H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are prote...H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.展开更多
The H9N2 subtype of avian influenza virus(AIV)is widely prevalent in poultry and wild birds globally,and has become the predominant subtype circulating in poultry in China.The H9N2 AIV can directly or indirectly(by se...The H9N2 subtype of avian influenza virus(AIV)is widely prevalent in poultry and wild birds globally,and has become the predominant subtype circulating in poultry in China.The H9N2 AIV can directly or indirectly(by serving as a"donor virus")infect humans,posing a significant threat to public health.Currently,there is a lack of in-depth research on the prevalence of H9N2 viruses in Shanxi Province,central China.In this study,we isolated 14 H9N2 AIVs from October 2020 to April 2022 in Shanxi Province,and genetic analysis revealed that these viruses belonged to 7 different genotypes.Our study on animals revealed that the H9N2 strains we identified displayed high transmission efficiency among chicken populations,and exhibited diverse replication abilities within these birds.These viruses could replicate efficiently in the lungs of mice,with one strain also demonstrating the capacity to reproduce in organs like the brain and kidneys.At the cellular level,the replication ability of different H9N2 strains was evaluated using plaque formation assays and multi-step growth curve assays,revealing significant differences in the replication and proliferation efficiency of the various H9N2 viruses at the cellular level.The antigenicity analysis suggested that these isolates could be classified into 2 separate antigenic clusters.Our research provides crucial data to help understand the prevalence and biological characteristics of H9N2 AIVs in central China.It also highlights the necessity of enhancing the surveillance of H9N2 AIVs.展开更多
In 2013, a human influenza outbreak caused by a novel H7N9 virus occurred in China. Recently, the H7N9 virus acquired multiple basic amino acids at its hemagglutinin(HA) cleavage site, leading to the emergence of a ...In 2013, a human influenza outbreak caused by a novel H7N9 virus occurred in China. Recently, the H7N9 virus acquired multiple basic amino acids at its hemagglutinin(HA) cleavage site, leading to the emergence of a highly pathogenic virus. The development of an effective diagnostic method is imperative for the prevention and control of highly pathogenic H7N9 influenza. Here, we designed and synthesized three pairs of primers based on the nucleotide sequence at the HA cleavage site of the newly emerged highly pathogenic H7N9 influenza virus. One of the primer pairs and the corresponding probe displayed a high level of amplification efficiency on which a real-time RT-PCR method was established. Amplification using this method resulted in a fluorescent signal for only the highly pathogenic H7N9 virus, and not for any of the H1–H15 subtype reference strains, thus demonstrating high specificity. The method detected as low as 39.1 copies of HA-positive plasmid and exhibited similar sensitivity to the virus isolation method using embryonated chicken eggs. Importantly, the real-time RT-PCR method exhibited 100% consistency with the virus isolation method in the diagnosis of field samples. Collectively, our data demonstrate that this real-time RT-PCR assay is a rapid, sensitive and specific method, and the application will greatly aid the surveillance, prevention, and control of highly pathogenic H7N9 influenza viruses.展开更多
Objective In China, 24 cases of human infection with highly pathogenic avian influenza(HPAI) H5 N6 virus have been confirmed since the first confirmed case in 2014. Therefore, we developed and assessed two H5 N6 candi...Objective In China, 24 cases of human infection with highly pathogenic avian influenza(HPAI) H5 N6 virus have been confirmed since the first confirmed case in 2014. Therefore, we developed and assessed two H5 N6 candidate vaccine viruses(CVVs).Methods In accordance with the World Health Organization(WHO) recommendations, we constructed two reassortant viruses using reverse genetics(RG) technology to match the two different epidemic H5 N6 viruses. We performed complete genome sequencing to determine the genetic stability. We assessed the growth ability of the studied viruses in MDCK cells and conducted a hemagglutination inhibition assay to analyze their antigenicity. Pathogenicity attenuation was also evaluated in vitro and in vivo.Results The results showed that no mutations occurred in hemagglutinin or neuraminidase, and both CVVs retained their original antigenicity. The replication capacity of the two CVVs reached a level similar to that of A/Puerto Rico/8/34 in MDCK cells. The two CVVs showed low pathogenicity in vitro and in vivo, which are in line with the WHO requirements for CVVs.Conclusion We obtained two genetically stable CVVs of HPAI H5N6 with high growth characteristics,which may aid in our preparedness for a potential H5N6 pandemic.展开更多
Objective To survey avian influenza A viruses(AIVs) in the environment and explore the reasons for the surge in human H7 N9 cases.Methods A total of 1,045 samples were collected from routine surveillance on poultry-re...Objective To survey avian influenza A viruses(AIVs) in the environment and explore the reasons for the surge in human H7 N9 cases.Methods A total of 1,045 samples were collected from routine surveillance on poultry-related environments and 307 samples from human H7 N9 cases-exposed environments in Henan from 2016 to2017. The nucleic acids of influenza A(Flu A), H5, H7, and H9 subtypes were detected by real-time polymerase chain reaction.Results A total of 27 H7 N9 cases were confirmed in Henan from 2016 to 2017, 24 had a history of live poultry exposure, and 15 had H7 N9 virus detected in the related live poultry markets(LPMs). About 96%(264/275) Flu A positive-environmental samples were from LPMs. H9 was the main AIV subtype(10.05%) from routine surveillance sites with only 1 H7-positive sample, whereas 21.17% samples were H7-positive in H7 N9 cases-exposed environments. Samples from H7 N9 cases-exposed LPMs(47.56%)had much higher AIVs positive rates than those from routine surveillance sites(12.34%). The H7+H9 combination of mixed infection was 78.18%(43/55) of H7-positive samples and 41.34%(43/104) of H9-positive samples.Conclusion The contamination status of AIVs in poultry-related environments is closely associated with the incidence of human infection caused by AIVs. Therefore, systematic surveillance of AIVs in LPMs in China is essential for the detection of novel reassortant viruses and their potential for interspecies transmission.展开更多
A novel Clade 2.3.2.1c H5N1 reassortant virus caused several outbreaks in wild birds in some regions of China from late 2014 to 2015.Based on the genetic and phylogenetic analyses,the viruses possess a stable gene con...A novel Clade 2.3.2.1c H5N1 reassortant virus caused several outbreaks in wild birds in some regions of China from late 2014 to 2015.Based on the genetic and phylogenetic analyses,the viruses possess a stable gene constellation with a Clade 2.3.2.1c HA,a H9N2-derived PB2 gene and the other six genes of Asian H5N1-origin.The Clade 2.3.2.1c H5N1 reassortants displayed a high genetic relationship to a human H5N1 strain(A/Alberta/01/2014).Further analysis showed that similar viruses have been circulating in wild birds in China,Russia,Dubai(Western Asia),Bulgaria and Romania(Europe),as well as domestic poultry in some regions of Africa.The affected areas include the Central Asian,East Asian-Australasian,West Asian-East African,and Black Sea/Mediterranean flyways.These results show that the novel Clade 2.3.2.1c reassortant viruses are circulating worldwide and may have gained a selective advantage in migratory birds,thus posing a serious threat to wild birds and potentially humans.展开更多
Background:Since the first human infection with H9N2 virus was reported in 1998,the number of cases of H9N2 infection has exceeded one hundred by 2021.However,there is no systematic description of the biological chara...Background:Since the first human infection with H9N2 virus was reported in 1998,the number of cases of H9N2 infection has exceeded one hundred by 2021.However,there is no systematic description of the biological characteristics of H9N2 viruses isolated from humans.Methods:Therefore,this study analyzed the pathogenicity in mice of all available H9N2 viruses isolated from human cases in China from 2013 to 2021.Results:Although most of the H9N2 viruses analyzed showed low or no pathogenicity in mice,the leucine to glutamine substitution at residue 226(L226Q)in the hemagglutinin(HA)protein rapidly emerged during the adaptation of H9N2 viruses,and was responsible for severe infections and even fatalities.HA amino acid 226Q conferred a remarkable competitive advantage on H9N2 viruses in mice relative to viruses containing 226L,increasing their virulence,infectivity,and replication.Conclusion:Thus,our study demonstrates that the adaptive substitution HA L226Q rapidly acquired by H9N2 viruses during the course of infection in mice contributed to their high pathogenicity.展开更多
During the spring of 2013,a novel avian-origin influenza A (H7N9) virus emerged and spread in Shanghai.On May 9,2013,33 lab-confirmed cases (2 children and 31 adults) have been reported,among whom 13 died.Among th...During the spring of 2013,a novel avian-origin influenza A (H7N9) virus emerged and spread in Shanghai.On May 9,2013,33 lab-confirmed cases (2 children and 31 adults) have been reported,among whom 13 died.Among the 31 adult cases of H7N9 avian influenza A virus infections in humans,80.6% (25/31) were older men (average age 65 years).Clear history of poultry exposure was found in eight patients (8/33,24.3%) and the remaining 21 cases had been suspected poultry exposure.Clustered cases were found in two families (two cases from a father and his son,and the other two cases from a wife and her husband).However,no evidence of human-to-human transmission had been identified.Avian influenza is one of the most dangerous contagions in poultry worldwide,and avian influenza A virus is the major pathogen responsible.Transmission from poultry to humans has now been proven.Some gene segments of the strain have mutated,and further mutations might result in human-to-human transmission.展开更多
Avian influenza A(H7N9) virus is one subgroup among the larger group of H7 viruses,which normally circulate among birds.The H7N9 subtype of avian influenza viruses has not been known to infect humans until only rece...Avian influenza A(H7N9) virus is one subgroup among the larger group of H7 viruses,which normally circulate among birds.The H7N9 subtype of avian influenza viruses has not been known to infect humans until only recently.On March 31,2013,China confirmed the first three human cases of novel avian influenza A(H7N9)infection in Shanghai and Anhui,two of these patients died.1 As of February 27,2014,367 laboratory-confirmed human cases have been reported from 15 provinces/municipalities in China's Mainland,展开更多
The National Health and Family Planning Commission of China published an updated guidance (2014 version) on clinical management in Chinese on January 26, 2014.The guidelines come as human cases of avian influenza A...The National Health and Family Planning Commission of China published an updated guidance (2014 version) on clinical management in Chinese on January 26, 2014.The guidelines come as human cases of avian influenza A(H7N9) virus infection undergo a seasonal spike.展开更多
Avian influenza viruses(AIVs) such as H5N1 and H7N9 are a great threat to poultry economics and public health. Vaccination can effectively inhibit the spread of AIV in poultry, which is also a viable strategy for cont...Avian influenza viruses(AIVs) such as H5N1 and H7N9 are a great threat to poultry economics and public health. Vaccination can effectively inhibit the spread of AIV in poultry, which is also a viable strategy for controlling virus transmission from poultry to human. Adjuvants that are commonly used in current inactivated vaccines to provide stronger anti-AIV immune responses are often limited in their capacity to quantitatively induce both humoral and cellular immune responses. Herein, we assessed the levels of immune responses generated by a vaccine formulation comprising inactivated H5N1 antigen and synthetic peptides covering conserved CD4^+, CD8^+ T cell, and B cell epitopes. We found that the synthetic peptides enhanced the antibody responses against conserved influenza virus antigen M2 e. Notably, the hemagglutination inhibition test results indicated that the peptides significantly augmented the antibody responses of inactivated H5N1 antigen even in the 1/10 or 1/5 dose group, in the identical antibody level as antigen alone used at the full dose. This indicates that the peptide can significantly reduce the use of inactivated virus, lowering the cost of the vaccine. Moreover, the peptides increased the transcript levels of interleukin-4 and interferon-γcytokines in chicken peripheral blood mononuclear cells, which may facilitate both humoral and cellular immune responses. Our data suggest that this peptide combined with inactivated H5N1 antigen enhances both the humoral and cellular immune responses,which may benefit the prediction and design of synthetic peptide-based adjuvants for vaccines in chicken.展开更多
To report a rare case of fungal spondylodiscitis in a patient recovered from H7N9 virus infection and perform a literature review of the different characteristics of Candida and Aspergillus spondylodiscitis, we review...To report a rare case of fungal spondylodiscitis in a patient recovered from H7N9 virus infection and perform a literature review of the different characteristics of Candida and Aspergillus spondylodiscitis, we reviewed cases of spondylodiscitis caused by Candida and Aspergillus species. Data, including patients' information, patho- genic species, treatment strategy, outcomes, and relapses, were collected and summarized. The characteristics of Canclida and Aspergillus spondylodiscitis were compared to see if any differences in clinical features, management, or consequences could be detected. The subject of the case study was first misdiagnosed as having a vertebral tumor, and then, following open biopsy, was diagnosed as having fungal spondylodiscitis. The patient made a good recovery following radical debridement. Seventy-seven additional cases of Candida spondylodiscitis and 94 cases of Asper- gillus spondylodiscitis were identified in the literature. Patients with Candida spondylodiscitis tended to have a better outcome than patients with Aspergillus spondylodiscitis (cure rate 92.3% vs. 70.2%). Candida was found more fre- quently (47.8%) than Aspergillus (26.7%) in blood cultures, while neurological deficits were observed more often in patients with Aspergillus spondylodiscitis (43.6% vs. 25.6%). Candida spinal infections were more often treated by radical debridement (60.5% vs. 39.6%). Patients with Candida spondylodiscitis have better outcomes, which may be associated with prompt recognition, radical surgical debridement, and azoles therapy. A good outcome can be ex- pected in fungal spondylodiscitis with appropriate operations and anti-fungal drugs.展开更多
Highly pathogenic avian influenza H5N 1 epidemics are a significant public health hazard. Genetically engineered H5N 1 viruses with mammalian transmission activity highlight the potential risk of a human influenza H5N...Highly pathogenic avian influenza H5N 1 epidemics are a significant public health hazard. Genetically engineered H5N 1 viruses with mammalian transmission activity highlight the potential risk of a human influenza H5N 1 pandemic. Understanding the underlying principles of the innate immune system in response to influenza H5N 1 viruses will lead to improved prevention and control of these potentially deadly viruses, γδT cells act as the first line of defense against microbial infection and help initiate adaptive immune responses during the early stages of viral infection. In this study, we investigated the molecular mechanisms of γδ T cells in response to influenza H5N1 viral infection, We found that recombinant hemagglutinin (rHA) derived from three different strains of influenza H5N 1 viruses elicited the activation of γδ T cells cultured in peripheral blood mononuclear cells (PBMCs). Both the cell surface expression of CD69, an early activation marker on γδ T cells, and the production of interferon-y (IFN-y) were significantly increased. Notably, the rHA protein-induced γδ T-cell activation was not mediated by TCRγδ, NKG2D or pattern recognition receptors (PRRs) or NKp46 receptors. The interaction of rHA proteins with sialic acid receptors may play a critical role in γδ T-cell activation. Our data may provide insight into the mechanisms underlyingγδT-cell activation in response to infection with H5N1 viruses.展开更多
基金supported by the earmarked fund for China Agriculture Research System(CARS-40)the Key Research and Development Project of Yangzhou(Modern Agriculture),China(YZ2022052)the‘‘High-end Talent Support Program’’of Yangzhou University,China。
文摘H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.
基金Fundamental Research Program of Shanxi Province,China(202103021224156)National Natural Science Foundation of China(32202788)+5 种基金Special Research Fund of Shanxi Agricultural University for High-level Talents,China(2021XG004)Science and Technology Innovation Program of Shanxi Agricultural University,China(2021BQ78)special fund for Science and Technology Innovation Teams of Shanxi Province,China(202304051001041)?Shanxi Province Excellent Doctoral Work Award-Scientific Research Project,China(SXBYKY2021005,SXBYKY2021063,SXBYKY2022014)the Fund for Shanxi“1331 Project”,China(20211331-13)earmarked fund for Modern Agro-industry Technology Research System of Shanxi Province,China.
文摘The H9N2 subtype of avian influenza virus(AIV)is widely prevalent in poultry and wild birds globally,and has become the predominant subtype circulating in poultry in China.The H9N2 AIV can directly or indirectly(by serving as a"donor virus")infect humans,posing a significant threat to public health.Currently,there is a lack of in-depth research on the prevalence of H9N2 viruses in Shanxi Province,central China.In this study,we isolated 14 H9N2 AIVs from October 2020 to April 2022 in Shanxi Province,and genetic analysis revealed that these viruses belonged to 7 different genotypes.Our study on animals revealed that the H9N2 strains we identified displayed high transmission efficiency among chicken populations,and exhibited diverse replication abilities within these birds.These viruses could replicate efficiently in the lungs of mice,with one strain also demonstrating the capacity to reproduce in organs like the brain and kidneys.At the cellular level,the replication ability of different H9N2 strains was evaluated using plaque formation assays and multi-step growth curve assays,revealing significant differences in the replication and proliferation efficiency of the various H9N2 viruses at the cellular level.The antigenicity analysis suggested that these isolates could be classified into 2 separate antigenic clusters.Our research provides crucial data to help understand the prevalence and biological characteristics of H9N2 AIVs in central China.It also highlights the necessity of enhancing the surveillance of H9N2 AIVs.
基金supported by the National Key R&D Program of China(2016YFD0500800)the International Science&Technology Cooperation Program of China(2014DFR31260)
文摘In 2013, a human influenza outbreak caused by a novel H7N9 virus occurred in China. Recently, the H7N9 virus acquired multiple basic amino acids at its hemagglutinin(HA) cleavage site, leading to the emergence of a highly pathogenic virus. The development of an effective diagnostic method is imperative for the prevention and control of highly pathogenic H7N9 influenza. Here, we designed and synthesized three pairs of primers based on the nucleotide sequence at the HA cleavage site of the newly emerged highly pathogenic H7N9 influenza virus. One of the primer pairs and the corresponding probe displayed a high level of amplification efficiency on which a real-time RT-PCR method was established. Amplification using this method resulted in a fluorescent signal for only the highly pathogenic H7N9 virus, and not for any of the H1–H15 subtype reference strains, thus demonstrating high specificity. The method detected as low as 39.1 copies of HA-positive plasmid and exhibited similar sensitivity to the virus isolation method using embryonated chicken eggs. Importantly, the real-time RT-PCR method exhibited 100% consistency with the virus isolation method in the diagnosis of field samples. Collectively, our data demonstrate that this real-time RT-PCR assay is a rapid, sensitive and specific method, and the application will greatly aid the surveillance, prevention, and control of highly pathogenic H7N9 influenza viruses.
基金This study was supported by the National Major Science and Technology Project for Control and Prevention of Major Infectious Diseases in China[No.2018ZX10711001,2018ZX10305409-004-002]Emergency Prevention and Control Project of Ministry of Science and Technology of China[No.10600100000015001206].
文摘Objective In China, 24 cases of human infection with highly pathogenic avian influenza(HPAI) H5 N6 virus have been confirmed since the first confirmed case in 2014. Therefore, we developed and assessed two H5 N6 candidate vaccine viruses(CVVs).Methods In accordance with the World Health Organization(WHO) recommendations, we constructed two reassortant viruses using reverse genetics(RG) technology to match the two different epidemic H5 N6 viruses. We performed complete genome sequencing to determine the genetic stability. We assessed the growth ability of the studied viruses in MDCK cells and conducted a hemagglutination inhibition assay to analyze their antigenicity. Pathogenicity attenuation was also evaluated in vitro and in vivo.Results The results showed that no mutations occurred in hemagglutinin or neuraminidase, and both CVVs retained their original antigenicity. The replication capacity of the two CVVs reached a level similar to that of A/Puerto Rico/8/34 in MDCK cells. The two CVVs showed low pathogenicity in vitro and in vivo, which are in line with the WHO requirements for CVVs.Conclusion We obtained two genetically stable CVVs of HPAI H5N6 with high growth characteristics,which may aid in our preparedness for a potential H5N6 pandemic.
基金supported by Henan Department of Science and Technology Project [182102310235]Henan Medical Science and Technology Research Project [201702269]Henan Natural Science Foundation [182300410384]
文摘Objective To survey avian influenza A viruses(AIVs) in the environment and explore the reasons for the surge in human H7 N9 cases.Methods A total of 1,045 samples were collected from routine surveillance on poultry-related environments and 307 samples from human H7 N9 cases-exposed environments in Henan from 2016 to2017. The nucleic acids of influenza A(Flu A), H5, H7, and H9 subtypes were detected by real-time polymerase chain reaction.Results A total of 27 H7 N9 cases were confirmed in Henan from 2016 to 2017, 24 had a history of live poultry exposure, and 15 had H7 N9 virus detected in the related live poultry markets(LPMs). About 96%(264/275) Flu A positive-environmental samples were from LPMs. H9 was the main AIV subtype(10.05%) from routine surveillance sites with only 1 H7-positive sample, whereas 21.17% samples were H7-positive in H7 N9 cases-exposed environments. Samples from H7 N9 cases-exposed LPMs(47.56%)had much higher AIVs positive rates than those from routine surveillance sites(12.34%). The H7+H9 combination of mixed infection was 78.18%(43/55) of H7-positive samples and 41.34%(43/104) of H9-positive samples.Conclusion The contamination status of AIVs in poultry-related environments is closely associated with the incidence of human infection caused by AIVs. Therefore, systematic surveillance of AIVs in LPMs in China is essential for the detection of novel reassortant viruses and their potential for interspecies transmission.
基金supported by grants from the National Natural Science Foundation of China (31311120063,81470096,31570026,31471253)the Ministry of Education and Science of the Russian Federation (Chinese-Russian project:RFMEFI61315X0045)+3 种基金the intramural special grant for influenza virus research from the Chinese Academy of Sciences (KJZD-EW-L09)the IDRCAPEIR program (106915-001)Special Project of Ministry of Science and Technology (2013FY113500)supported by the “Taishan Scholar” project of Shandong Province
文摘A novel Clade 2.3.2.1c H5N1 reassortant virus caused several outbreaks in wild birds in some regions of China from late 2014 to 2015.Based on the genetic and phylogenetic analyses,the viruses possess a stable gene constellation with a Clade 2.3.2.1c HA,a H9N2-derived PB2 gene and the other six genes of Asian H5N1-origin.The Clade 2.3.2.1c H5N1 reassortants displayed a high genetic relationship to a human H5N1 strain(A/Alberta/01/2014).Further analysis showed that similar viruses have been circulating in wild birds in China,Russia,Dubai(Western Asia),Bulgaria and Romania(Europe),as well as domestic poultry in some regions of Africa.The affected areas include the Central Asian,East Asian-Australasian,West Asian-East African,and Black Sea/Mediterranean flyways.These results show that the novel Clade 2.3.2.1c reassortant viruses are circulating worldwide and may have gained a selective advantage in migratory birds,thus posing a serious threat to wild birds and potentially humans.
基金supported by the National Key Research and Development Program of China(grant number 2021YFC2300100)the National Nature Science Foundation of China(grant number 81971941).
文摘Background:Since the first human infection with H9N2 virus was reported in 1998,the number of cases of H9N2 infection has exceeded one hundred by 2021.However,there is no systematic description of the biological characteristics of H9N2 viruses isolated from humans.Methods:Therefore,this study analyzed the pathogenicity in mice of all available H9N2 viruses isolated from human cases in China from 2013 to 2021.Results:Although most of the H9N2 viruses analyzed showed low or no pathogenicity in mice,the leucine to glutamine substitution at residue 226(L226Q)in the hemagglutinin(HA)protein rapidly emerged during the adaptation of H9N2 viruses,and was responsible for severe infections and even fatalities.HA amino acid 226Q conferred a remarkable competitive advantage on H9N2 viruses in mice relative to viruses containing 226L,increasing their virulence,infectivity,and replication.Conclusion:Thus,our study demonstrates that the adaptive substitution HA L226Q rapidly acquired by H9N2 viruses during the course of infection in mice contributed to their high pathogenicity.
文摘During the spring of 2013,a novel avian-origin influenza A (H7N9) virus emerged and spread in Shanghai.On May 9,2013,33 lab-confirmed cases (2 children and 31 adults) have been reported,among whom 13 died.Among the 31 adult cases of H7N9 avian influenza A virus infections in humans,80.6% (25/31) were older men (average age 65 years).Clear history of poultry exposure was found in eight patients (8/33,24.3%) and the remaining 21 cases had been suspected poultry exposure.Clustered cases were found in two families (two cases from a father and his son,and the other two cases from a wife and her husband).However,no evidence of human-to-human transmission had been identified.Avian influenza is one of the most dangerous contagions in poultry worldwide,and avian influenza A virus is the major pathogen responsible.Transmission from poultry to humans has now been proven.Some gene segments of the strain have mutated,and further mutations might result in human-to-human transmission.
文摘Avian influenza A(H7N9) virus is one subgroup among the larger group of H7 viruses,which normally circulate among birds.The H7N9 subtype of avian influenza viruses has not been known to infect humans until only recently.On March 31,2013,China confirmed the first three human cases of novel avian influenza A(H7N9)infection in Shanghai and Anhui,two of these patients died.1 As of February 27,2014,367 laboratory-confirmed human cases have been reported from 15 provinces/municipalities in China's Mainland,
文摘The National Health and Family Planning Commission of China published an updated guidance (2014 version) on clinical management in Chinese on January 26, 2014.The guidelines come as human cases of avian influenza A(H7N9) virus infection undergo a seasonal spike.
基金supported by Beijing Municipal Science and Technology program(D161100001516001)National Natural Science Foundation of China(81401312,81373141)the National Natural Science Foundation of China Innovative Research Group(81321063 to George F.Gao)
文摘Avian influenza viruses(AIVs) such as H5N1 and H7N9 are a great threat to poultry economics and public health. Vaccination can effectively inhibit the spread of AIV in poultry, which is also a viable strategy for controlling virus transmission from poultry to human. Adjuvants that are commonly used in current inactivated vaccines to provide stronger anti-AIV immune responses are often limited in their capacity to quantitatively induce both humoral and cellular immune responses. Herein, we assessed the levels of immune responses generated by a vaccine formulation comprising inactivated H5N1 antigen and synthetic peptides covering conserved CD4^+, CD8^+ T cell, and B cell epitopes. We found that the synthetic peptides enhanced the antibody responses against conserved influenza virus antigen M2 e. Notably, the hemagglutination inhibition test results indicated that the peptides significantly augmented the antibody responses of inactivated H5N1 antigen even in the 1/10 or 1/5 dose group, in the identical antibody level as antigen alone used at the full dose. This indicates that the peptide can significantly reduce the use of inactivated virus, lowering the cost of the vaccine. Moreover, the peptides increased the transcript levels of interleukin-4 and interferon-γcytokines in chicken peripheral blood mononuclear cells, which may facilitate both humoral and cellular immune responses. Our data suggest that this peptide combined with inactivated H5N1 antigen enhances both the humoral and cellular immune responses,which may benefit the prediction and design of synthetic peptide-based adjuvants for vaccines in chicken.
基金Project supported by the Zhejiang Medical Technology and Education Foundation(No.2015107339),China
文摘To report a rare case of fungal spondylodiscitis in a patient recovered from H7N9 virus infection and perform a literature review of the different characteristics of Candida and Aspergillus spondylodiscitis, we reviewed cases of spondylodiscitis caused by Candida and Aspergillus species. Data, including patients' information, patho- genic species, treatment strategy, outcomes, and relapses, were collected and summarized. The characteristics of Canclida and Aspergillus spondylodiscitis were compared to see if any differences in clinical features, management, or consequences could be detected. The subject of the case study was first misdiagnosed as having a vertebral tumor, and then, following open biopsy, was diagnosed as having fungal spondylodiscitis. The patient made a good recovery following radical debridement. Seventy-seven additional cases of Candida spondylodiscitis and 94 cases of Asper- gillus spondylodiscitis were identified in the literature. Patients with Candida spondylodiscitis tended to have a better outcome than patients with Aspergillus spondylodiscitis (cure rate 92.3% vs. 70.2%). Candida was found more fre- quently (47.8%) than Aspergillus (26.7%) in blood cultures, while neurological deficits were observed more often in patients with Aspergillus spondylodiscitis (43.6% vs. 25.6%). Candida spinal infections were more often treated by radical debridement (60.5% vs. 39.6%). Patients with Candida spondylodiscitis have better outcomes, which may be associated with prompt recognition, radical surgical debridement, and azoles therapy. A good outcome can be ex- pected in fungal spondylodiscitis with appropriate operations and anti-fungal drugs.
基金This workwas supported by two grants, No. CHB1-31056-BE-11 from the US Civilian Research & Development Foundation from the National Institute of Allergy and Infectious Diseases and No. 31070785 from the National Natural Science Foundation of China. We thank Dr Jianmin Zhang and Dr Austin Cape for critical reading of the manuscript.
文摘Highly pathogenic avian influenza H5N 1 epidemics are a significant public health hazard. Genetically engineered H5N 1 viruses with mammalian transmission activity highlight the potential risk of a human influenza H5N 1 pandemic. Understanding the underlying principles of the innate immune system in response to influenza H5N 1 viruses will lead to improved prevention and control of these potentially deadly viruses, γδT cells act as the first line of defense against microbial infection and help initiate adaptive immune responses during the early stages of viral infection. In this study, we investigated the molecular mechanisms of γδ T cells in response to influenza H5N1 viral infection, We found that recombinant hemagglutinin (rHA) derived from three different strains of influenza H5N 1 viruses elicited the activation of γδ T cells cultured in peripheral blood mononuclear cells (PBMCs). Both the cell surface expression of CD69, an early activation marker on γδ T cells, and the production of interferon-y (IFN-y) were significantly increased. Notably, the rHA protein-induced γδ T-cell activation was not mediated by TCRγδ, NKG2D or pattern recognition receptors (PRRs) or NKp46 receptors. The interaction of rHA proteins with sialic acid receptors may play a critical role in γδ T-cell activation. Our data may provide insight into the mechanisms underlyingγδT-cell activation in response to infection with H5N1 viruses.