The all-optical wavelength conversion using cascaded four-wave mixing(FWM)phenomena with graphene oxide(GO)and a highly nonlinear fiber(HNLF)device is demonstrated experimentally.GO has a strong third-order nonlinear ...The all-optical wavelength conversion using cascaded four-wave mixing(FWM)phenomena with graphene oxide(GO)and a highly nonlinear fiber(HNLF)device is demonstrated experimentally.GO has a strong third-order nonlinear effect and is an excellent nonlinear optical material for nonlinear optical wavelength conversion.The group velocity matching of pump and signal,HNLF,and GO amplification promote the cascaded nonlinear frequency mixing process.From the experimental and analytical results,the maximum spacing between signal and pump is 21 nm,and specifically,the order of cascaded FWM light increases from order 1 to order 2 with increasing GO,and the first-order FWM conversion effi-ciency increases to a maximum of−14.5 dB.To the best of our knowledge,this is the first time that cascaded FWM-based all-optical wavelength conversion in HNLF-GO with wide wavelength selectivity is investigated with combined pump and signal light.Our findings not only provide an effective method for achieving all-optical wavelength conversion in cascaded FWM but also offer the possibility of fabricating high-performance nonlinear optical devices.展开更多
All-optical canonical logic units at 40 Gb/s using bidirectional four-wave mixing(FWM) in highly nonlinear fiber are proposed and experimentally demonstrated. Clear temporal waveforms and correct pattern streams are s...All-optical canonical logic units at 40 Gb/s using bidirectional four-wave mixing(FWM) in highly nonlinear fiber are proposed and experimentally demonstrated. Clear temporal waveforms and correct pattern streams are successfully observed in the experiment. This scheme can reduce the amount of nonlinear devices and enlarge the computing capacity compared with general ones. The numerical simulations are made to analyze the relationship between the FWM efficiency and the position of two interactional signals.展开更多
Competition mechanism in multiple four-wave mixing (MFWM) processes is demonstrated theoretically. Provided considering only two waves injected into a highly nonlinear fiber (HNLF), there are three modes displayin...Competition mechanism in multiple four-wave mixing (MFWM) processes is demonstrated theoretically. Provided considering only two waves injected into a highly nonlinear fiber (HNLF), there are three modes displaying comprehensive dynamic behaviors, such as fixed points, periodic motion, and chaotic motion. Especially, Mode C of MFWM is emphasized by analyzing its phase-space trajectory to demonstrate nonlinear wave- wave interactions. The study shows that, when the phase- space trajectory approaches or gets through a saddle point, a dramatic power depletion for the injected wave can be realized, with the representative point moving chaotically, but when phase-space trajectories are distributed around a center point, the power for the injected wave is retained almost invariable, with the representative point moving periodically. Finally, the evolvement of satellite wave over an optical fiber is investigated by comparing it with the interference pattern in Young's double-slit experiment.展开更多
Two-dimensional(2D) materials have emerged as attractive mediums for fabricating versatile optoelectronic devices. Recently, few-layer molybdenum disulfide(MoS2), as a shining 2D material, has been discovered to p...Two-dimensional(2D) materials have emerged as attractive mediums for fabricating versatile optoelectronic devices. Recently, few-layer molybdenum disulfide(MoS2), as a shining 2D material, has been discovered to possess both the saturable absorption effect and large nonlinear refractive index. Herein, taking advantage of the unique nonlinear optical properties of MoS2, we fabricated a highly nonlinear saturable absorption photonic device by depositing the few-layer MoS2 onto the microfiber. With the proposed MoS2 photonic device, apart from the conventional soliton patterns, the mode-locked pulses could be shaped into some new soliton patterns, namely,multiple soliton molecules, localized chaotic multipulses, and double-scale soliton clusters. Our findings indicate that the few-layer MoS2-deposited microfiber could operate as a promising highlynonlinear photonic device for the related nonlinear optics applications.展开更多
A novel fiber optical 3R regenerator based on optical soliton-effect using highly nonlinear fiber is constructed and investigated for the needs of the high rate and long-haul optical communications. The propagation eq...A novel fiber optical 3R regenerator based on optical soliton-effect using highly nonlinear fiber is constructed and investigated for the needs of the high rate and long-haul optical communications. The propagation equation of the pulses in the proposed optical 3R regenerator with the control of optical modulator and filter is established. By the use of the variational approach, the evolution of the distorted optical pulses in the regenerator and the functions of reamplification, reshaping, and reUming are investigated. The relation between the construction parameters and the output performance of the regenerator is discussed. The stable operation condition of the regenerator is revealed.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61775032,11604042)the Fundamental Research Funds for the Central Universities(Nos.N2104022,N2004021)the"111 Project"(No.B16009).
文摘The all-optical wavelength conversion using cascaded four-wave mixing(FWM)phenomena with graphene oxide(GO)and a highly nonlinear fiber(HNLF)device is demonstrated experimentally.GO has a strong third-order nonlinear effect and is an excellent nonlinear optical material for nonlinear optical wavelength conversion.The group velocity matching of pump and signal,HNLF,and GO amplification promote the cascaded nonlinear frequency mixing process.From the experimental and analytical results,the maximum spacing between signal and pump is 21 nm,and specifically,the order of cascaded FWM light increases from order 1 to order 2 with increasing GO,and the first-order FWM conversion effi-ciency increases to a maximum of−14.5 dB.To the best of our knowledge,this is the first time that cascaded FWM-based all-optical wavelength conversion in HNLF-GO with wide wavelength selectivity is investigated with combined pump and signal light.Our findings not only provide an effective method for achieving all-optical wavelength conversion in cascaded FWM but also offer the possibility of fabricating high-performance nonlinear optical devices.
基金mainly supported by the National Natural Science Fund for Distinguished Young Scholars (61125501)NSFC Major International Joint Research Project (61320106016)
文摘All-optical canonical logic units at 40 Gb/s using bidirectional four-wave mixing(FWM) in highly nonlinear fiber are proposed and experimentally demonstrated. Clear temporal waveforms and correct pattern streams are successfully observed in the experiment. This scheme can reduce the amount of nonlinear devices and enlarge the computing capacity compared with general ones. The numerical simulations are made to analyze the relationship between the FWM efficiency and the position of two interactional signals.
文摘Competition mechanism in multiple four-wave mixing (MFWM) processes is demonstrated theoretically. Provided considering only two waves injected into a highly nonlinear fiber (HNLF), there are three modes displaying comprehensive dynamic behaviors, such as fixed points, periodic motion, and chaotic motion. Especially, Mode C of MFWM is emphasized by analyzing its phase-space trajectory to demonstrate nonlinear wave- wave interactions. The study shows that, when the phase- space trajectory approaches or gets through a saddle point, a dramatic power depletion for the injected wave can be realized, with the representative point moving chaotically, but when phase-space trajectories are distributed around a center point, the power for the injected wave is retained almost invariable, with the representative point moving periodically. Finally, the evolvement of satellite wave over an optical fiber is investigated by comparing it with the interference pattern in Young's double-slit experiment.
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 11474108, 61378036, 61307058, 11304101, 11074078)the PhD Start-up Fund of Natural Science Foundation of Guangdong Province, China (Grant No. S2013040016320)+2 种基金the Scientific and Technological Innovation Project of Higher Education Institute, Guangdong, China (Grant No. 2013KJCX0051)the financial support from the Guangdong Natural Science Funds for Distinguished Young Scholarthe Zhujiang New-star Plan of Science & Technology in Guangzhou City (Grant No. 2014J2200008)
文摘Two-dimensional(2D) materials have emerged as attractive mediums for fabricating versatile optoelectronic devices. Recently, few-layer molybdenum disulfide(MoS2), as a shining 2D material, has been discovered to possess both the saturable absorption effect and large nonlinear refractive index. Herein, taking advantage of the unique nonlinear optical properties of MoS2, we fabricated a highly nonlinear saturable absorption photonic device by depositing the few-layer MoS2 onto the microfiber. With the proposed MoS2 photonic device, apart from the conventional soliton patterns, the mode-locked pulses could be shaped into some new soliton patterns, namely,multiple soliton molecules, localized chaotic multipulses, and double-scale soliton clusters. Our findings indicate that the few-layer MoS2-deposited microfiber could operate as a promising highlynonlinear photonic device for the related nonlinear optics applications.
基金Supported by the National Natural Science Foundation of China (Grant No. 60072046)
文摘A novel fiber optical 3R regenerator based on optical soliton-effect using highly nonlinear fiber is constructed and investigated for the needs of the high rate and long-haul optical communications. The propagation equation of the pulses in the proposed optical 3R regenerator with the control of optical modulator and filter is established. By the use of the variational approach, the evolution of the distorted optical pulses in the regenerator and the functions of reamplification, reshaping, and reUming are investigated. The relation between the construction parameters and the output performance of the regenerator is discussed. The stable operation condition of the regenerator is revealed.