furthermore, by adjusting the incident direction of the circularly polarized light, we can control the degree of tilt of the resulting Weyl cones, enabling the realization of different types of Weyl semimetals.展开更多
In this paper,Let M_(n)denote the maximum of logarithmic general error distribution with parameter v≥1.Higher-order expansions for distributions of powered extremes M_(n)^(p)are derived under an optimal choice of nor...In this paper,Let M_(n)denote the maximum of logarithmic general error distribution with parameter v≥1.Higher-order expansions for distributions of powered extremes M_(n)^(p)are derived under an optimal choice of normalizing constants.It is shown that M_(n)^(p),when v=1,converges to the Frechet extreme value distribution at the rate of 1/n,and if v>1 then M_(n)^(p)converges to the Gumbel extreme value distribution at the rate of(loglogn)^(2)=(log n)^(1-1/v).展开更多
This paper contributes a sophisticated statistical method for the assessment of performance in routing protocols salient Mobile Ad Hoc Network(MANET)routing protocols:Destination Sequenced Distance Vector(DSDV),Ad hoc...This paper contributes a sophisticated statistical method for the assessment of performance in routing protocols salient Mobile Ad Hoc Network(MANET)routing protocols:Destination Sequenced Distance Vector(DSDV),Ad hoc On-Demand Distance Vector(AODV),Dynamic Source Routing(DSR),and Zone Routing Protocol(ZRP).In this paper,the evaluation will be carried out using complete sets of statistical tests such as Kruskal-Wallis,Mann-Whitney,and Friedman.It articulates a systematic evaluation of how the performance of the previous protocols varies with the number of nodes and the mobility patterns.The study is premised upon the Quality of Service(QoS)metrics of throughput,packet delivery ratio,and end-to-end delay to gain an adequate understanding of the operational efficiency of each protocol under different network scenarios.The findings explained significant differences in the performance of different routing protocols;as a result,decisions for the selection and optimization of routing protocols can be taken effectively according to different network requirements.This paper is a step forward in the general understanding of the routing dynamics of MANETs and contributes significantly to the strategic deployment of robust and efficient network infrastructures.展开更多
In the current information society, the dissemination mechanisms and evolution laws of individual or collective opinions and their behaviors are the research hot topics in the field of opinion dynamics. First, in this...In the current information society, the dissemination mechanisms and evolution laws of individual or collective opinions and their behaviors are the research hot topics in the field of opinion dynamics. First, in this paper, a two-layer network consisting of an individual-opinion layer and a collective-opinion layer is constructed, and a dissemination model of opinions incorporating higher-order interactions(i.e. OIHOI dissemination model) is proposed. Furthermore, the dynamic equations of opinion dissemination for both individuals and groups are presented. Using Lyapunov's first method,two equilibrium points, including the negative consensus point and positive consensus point, and the dynamic equations obtained for opinion dissemination, are analyzed theoretically. In addition, for individual opinions and collective opinions,some conditions for reaching negative consensus and positive consensus as well as the theoretical expression for the dissemination threshold are put forward. Numerical simulations are carried to verify the feasibility and effectiveness of the proposed theoretical results, as well as the influence of the intra-structure, inter-connections, and higher-order interactions on the dissemination and evolution of individual opinions. The main results are as follows.(i) When the intra-structure of the collective-opinion layer meets certain characteristics, then a negative or positive consensus is easier to reach for individuals.(ii) Both negative consensus and positive consensus perform best in mixed type of inter-connections in the two-layer network.(iii) Higher-order interactions can quickly eliminate differences in individual opinions, thereby enabling individuals to reach consensus faster.展开更多
The hydrodynamic performance of a high forward-speed ship in obliquely propagating waves is numerically examined to assess both free motions and wave field in comparison with a low forward-speed ship.This numerical mo...The hydrodynamic performance of a high forward-speed ship in obliquely propagating waves is numerically examined to assess both free motions and wave field in comparison with a low forward-speed ship.This numerical model is based on the time-domain potential flow theory and higher-order boundary element method,where an analytical expression is completely expanded to determine the base-unsteady coupling flow imposed on the moving condition of the ship.The ship in the numerical model may possess different advancing speeds,i.e.stationary,low speed,and high speed.The role of the water depth,wave height,wave period,and incident wave angle is analyzed by means of the accurate numerical model.It is found that the resonant motions of the high forward-speed ship are triggered by comparison with the stationary one.More specifically,a higher forward speed generates a V-shaped wave region with a larger elevation,which induces stronger resonant motions corresponding to larger wave periods.The shoaling effect is adverse to the motion of the low-speed ship,but is beneficial to the resonant motion of the high-speed ship.When waves obliquely propagate toward the ship,the V-shaped wave region would be broken due to the coupling effect between roll and pitch motions.It is also demonstrated that the maximum heave motion occurs in beam seas for stationary cases but occurs in head waves for high speeds.However,the variation of the pitch motion with period is hardly affected by wave incident angles.展开更多
In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p...In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p)^(2)-statistically Cauchy sequence,P_(p)^(2)-statistical boundedness and core for double sequences will be described in addition to these findings.展开更多
Image processing and image analysis are the main aspects for obtaining information from digital image owing to the fact that this techniques give the desired details in most of the applications generally and Non-Destr...Image processing and image analysis are the main aspects for obtaining information from digital image owing to the fact that this techniques give the desired details in most of the applications generally and Non-Destructive testing specifically. This paper presents a proposed method for the automatic detection of weld defects in radiographic images. Firstly, the radiographic images were enhanced using adaptive histogram equalization and are filtered using mean and wiener filters. Secondly, the welding area is selected from the radiography image. Thirdly, the Cepstral features are extracted from the Higher-Order Spectra (Bispectrum and Trispectrum). Finally, neural networks are used for feature matching. The proposed method is tested using 100 radiographic images in the presence of noise and image blurring. Results show that in spite of time consumption, the proposed method yields best results for the automatic detection of weld defects in radiography images when the features were extracted from the Trispectrum of the image.展开更多
Within the framework of quantum statistical mechanics,we have proposed an exact analytical solution to the problemof Bose-Einstein condensation(BEC)of harmonically trapped two-dimensional(2D)ideal photons.We utilize t...Within the framework of quantum statistical mechanics,we have proposed an exact analytical solution to the problemof Bose-Einstein condensation(BEC)of harmonically trapped two-dimensional(2D)ideal photons.We utilize this analyticalsolution to investigate the statistical properties of ideal photons in a 2D dye-filled spherical cap cavity.The resultsof numerical calculation of the analytical solution agree completely with the foregoing experimental results in the BEC ofharmonically trapped 2D ideal photons.The analytical expressions of the critical temperature and the condensate fractionare derived in the thermodynamic limit.It is found that the 2D critical photon number is larger than the one-dimensional(1D)critical photon number by two orders of magnitude.The spectral radiance of a 2D spherical cap cavity has a sharppeak at the frequency of the cavity cutoff when the photon number exceeds the critical value determined by a temperature.展开更多
The present study aims to establish a relationship between serum AMH levels and age in a large group of women living in Bulgaria, as well as to establish reference age-specific AMH levels in women that would serve as ...The present study aims to establish a relationship between serum AMH levels and age in a large group of women living in Bulgaria, as well as to establish reference age-specific AMH levels in women that would serve as an initial estimate of ovarian age. A total of 28,016 women on the territory of the Republic of Bulgaria were tested for serum AMH levels with a median age of 37.0 years (interquartile range 32.0 to 41.0). For women aged 20 - 29 years, the Bulgarian population has relatively high median levels of AMH, similar to women of Asian origin. For women aged 30 - 34 years, our results are comparable to those of women living in Western Europe. For women aged 35 - 39 years, our results are comparable to those of women living in the territory of India and Kenya. For women aged 40 - 44 years, our results were lower than those for women from the Western European and Chinese populations, close to the Indian and higher than Korean and Kenya populations, respectively. Our results for women of Bulgarian origin are also comparable to US Latina women at age 30, 35 and 40 ages. On the base on constructed a statistical model to predicting the decline in AMH levels at different ages, we found non-linear structure of AMH decline for the low AMH 3.5) the dependence of the decline of AMH on age was confirmed as linear. In conclusion, we evaluated the serum level of AMH in Bulgarian women and established age-specific AMH percentile reference values based on a large representative sample. We have developed a prognostic statistical model that can facilitate the application of AMH in clinical practice and the prediction of reproductive capacity and population health.展开更多
Rock failure can cause serious geological disasters,and the non-extensive statistical features of electric potential(EP)are expected to provide valuable information for disaster prediction.In this paper,the uniaxial c...Rock failure can cause serious geological disasters,and the non-extensive statistical features of electric potential(EP)are expected to provide valuable information for disaster prediction.In this paper,the uniaxial compression experiments with EP monitoring were carried out on fine sandstone,marble and granite samples under four displacement rates.The Tsallis entropy q value of EPs is used to analyze the selforganization evolution of rock failure.Then the influence of displacement rate and rock type on q value are explored by mineral structure and fracture modes.A self-organized critical prediction method with q value is proposed.The results show that the probability density function(PDF)of EPs follows the q-Gaussian distribution.The displacement rate is positively correlated with q value.With the displacement rate increasing,the fracture mode changes,the damage degree intensifies,and the microcrack network becomes denser.The influence of rock type on q value is related to the burst intensity of energy release and the crack fracture mode.The q value of EPs can be used as an effective prediction index for rock failure like b value of acoustic emission(AE).The results provide useful reference and method for the monitoring and early warning of geological disasters.展开更多
Statistics of order 2 (variance, auto and cross-correlation functions, auto and cross-power spectra) and 3 (skewness, auto and cross-bicorrelation functions, auto and cross-bispectra) are used to analyze the wave-part...Statistics of order 2 (variance, auto and cross-correlation functions, auto and cross-power spectra) and 3 (skewness, auto and cross-bicorrelation functions, auto and cross-bispectra) are used to analyze the wave-particle interaction in space plasmas. The signals considered here are medium scale electron density irregularities and ELF/ULF electrostatic turbulence. Nonlinearities are mainly observed in the ELF range. They are independently pointed out in time series associated with fluctuations in electronic density and in time series associated with the measurement of one electric field component. Peaks in cross-bicorrelation function and in mutual information clearly show that, in well delimited frequency bands, the wave-particle interactions are nonlinear above a certain level of fluctuations. The way the energy is transferred within the frequencies of density fluctuations is indicated by a bi-spectra analysis.展开更多
Chemical oxygen demand (COD) is an important index to measure the degree of water pollution. In this paper, near-infrared technology is used to obtain 148 wastewater spectra to predict the COD value in wastewater. Fir...Chemical oxygen demand (COD) is an important index to measure the degree of water pollution. In this paper, near-infrared technology is used to obtain 148 wastewater spectra to predict the COD value in wastewater. First, the partial least squares regression (PLS) model was used as the basic model. Monte Carlo cross-validation (MCCV) was used to select 25 samples out of 148 samples that did not conform to conventional statistics. Then, the interval partial least squares (iPLS) regression modeling was carried out on 123 samples, and the spectral bands were divided into 40 subintervals. The optimal subintervals are 20 and 26, and the optimal correlation coefficient of the test set (RT) is 0.58. Further, the waveband is divided into five intervals: 17, 19, 20, 22 and 26. When the number of joint intervals under each interval is three, the optimal RT is 0.71. When the number of joint subintervals is four, the optimal RT is 0.79. Finally, convolutional neural network (CNN) was used for quantitative prediction, and RT was 0.9. The results show that CNN can automatically screen the features inside the data, and the quantitative prediction effect is better than that of iPLS and synergy interval partial least squares model (SiPLS) with joint subinterval three and four, indicating that CNN can be used for quantitative analysis of water pollution degree.展开更多
Inflammatory bowel diseases (IBD) are complex multifactorial disorders that include Crohn’s disease (CD) and ulcerative colitis (UC). Considering that IBD is a genetic and multifactorial disease, we screened for the ...Inflammatory bowel diseases (IBD) are complex multifactorial disorders that include Crohn’s disease (CD) and ulcerative colitis (UC). Considering that IBD is a genetic and multifactorial disease, we screened for the distribution dynamism of IBD pathogenic genetic variants (single nucleotide polymorphisms;SNPs) and risk factors in four (4) IBD pediatric patients, by integrating both clinical exome sequencing and computational statistical approaches, aiming to categorize IBD patients in CD and UC phenotype. To this end, we first aligned genomic read sequences of these IBD patients to hg19 human genome by using bowtie 2 package. Next, we performed genetic variant calling analysis in terms of single nucleotide polymorphism (SNP) for genes covered by at least 20 read genomic sequences. Finally, we checked for biological and genomic functions of genes exhibiting statistically significant genetic variant (SNPs) by introducing Fitcon genomic parameter. Findings showed Fitcon parameter as normalizing IBD patient’s population variability, as well as inducing a relative good clustering between IBD patients in terms of CD and UC phenotypes. Genomic analysis revealed a random distribution of risk factors and as well pathogenic SNPs genetic variants in the four IBD patient’s genome, claiming to be involved in: i) Metabolic disorders, ii) Autoimmune deficiencies;iii) Crohn’s disease pathways. Integration of genomic and computational statistical analysis supported a relative genetic variability regarding IBD patient population by processing IBD pathogenic SNP genetic variants as opposite to IBD risk factor variants. Interestingly, findings clearly allowed categorizing IBD patients in CD and UC phenotypes by applying Fitcon parameter in selecting IBD pathogenic genetic variants. Considering as a whole, the study suggested the efficiency of integrating clinical exome sequencing and computational statistical tools as a right approach in discriminating IBD phenotypes as well as improving inflammatory bowel disease (IBD) molecular diagnostic process.展开更多
In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health infor...In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health informatics gathered using HAR augments the decision-making quality and significance.Although many research works conducted on Smart Healthcare Monitoring,there remain a certain number of pitfalls such as time,overhead,and falsification involved during analysis.Therefore,this paper proposes a Statistical Partial Regression and Support Vector Intelligent Agent Learning(SPR-SVIAL)for Smart Healthcare Monitoring.At first,the Statistical Partial Regression Feature Extraction model is used for data preprocessing along with the dimensionality-reduced features extraction process.Here,the input dataset the continuous beat-to-beat heart data,triaxial accelerometer data,and psychological characteristics were acquired from IoT wearable devices.To attain highly accurate Smart Healthcare Monitoring with less time,Partial Least Square helps extract the dimensionality-reduced features.After that,with these resulting features,SVIAL is proposed for Smart Healthcare Monitoring with the help of Machine Learning and Intelligent Agents to minimize both analysis falsification and overhead.Experimental evaluation is carried out for factors such as time,overhead,and false positive rate accuracy concerning several instances.The quantitatively analyzed results indicate the better performance of our proposed SPR-SVIAL method when compared with two state-of-the-art methods.展开更多
In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and...In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and surface of micropores) of a clay concrete without molasses and clay concretes stabilized with 8%, 12% and 16% molasses. The results obtained show that Hasley’s model can be used to obtain the external surfaces. However, it does not allow the surface of the micropores to be obtained, and is not suitable for the case of simple clay concrete (without molasses) and for clay concretes stabilized with molasses. The Carbon Black, Jaroniec and Harkins and Jura models can be used for clay concrete and stabilized clay concrete. However, the Carbon Black model is the most relevant for clay concrete and the Harkins and Jura model is for molasses-stabilized clay concrete. These last two models augur well for future research.展开更多
Normality testing is a fundamental hypothesis test in the statistical analysis of key biological indicators of diabetes.If this assumption is violated,it may cause the test results to deviate from the true value,leadi...Normality testing is a fundamental hypothesis test in the statistical analysis of key biological indicators of diabetes.If this assumption is violated,it may cause the test results to deviate from the true value,leading to incorrect inferences and conclusions,and ultimately affecting the validity and accuracy of statistical inferences.Considering this,the study designs a unified analysis scheme for different data types based on parametric statistical test methods and non-parametric test methods.The data were grouped according to sample type and divided into discrete data and continuous data.To account for differences among subgroups,the conventional chi-squared test was used for discrete data.The normal distribution is the basis of many statistical methods;if the data does not follow a normal distribution,many statistical methods will fail or produce incorrect results.Therefore,before data analysis and modeling,the data were divided into normal and non-normal groups through normality testing.For normally distributed data,parametric statistical methods were used to judge the differences between groups.For non-normal data,non-parametric tests were employed to improve the accuracy of the analysis.Statistically significant indicators were retained according to the significance index P-value of the statistical test or corresponding statistics.These indicators were then combined with relevant medical background to further explore the etiology leading to the occurrence or transformation of diabetes status.展开更多
基金Supported by the National Natural Science Foundation of China(61374166)the Doctoral Fund of Ministry of Education of China(20120010110010)the Natural Science Fund of Ningbo(2012A610001)
文摘Nonlinear characteristic fault detection and diagnosis method based on higher-order statistical(HOS) is an effective data-driven method, but the calculation costs much for a large-scale process control system. An HOS-ISM fault diagnosis framework combining interpretative structural model(ISM) and HOS is proposed:(1) the adjacency matrix is determined by partial correlation coefficient;(2) the modified adjacency matrix is defined by directed graph with prior knowledge of process piping and instrument diagram;(3) interpretative structural for large-scale process control system is built by this ISM method; and(4) non-Gaussianity index, nonlinearity index, and total nonlinearity index are calculated dynamically based on interpretative structural to effectively eliminate uncertainty of the nonlinear characteristic diagnostic method with reasonable sampling period and data window. The proposed HOS-ISM fault diagnosis framework is verified by the Tennessee Eastman process and presents improvement for highly non-linear characteristic for selected fault cases.
文摘It is important to specify the occurrence and cause of failure of machines without stopping the machines because of increased use of various complex industrial systems. In this study, two new diagnosis methods based on the correlation information between sound and vibration emitted from the machine are derived. First, a diagnostic method which can detect the part of machine with fault among the assumed several faults is proposed by measuring simultaneously the time series data on sound and vibration. Next, a diagnosis method based on the estimation of the changing information of correlation between sound and vibration is considered by using prior information in only normal situation. The effectiveness of the proposed theory is experimentally confirmed by applying it to the observed data emitted from a rotational machine driven by an electric motor.
基金Project supported by the Natural Science Foundation of Jilin Province of China(Grant Nos.20240402081GH and 20220101012JC)the National Natural Science Foundation of China(Grant No.42074139)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA202308)。
文摘Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60475016)the Foundational Research Fund of Harbin Engineering University (Grant No.HEUF04092)
文摘To capture the presence of speech embedded in nonspeech events and background noise in shortwave non-cooperative communication, an algorithm for speech-stream detection in noisy environments is presented based on Empirical Mode Decomposition (EMD) and statistical properties of higher-order cumulants of speech signals. With the EMD, the noise signals can be decomposed into different numbers of IMFs. Then, the fourth-order cumulant ( FOC ) can be used to extract the desired feature of statistical properties for IMF components. Since the higher-order eumulants are blind for Gaussian signals, the proposed method is especially effective regarding the problem of speech-stream detection, where the speech signal is distorted by Gaussian noise. With the self-adaptive decomposition by EMD, the proposed method can also work well for non-Gaussian noise. The experiments show that the proposed algorithm can suppress different noise types with different SNRs, and the algorithm is robust in real signal tests.
基金Project supported by the National Key R&D Program of China (Grant No. 2022YFA1403700)the National Natural Science Foundation of China (Grant Nos. 12074108 and 12347101)+3 种基金the Chongqing Natural Science Foundation (Grant No. CSTB2022NSCQ-MSX0568)the Fundamental Research Funds for the Central Universities (Grant No. 2023CDJXY048)the Natural Science Foundation of Jiangsu Province(Grant No. BK20230066)the Jiangsu Shuang Chuang Project (Grant No. JSSCTD202209)。
文摘Topological Dirac semimetals are a parent state from which other exotic topological phases of matter, such as Weyl semimetals and topological insulators, can emerge. In this study, we investigate a Dirac semimetal possessing sixfold rotational symmetry and hosting higher-order topological hinge Fermi arc states, which is irradiated by circularly polarized light. Our findings reveal that circularly polarized light splits each Dirac node into a pair of Weyl nodes due to the breaking of time-reversal symmetry, resulting in the realization of the Weyl semimetal phase. This Weyl semimetal phase exhibits rich boundary states, including two-dimensional surface Fermi arc states and hinge Fermi arc states confined to six hinges.Furthermore, by adjusting the incident direction of the circularly polarized light, we can control the degree of tilt of the resulting Weyl cones, enabling the realization of different types of Weyl semimetals.
文摘In this paper,Let M_(n)denote the maximum of logarithmic general error distribution with parameter v≥1.Higher-order expansions for distributions of powered extremes M_(n)^(p)are derived under an optimal choice of normalizing constants.It is shown that M_(n)^(p),when v=1,converges to the Frechet extreme value distribution at the rate of 1/n,and if v>1 then M_(n)^(p)converges to the Gumbel extreme value distribution at the rate of(loglogn)^(2)=(log n)^(1-1/v).
基金supported by Northern Border University,Arar,KSA,through the Project Number“NBU-FFR-2024-2248-02”.
文摘This paper contributes a sophisticated statistical method for the assessment of performance in routing protocols salient Mobile Ad Hoc Network(MANET)routing protocols:Destination Sequenced Distance Vector(DSDV),Ad hoc On-Demand Distance Vector(AODV),Dynamic Source Routing(DSR),and Zone Routing Protocol(ZRP).In this paper,the evaluation will be carried out using complete sets of statistical tests such as Kruskal-Wallis,Mann-Whitney,and Friedman.It articulates a systematic evaluation of how the performance of the previous protocols varies with the number of nodes and the mobility patterns.The study is premised upon the Quality of Service(QoS)metrics of throughput,packet delivery ratio,and end-to-end delay to gain an adequate understanding of the operational efficiency of each protocol under different network scenarios.The findings explained significant differences in the performance of different routing protocols;as a result,decisions for the selection and optimization of routing protocols can be taken effectively according to different network requirements.This paper is a step forward in the general understanding of the routing dynamics of MANETs and contributes significantly to the strategic deployment of robust and efficient network infrastructures.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.72031009 and 61473338)。
文摘In the current information society, the dissemination mechanisms and evolution laws of individual or collective opinions and their behaviors are the research hot topics in the field of opinion dynamics. First, in this paper, a two-layer network consisting of an individual-opinion layer and a collective-opinion layer is constructed, and a dissemination model of opinions incorporating higher-order interactions(i.e. OIHOI dissemination model) is proposed. Furthermore, the dynamic equations of opinion dissemination for both individuals and groups are presented. Using Lyapunov's first method,two equilibrium points, including the negative consensus point and positive consensus point, and the dynamic equations obtained for opinion dissemination, are analyzed theoretically. In addition, for individual opinions and collective opinions,some conditions for reaching negative consensus and positive consensus as well as the theoretical expression for the dissemination threshold are put forward. Numerical simulations are carried to verify the feasibility and effectiveness of the proposed theoretical results, as well as the influence of the intra-structure, inter-connections, and higher-order interactions on the dissemination and evolution of individual opinions. The main results are as follows.(i) When the intra-structure of the collective-opinion layer meets certain characteristics, then a negative or positive consensus is easier to reach for individuals.(ii) Both negative consensus and positive consensus perform best in mixed type of inter-connections in the two-layer network.(iii) Higher-order interactions can quickly eliminate differences in individual opinions, thereby enabling individuals to reach consensus faster.
基金supported by the National Natural Science Foundation of China(Grant Nos.52271278 and 52111530137)the Natural Science Foundation of Jiangsu Province(Grant No.SBK2022020579)the Newton Advanced Fellowships by the Royal Society(Grant No.NAF\R1\180304).
文摘The hydrodynamic performance of a high forward-speed ship in obliquely propagating waves is numerically examined to assess both free motions and wave field in comparison with a low forward-speed ship.This numerical model is based on the time-domain potential flow theory and higher-order boundary element method,where an analytical expression is completely expanded to determine the base-unsteady coupling flow imposed on the moving condition of the ship.The ship in the numerical model may possess different advancing speeds,i.e.stationary,low speed,and high speed.The role of the water depth,wave height,wave period,and incident wave angle is analyzed by means of the accurate numerical model.It is found that the resonant motions of the high forward-speed ship are triggered by comparison with the stationary one.More specifically,a higher forward speed generates a V-shaped wave region with a larger elevation,which induces stronger resonant motions corresponding to larger wave periods.The shoaling effect is adverse to the motion of the low-speed ship,but is beneficial to the resonant motion of the high-speed ship.When waves obliquely propagate toward the ship,the V-shaped wave region would be broken due to the coupling effect between roll and pitch motions.It is also demonstrated that the maximum heave motion occurs in beam seas for stationary cases but occurs in head waves for high speeds.However,the variation of the pitch motion with period is hardly affected by wave incident angles.
文摘In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p)^(2)-statistically Cauchy sequence,P_(p)^(2)-statistical boundedness and core for double sequences will be described in addition to these findings.
文摘Image processing and image analysis are the main aspects for obtaining information from digital image owing to the fact that this techniques give the desired details in most of the applications generally and Non-Destructive testing specifically. This paper presents a proposed method for the automatic detection of weld defects in radiographic images. Firstly, the radiographic images were enhanced using adaptive histogram equalization and are filtered using mean and wiener filters. Secondly, the welding area is selected from the radiography image. Thirdly, the Cepstral features are extracted from the Higher-Order Spectra (Bispectrum and Trispectrum). Finally, neural networks are used for feature matching. The proposed method is tested using 100 radiographic images in the presence of noise and image blurring. Results show that in spite of time consumption, the proposed method yields best results for the automatic detection of weld defects in radiography images when the features were extracted from the Trispectrum of the image.
基金supported by the National Natural Science Foundation of China(Grant Nos.10174024 and 10474025).
文摘Within the framework of quantum statistical mechanics,we have proposed an exact analytical solution to the problemof Bose-Einstein condensation(BEC)of harmonically trapped two-dimensional(2D)ideal photons.We utilize this analyticalsolution to investigate the statistical properties of ideal photons in a 2D dye-filled spherical cap cavity.The resultsof numerical calculation of the analytical solution agree completely with the foregoing experimental results in the BEC ofharmonically trapped 2D ideal photons.The analytical expressions of the critical temperature and the condensate fractionare derived in the thermodynamic limit.It is found that the 2D critical photon number is larger than the one-dimensional(1D)critical photon number by two orders of magnitude.The spectral radiance of a 2D spherical cap cavity has a sharppeak at the frequency of the cavity cutoff when the photon number exceeds the critical value determined by a temperature.
文摘The present study aims to establish a relationship between serum AMH levels and age in a large group of women living in Bulgaria, as well as to establish reference age-specific AMH levels in women that would serve as an initial estimate of ovarian age. A total of 28,016 women on the territory of the Republic of Bulgaria were tested for serum AMH levels with a median age of 37.0 years (interquartile range 32.0 to 41.0). For women aged 20 - 29 years, the Bulgarian population has relatively high median levels of AMH, similar to women of Asian origin. For women aged 30 - 34 years, our results are comparable to those of women living in Western Europe. For women aged 35 - 39 years, our results are comparable to those of women living in the territory of India and Kenya. For women aged 40 - 44 years, our results were lower than those for women from the Western European and Chinese populations, close to the Indian and higher than Korean and Kenya populations, respectively. Our results for women of Bulgarian origin are also comparable to US Latina women at age 30, 35 and 40 ages. On the base on constructed a statistical model to predicting the decline in AMH levels at different ages, we found non-linear structure of AMH decline for the low AMH 3.5) the dependence of the decline of AMH on age was confirmed as linear. In conclusion, we evaluated the serum level of AMH in Bulgarian women and established age-specific AMH percentile reference values based on a large representative sample. We have developed a prognostic statistical model that can facilitate the application of AMH in clinical practice and the prediction of reproductive capacity and population health.
基金supported by National Key R&D Program of China(2022YFC3004705)the National Natural Science Foundation of China(Nos.52074280,52227901 and 52204249)+1 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX24_2913)the Graduate Innovation Program of China University of Mining and Technology(No.2024WLKXJ139).
文摘Rock failure can cause serious geological disasters,and the non-extensive statistical features of electric potential(EP)are expected to provide valuable information for disaster prediction.In this paper,the uniaxial compression experiments with EP monitoring were carried out on fine sandstone,marble and granite samples under four displacement rates.The Tsallis entropy q value of EPs is used to analyze the selforganization evolution of rock failure.Then the influence of displacement rate and rock type on q value are explored by mineral structure and fracture modes.A self-organized critical prediction method with q value is proposed.The results show that the probability density function(PDF)of EPs follows the q-Gaussian distribution.The displacement rate is positively correlated with q value.With the displacement rate increasing,the fracture mode changes,the damage degree intensifies,and the microcrack network becomes denser.The influence of rock type on q value is related to the burst intensity of energy release and the crack fracture mode.The q value of EPs can be used as an effective prediction index for rock failure like b value of acoustic emission(AE).The results provide useful reference and method for the monitoring and early warning of geological disasters.
文摘Statistics of order 2 (variance, auto and cross-correlation functions, auto and cross-power spectra) and 3 (skewness, auto and cross-bicorrelation functions, auto and cross-bispectra) are used to analyze the wave-particle interaction in space plasmas. The signals considered here are medium scale electron density irregularities and ELF/ULF electrostatic turbulence. Nonlinearities are mainly observed in the ELF range. They are independently pointed out in time series associated with fluctuations in electronic density and in time series associated with the measurement of one electric field component. Peaks in cross-bicorrelation function and in mutual information clearly show that, in well delimited frequency bands, the wave-particle interactions are nonlinear above a certain level of fluctuations. The way the energy is transferred within the frequencies of density fluctuations is indicated by a bi-spectra analysis.
文摘Chemical oxygen demand (COD) is an important index to measure the degree of water pollution. In this paper, near-infrared technology is used to obtain 148 wastewater spectra to predict the COD value in wastewater. First, the partial least squares regression (PLS) model was used as the basic model. Monte Carlo cross-validation (MCCV) was used to select 25 samples out of 148 samples that did not conform to conventional statistics. Then, the interval partial least squares (iPLS) regression modeling was carried out on 123 samples, and the spectral bands were divided into 40 subintervals. The optimal subintervals are 20 and 26, and the optimal correlation coefficient of the test set (RT) is 0.58. Further, the waveband is divided into five intervals: 17, 19, 20, 22 and 26. When the number of joint intervals under each interval is three, the optimal RT is 0.71. When the number of joint subintervals is four, the optimal RT is 0.79. Finally, convolutional neural network (CNN) was used for quantitative prediction, and RT was 0.9. The results show that CNN can automatically screen the features inside the data, and the quantitative prediction effect is better than that of iPLS and synergy interval partial least squares model (SiPLS) with joint subinterval three and four, indicating that CNN can be used for quantitative analysis of water pollution degree.
文摘Inflammatory bowel diseases (IBD) are complex multifactorial disorders that include Crohn’s disease (CD) and ulcerative colitis (UC). Considering that IBD is a genetic and multifactorial disease, we screened for the distribution dynamism of IBD pathogenic genetic variants (single nucleotide polymorphisms;SNPs) and risk factors in four (4) IBD pediatric patients, by integrating both clinical exome sequencing and computational statistical approaches, aiming to categorize IBD patients in CD and UC phenotype. To this end, we first aligned genomic read sequences of these IBD patients to hg19 human genome by using bowtie 2 package. Next, we performed genetic variant calling analysis in terms of single nucleotide polymorphism (SNP) for genes covered by at least 20 read genomic sequences. Finally, we checked for biological and genomic functions of genes exhibiting statistically significant genetic variant (SNPs) by introducing Fitcon genomic parameter. Findings showed Fitcon parameter as normalizing IBD patient’s population variability, as well as inducing a relative good clustering between IBD patients in terms of CD and UC phenotypes. Genomic analysis revealed a random distribution of risk factors and as well pathogenic SNPs genetic variants in the four IBD patient’s genome, claiming to be involved in: i) Metabolic disorders, ii) Autoimmune deficiencies;iii) Crohn’s disease pathways. Integration of genomic and computational statistical analysis supported a relative genetic variability regarding IBD patient population by processing IBD pathogenic SNP genetic variants as opposite to IBD risk factor variants. Interestingly, findings clearly allowed categorizing IBD patients in CD and UC phenotypes by applying Fitcon parameter in selecting IBD pathogenic genetic variants. Considering as a whole, the study suggested the efficiency of integrating clinical exome sequencing and computational statistical tools as a right approach in discriminating IBD phenotypes as well as improving inflammatory bowel disease (IBD) molecular diagnostic process.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R194)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health informatics gathered using HAR augments the decision-making quality and significance.Although many research works conducted on Smart Healthcare Monitoring,there remain a certain number of pitfalls such as time,overhead,and falsification involved during analysis.Therefore,this paper proposes a Statistical Partial Regression and Support Vector Intelligent Agent Learning(SPR-SVIAL)for Smart Healthcare Monitoring.At first,the Statistical Partial Regression Feature Extraction model is used for data preprocessing along with the dimensionality-reduced features extraction process.Here,the input dataset the continuous beat-to-beat heart data,triaxial accelerometer data,and psychological characteristics were acquired from IoT wearable devices.To attain highly accurate Smart Healthcare Monitoring with less time,Partial Least Square helps extract the dimensionality-reduced features.After that,with these resulting features,SVIAL is proposed for Smart Healthcare Monitoring with the help of Machine Learning and Intelligent Agents to minimize both analysis falsification and overhead.Experimental evaluation is carried out for factors such as time,overhead,and false positive rate accuracy concerning several instances.The quantitatively analyzed results indicate the better performance of our proposed SPR-SVIAL method when compared with two state-of-the-art methods.
文摘In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and surface of micropores) of a clay concrete without molasses and clay concretes stabilized with 8%, 12% and 16% molasses. The results obtained show that Hasley’s model can be used to obtain the external surfaces. However, it does not allow the surface of the micropores to be obtained, and is not suitable for the case of simple clay concrete (without molasses) and for clay concretes stabilized with molasses. The Carbon Black, Jaroniec and Harkins and Jura models can be used for clay concrete and stabilized clay concrete. However, the Carbon Black model is the most relevant for clay concrete and the Harkins and Jura model is for molasses-stabilized clay concrete. These last two models augur well for future research.
基金National Natural Science Foundation of China(No.12271261)Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(Grant No.SJCX230368)。
文摘Normality testing is a fundamental hypothesis test in the statistical analysis of key biological indicators of diabetes.If this assumption is violated,it may cause the test results to deviate from the true value,leading to incorrect inferences and conclusions,and ultimately affecting the validity and accuracy of statistical inferences.Considering this,the study designs a unified analysis scheme for different data types based on parametric statistical test methods and non-parametric test methods.The data were grouped according to sample type and divided into discrete data and continuous data.To account for differences among subgroups,the conventional chi-squared test was used for discrete data.The normal distribution is the basis of many statistical methods;if the data does not follow a normal distribution,many statistical methods will fail or produce incorrect results.Therefore,before data analysis and modeling,the data were divided into normal and non-normal groups through normality testing.For normally distributed data,parametric statistical methods were used to judge the differences between groups.For non-normal data,non-parametric tests were employed to improve the accuracy of the analysis.Statistically significant indicators were retained according to the significance index P-value of the statistical test or corresponding statistics.These indicators were then combined with relevant medical background to further explore the etiology leading to the occurrence or transformation of diabetes status.