The stamping-out strategy has been used to control highly pathogenic avian influenza viruses in many countries,driven by the belief that vaccination would not be successful against such viruses and fears that avian in...The stamping-out strategy has been used to control highly pathogenic avian influenza viruses in many countries,driven by the belief that vaccination would not be successful against such viruses and fears that avian influenza virus in vaccinated birds would evolve more rapidly and pose a greater risk to humans.In this review,we summarize the successes in controlling highly pathogenic avian influenza in China and make suggestions regarding the requirements for vaccine selection and effectiveness.In addition,we present evidence that vaccination of poultry not only eliminates human infection with avian influenza virus,but also significantly reduces and abolishes some harmful characteristics of avian influenza virus.展开更多
The H9N2 subtype of avian influenza virus(AIV)is widely prevalent in poultry and wild birds globally,and has become the predominant subtype circulating in poultry in China.The H9N2 AIV can directly or indirectly(by se...The H9N2 subtype of avian influenza virus(AIV)is widely prevalent in poultry and wild birds globally,and has become the predominant subtype circulating in poultry in China.The H9N2 AIV can directly or indirectly(by serving as a"donor virus")infect humans,posing a significant threat to public health.Currently,there is a lack of in-depth research on the prevalence of H9N2 viruses in Shanxi Province,central China.In this study,we isolated 14 H9N2 AIVs from October 2020 to April 2022 in Shanxi Province,and genetic analysis revealed that these viruses belonged to 7 different genotypes.Our study on animals revealed that the H9N2 strains we identified displayed high transmission efficiency among chicken populations,and exhibited diverse replication abilities within these birds.These viruses could replicate efficiently in the lungs of mice,with one strain also demonstrating the capacity to reproduce in organs like the brain and kidneys.At the cellular level,the replication ability of different H9N2 strains was evaluated using plaque formation assays and multi-step growth curve assays,revealing significant differences in the replication and proliferation efficiency of the various H9N2 viruses at the cellular level.The antigenicity analysis suggested that these isolates could be classified into 2 separate antigenic clusters.Our research provides crucial data to help understand the prevalence and biological characteristics of H9N2 AIVs in central China.It also highlights the necessity of enhancing the surveillance of H9N2 AIVs.展开更多
H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are prote...H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.展开更多
BACKGROUND Most of the first symptoms of avian influenza are respiratory symptoms,and cases with occipital neuralgia as the first manifestation are rarely reported.CASE SUMMARY A middle-aged patient complaining of par...BACKGROUND Most of the first symptoms of avian influenza are respiratory symptoms,and cases with occipital neuralgia as the first manifestation are rarely reported.CASE SUMMARY A middle-aged patient complaining of paroxysmal pain behind the ear was admitted to our hospital.The patient’s condition changed rapidly,and high fever,unexpected respiratory failure,and multiple organ failure developed rapidly.The patient was diagnosed with H7N9 avian influenza based on etiology.CONCLUSION We believe that the etiology of occipital neuralgia is complex and could be the earliest manifestation of severe diseases.The possibility of an infectious disease should be considered when occipital neuralgia is accompanied by fever.Avian influenza is one of these causative agents.展开更多
Five monoclonal antibodies(Mabs) to nuclear protein of avain influenza virus(AIV) were developed by syncretizing SP 2/0 and the spleen cells from BALB of mice immuized with H9 subtype AIV. Specificity of these Mab...Five monoclonal antibodies(Mabs) to nuclear protein of avain influenza virus(AIV) were developed by syncretizing SP 2/0 and the spleen cells from BALB of mice immuized with H9 subtype AIV. Specificity of these Mabs were identified by immunofluorescent assay(IFA) and enzyme linked immunosorbent assay (ELISA). These five Mabs which were named as AIV-NP-2C3, AIV-NP-6A5, AIV-NP-3 H9, AIV-NP-7B4, AIV-NP-2H4 could react with all viruses of AIV-H9 strains in tests. The result of Western blotting showed that only the 60 ku protein antigen of AIV-H9 could be recognized by the Mabs but never recognized by New castle disease virus, REV and infectious bursa disease virus. The result of preliminary application showed that avian influenza viruses could be deetected bv Mabs in IFA and ELISA. All these Mabs will probably play important roles in preventing and monitoring avian influenza viruses.展开更多
[Objective] The research aimed to design primers that are suitable for detecting H5 and H7 subtypes of avian influenza virus (AIV) ; [Method] DNAStar was used to analyze the homology of the sequences of H5 and H7 su...[Objective] The research aimed to design primers that are suitable for detecting H5 and H7 subtypes of avian influenza virus (AIV) ; [Method] DNAStar was used to analyze the homology of the sequences of H5 and H7 subtypes of AIV accessed in GenBank, and design primers( by Primer Premier 5.0) on high homologous region of these sequences, and then amplified by RT-PCR. [Result] The multiplex RT-PCR amplification, agarose gel electrophoresis and sequencing results showed that the self-designed primers are successful for detecting AIV. [Conclusion] It is feasible to rapidly diagnose AIV through this method.展开更多
[ Objective] The study aimed to understand the genetic characters of H9N2 subtype avian influenza viruses isolated in Belling area. [ Method] HA genes of three H9N2 subtype avian influenza viruses A/Chicken/Beijing/xu...[ Objective] The study aimed to understand the genetic characters of H9N2 subtype avian influenza viruses isolated in Belling area. [ Method] HA genes of three H9N2 subtype avian influenza viruses A/Chicken/Beijing/xu/00, A/Chicken/Beijing/bei/00 and A/Chicken/Beijing/ liu/00 were amplified by RT-PCR and then sequenced. [ Result] The results of phylogenetic analysis showed that A/Chicken/Beijing/xu/00, A/ Chicken/Beijing/bei/00 and A/Chicken/Beijing/liu/00 shared the nucleotide homologies of 84.8% ( Dk/HK/Y439/97 ) -98.0% ( Ck/GX17/00 ), 85.1% (Dk/HK/Y439/97) - 99.1% ( Ck/GXl 7/00), 90.7% ( Ck/BJ/3/01 ) - 99.1% (Ck/GX17/00) with the isolates from Hongkong and other are- as of Chinese Mainland respectively. At the same time, the analysis of amino acid indicated that the three isolates belonged to low pathogenic H9N2 isolates of avian origin. The 226^th amino acid of them were L ( Leu), suggesting their high binding affinity to human cells. There were seven glyco- sylation sites in HA protein, five from HA1 and two from HA2. [ Cenclusien] By analysis at molecular level, it could be concluded that A/Chicken/ Beijing/xu/00, A/Chicken/Beijing/bei/00 and A/Chicken/Beijing/liu/00 were low pathogenic H9N2 isolates of avian origin.展开更多
[Objective] The study aimed to investigate the genetic variation characters of entire sequences between two H9N2 subtype avian influenza virus strains and other reference strains.[Method] The entire sequences of 8 gen...[Objective] The study aimed to investigate the genetic variation characters of entire sequences between two H9N2 subtype avian influenza virus strains and other reference strains.[Method] The entire sequences of 8 genes were obtained by using RT-PCR,and these sequences were analyzed with that of six H9N2 subtype avian influenza isolates in homology comparison and genetic evolution relation.[Result] The results showed that the nucleotide sequence of entire gene of the strain shared 91.1%-95.4% homology with other seven reference strains,and PG08 shared the highest homology 91.3% with C/BJ/1/94;ZD06 shared the highest homology 92.3% with D/HK/Y280/97.HA cleavage sites of two H9N2 subtype avian influenza virus isolated strains were PARSSR/GLF,typical of mildly pathogenic avian influenza virus.[Conclusion] Phylogenetic tree for entire gene of eight strains showed that the genetic relationship was the closest between ZD06 and C/Pak/2/99 strains,which belonged to the Eurasian lineage;PG08 shared the highest homology 91.3% with ZD06,it may be the product of gene rearrangements of other sub-lines.展开更多
[ Objective] To determine the HA gene sequences of four H9N2 Avian influenza virus (AIV) strains and carry out comparative analysis so as to understand the difference and variation pattern of each strain from the an...[ Objective] To determine the HA gene sequences of four H9N2 Avian influenza virus (AIV) strains and carry out comparative analysis so as to understand the difference and variation pattern of each strain from the angle of molecular biology and to know the distribution and epidemic law of H9N2 AIV. [Method] One pair of primers was designed referring to HA gene sequences of H9N2 AIV. The HA genes of A/Chicken/Hebei/WD/98 (H9N2; WD98 for short), A/Chicken/Hebei/ZD/04 (H9N2; ZD04 for short)), A/Chicken/Beijing/MY/06 (H9N2; MY06 for short) ), and A/Chicken/Beijing/PG/08 (H9N2; PG08 for short)) were amplified, cloned and sequenced. Then the HA gene sequences of these strains were compared with that of 10 H9N2 AIV stains in GenBank. [Result] The ORF of HA genes of the four strains was 1 683 bp in size, encoding 516 amino acids. The HA gene sequences of the four strains, WD98, MY06, PG08, and ZD04, were 82.6% -95.1%, 83.0% -99.0%, 82.7% -95.5%, and 81.3% -95.7% homologous to that of the 10 H9N2 AIV stains, respectively. And the homology of amino acid was respectively 86.6% -96.3%, 86.6% -97.9%, 87.0% -97.1%, and 86.9% -97.3%. [ Conclusion] The HA gene has greatly high homology among different strains.展开更多
Wild birds of the orders Anseriformes and Charadriiformes represent a natural reservoir of low pathogenic avian influenza(LPAI) viruses(family Orthomyxoviridae).Wild geese(order Anseriformes)relating to waterfowls und...Wild birds of the orders Anseriformes and Charadriiformes represent a natural reservoir of low pathogenic avian influenza(LPAI) viruses(family Orthomyxoviridae).Wild geese(order Anseriformes)relating to waterfowls undertake extensive migration flights reaching thousands of kilometers.Isolation of the avian influenza virus(AIV) from wild geese is quite low or absent.The aims of this study are to monitor the AIV in different wild goose species,nesting on Russian territory and the Tibet Plateau and to analyze the derived data for the purpose of determining the role of these wild bird species in spreading pathogens.In our study 3245 samples from nine wild goose species in nine regions of Russia and on the territory of the Tibet Plateau(the Xizang Autonomous Region) were tested and no AIV were detected.Our study shows the non-essential role of wild geese in the spread of the AIV over long distances and reaches theconclusion that geese are probably not natural reservoirs for the primary viruses.However,further inquiry of AIV in wild goose populations is required.Studies of wild geese and AIV ecology will allow us to obtainmore information about pathogen-host relationships and to make arrangements for the maintenance ofwild goose populations.展开更多
[Objective] The aim is to develop the piezoelectric immunosensor to detect H9-subtype avian influenza virus(AIV).[Method] The immunosensor chip was constructed by self-assembling mercaptopmpionic acid(MPA) to be m...[Objective] The aim is to develop the piezoelectric immunosensor to detect H9-subtype avian influenza virus(AIV).[Method] The immunosensor chip was constructed by self-assembling mercaptopmpionic acid(MPA) to be monolayer on the silver-coated electrode of quartz crystal and coupling the monoclonal antibody to H9 subtype AIV with N-ethy-N'-(3-dimethyl aminopropyl)carbodiimide hydrochloride(EDC) and N-hydroxysuccinimide(NHS).The immunosensor to detect H9 subtype AIV was established.[Result] The results showed that the immunosensor displayed better specificity to H9 AIV and had no response to H5AIV and NDV when it was used for detection.The sensitivity test indicated the detection sensitivity for the H9 subtype AIV could reach 20-100 EID50.[Conclusion] The research provided a foundation for further research on the immunosensor for detecting AIV and it could be a new approach to detect other related viruses.展开更多
This study investigated the humoral immunization of Astragalus polysaccharide (APS) against HgN2 avian influenza virus (H9N2 AIV) infection in chickens. The effects of APS treatment on H9N2 infection was evaluated...This study investigated the humoral immunization of Astragalus polysaccharide (APS) against HgN2 avian influenza virus (H9N2 AIV) infection in chickens. The effects of APS treatment on H9N2 infection was evaluated by an Mqq- [3(4, 5-dimethylthiazol-2-yl)-2, 3-diphenyl tetrazolium bromide] assay and analysis of MFIC and cytokine mRNA expression. The effect on lymphocyte and serum antibody titers in vivo was also investigated. IL-4, IL-6, IL-10, LITAF, IL-12 and antibody titers to H9N2 AIV wet enhanced in the first week after APS treatment. The results indicated that APS treatment reduces H9N2 AIV replication and promotes early humoral immune responses in young chickens.This study investigated the humoral immunization of Astragalus polysaccharide (APS) against HgN2 avian influenza virus (H9N2 AIV) infection in chickens. The effects of APS treatment on HgN2 infection was evaluated by an M]q- [3(4, 5-dimethylthiazol-2-yl)-2, 3-diphenyl tetrazolium bromide] assay and analysis of MHC and cytokine mRNA expression. The effect on lymphocyte and serum antibody titers in vivo was also investigated. IL-4, IL-6, IL-10, LITAF, IL-12 and antibody titers to PIgN2 AIV were enhanced in the first week after APS treatment. The results indicated that APS treatment reduces HgN2 AIV replication and promotes early humoral immune responses in young chickens.展开更多
A novel avian influenza A (H7N9) virus was discovered in February 2013 in China and has resulted in more than 100 comfirmed human infections including 26 fatal cases as of May 2, 2013. The situation raises many ur- ...A novel avian influenza A (H7N9) virus was discovered in February 2013 in China and has resulted in more than 100 comfirmed human infections including 26 fatal cases as of May 2, 2013. The situation raises many ur- gent questions and global public health concerns. In this study, epidemiologic characteristics of infected human cases in Jiangsu province were analyzed and risk assessment was undertaken based on the information available. Briefly, it is highly unlikely that a pandemic of human infection with avian influenza A (HTN9) virus will happen in Jiangsu Province in the near future. Iia the end, some measures are recommended to prevent the situation from becoming worse.展开更多
In recent years,the avian influenza has brought not only serious economic loss to the poultry industry in China but also a serious threat to human health because of the avian influenza virus(AIV) gene recombination an...In recent years,the avian influenza has brought not only serious economic loss to the poultry industry in China but also a serious threat to human health because of the avian influenza virus(AIV) gene recombination and reassortment.Until now,traditional RT-PCR,fluorescence RT-PCR and virus isolation identification have been developed and utilized to detect AIV,but these methods require high-level instruments and experimental conditions,not suitable for the rapid detection in field and farms.In order to develop a rapid,sensitive and practical method to detect and identify AIV subtypes,4 specific primers to the conserved region of AIV M gene were designed and a loop-mediated isothermal amplification(RT-LAMP) method was established.Using this method,the M gene of H1–H16 subtypes of AIV were amplified in 30 min with a water bath and all 16 H subtypes of AIV were able to be visually identified in presence of fluorescein,without cross reaction with other susceptible avian viruses.In addition,the detection limit of the common H1,H5,H7,and H9 AIV subtypes with the RT-LAMP method was 0.1 PFU(plaque-forming unit),which was 10 times more sensitive than that using the routine RT-PCR.Further comparative tests found that the positivity rate of RT-LAMP on detecting clinical samples was 4.18%(14/335) comparing with 3.58%(12/335) from real-time RT-PCR.All these results suggested that the RT-LAMP method can specifically detect and identify AIV with high sensitivity and can be considered as a fast,convenient and practical method for the clinic test and epidemiological investigation of AIV.展开更多
We have developed a rapid microarray-based assay for the reliable detection of H5, H7 and H9 subtypes of avian influenza virus (AIV). The strains used in the experiment were A/Goose/Guangdong/1/96 (H5N1), A/Africa...We have developed a rapid microarray-based assay for the reliable detection of H5, H7 and H9 subtypes of avian influenza virus (AIV). The strains used in the experiment were A/Goose/Guangdong/1/96 (H5N1), A/African starling/983/79 (H7N1) and A/Turkey/Wiscosin/1/66 (H9N2). The capture DNAs clones which encoding approximate 500-bp avian influenza virus gene fragments obtained by RT-PCR, were spotted on a slide-bound microarray. Cy5-labeled fluorescent cDNAs, which generated from virus RNA during reverse transcription were hybridized to these capture DNAs. These capture DNAs contained multiple fragments of the hemagglutinin and matrix protein genes of AIV respectively, for subtyping and typing AIV. The arrays were scanned to determine the probe binding sites. The hybridization pattern agreed approximately with the known grid location of each target. The results show that DNA microarray technology provides a useful diagnostic method for AIV.展开更多
A Objective3 This study was to understand the genetic variation characters of the H9N2 subtype avian influenza virus isolate (A/Chicken/ Hebei/WD/98, abbreviated as WD98) by comparing with other reference strains. I...A Objective3 This study was to understand the genetic variation characters of the H9N2 subtype avian influenza virus isolate (A/Chicken/ Hebei/WD/98, abbreviated as WD98) by comparing with other reference strains. I-Method3 Eight complete genes were amplified by RT-PCR and sequenced. The homology and genetic evolution relationship were analyzed between these sequences and that of the seven reference strains. [Result] The whole genomic sequence of WD98 strain was 91.1% -95.8% homologous to that of seven reference strains tested. This isolate shared the highest homology (95.8%) to D/HK/Y280/97 and the lowest homology (91.1% ) to C/Pak/2/99. The HA cleavage site of the WD98 strain was R-S-S-R G, and the 226th amino acid at receptor-binding site was Gin. [ Condmion] WD98 strain belongs to mildly pathogenic avian in- fluenza virus and may not infect human. The genetic relationship is the closest between A/Chicken/Hebei/wD/98 and A/duck/HongKong/Y280/ 97, both of which belong to the sub-line of A/Chicken/Beijing/1/94 in Eurasian line. And A/Chicken/Hebei/WD/98 and A/Chicken/Beijing/1/94 are genetically distant within the same sub-line.展开更多
Objective To recover broad-neutralizing monoclonal antibodies(Bn Abs)from avian influenza A(H5N1)virus infection cases and investigate their genetic and functional features.Methods We screened the Abs repertoires of e...Objective To recover broad-neutralizing monoclonal antibodies(Bn Abs)from avian influenza A(H5N1)virus infection cases and investigate their genetic and functional features.Methods We screened the Abs repertoires of expanded B cells circulating in the peripheral blood of H5N1 patients.The genetic basis,biological functions,and epitopes of the obtained Bn Abs were assessed and modeled.Results Two Bn Abs,2-12 D5,and 3-37 G7.1,were respectively obtained from two human H5N1 cases on days 12 and 21 after disease onset.Both Abs demonstrated cross-neutralizing and Ab-dependent cellular cytotoxicity(ADCC)activity.Albeit derived from distinct Ab lineages,i.e.,V^H1-69-D2-15-JH^4(2-12D5)and V^H1-2-D3-9-JH^5(3-32 G7.1),the Bn Abs were directed toward CR6261-like epitopes in the HA stem,and HA2 I45 in the hydrophobic pocket was the critical residue for their binding.Signature motifs for binding with the HA stem,namely,IFY in VH1-69-encoded Abs and LXYFXW in D3-9-encoded Abs,were also observed in 2-12D5 and 3-32 G7.1,respectively.Conclusions Cross-reactive B cells of different germline origins could be activated and re-circulated by avian influenza virus.The HA stem epitopes targeted by the Bn Abs,and the two Ab-encoding genes usage implied the VH1-69 and D3-9 are the ideal candidates triggered by influenza virus for vaccine development.展开更多
The DNA vaccine pCIHA5 encoding hemagglutinin can protect SPF chicken against lethal H5N1 avian influenza virus challenge. The more characters about its protection efficacity were studied. The protective rates in 10...The DNA vaccine pCIHA5 encoding hemagglutinin can protect SPF chicken against lethal H5N1 avian influenza virus challenge. The more characters about its protection efficacity were studied. The protective rates in 10, 40, 70, 100 and 150 μg groups immunized with pCIHA5 were 12.5 (1/8), 58.3 (7/12), 72.7 (8/11), 50.0 (6/12) and 66.7% (8/12), respectively. The protective rates in 5, 20, 35 and 50 μg groups were 145.5 (5/11), 58.3 (7/12), 58.3 (7/12) and 91.7% (11/12), respectively. The 70, 100 and 5 μg groups have virus shedding of 1/8, 2/6 and 1/5. Though the inactived oil-emulsion vaccine has high HI antibody titers and 100% protective rate, the AGP antibody could be detected after vaccination. Results show that the pCIHA5 is fit to boost by intramuscular injection. This would be useful to the study on gene engineering vaccine of avian influenza virus.展开更多
HA Gene of H9N2. sub-type avian influenza virus from three strains in different times was amplified, purified and then sequenced. The results of its sequence analysis showed that the whole length of the amplified HA G...HA Gene of H9N2. sub-type avian influenza virus from three strains in different times was amplified, purified and then sequenced. The results of its sequence analysis showed that the whole length of the amplified HA Gene was 1 683 bp, encoding 560 amino acids. The amino acid sequence of three virulent strains at cleavage site was R-S-S-R, which was low-pathogenicity strain. According to the amino acid sequence of the isolated strains, there were 7 potential glycosylation sites, and the receptor-binding site was the specific sequence of the avian-derived influenza virus. Amino acids on the left edge of receptor-binding site were all NGQQG, while amino acids on the right edge of receptor-binding site were GTSKA. From the comparative sequence analysis of HA Gene from some referenced strains, the results indicated that nucleotide and amino acid homology between isolated strains and referenced strains was higher. Evolutionary tree analysis showed that three strains were all Eurasian species, and there was a close relationship with the representative strains of A / duck / Hong Kong/Y280/97.展开更多
基金This work was supported by the National Key Research andDevelopment Programof China(2021YFD1800200 and2021YFC2301700).
文摘The stamping-out strategy has been used to control highly pathogenic avian influenza viruses in many countries,driven by the belief that vaccination would not be successful against such viruses and fears that avian influenza virus in vaccinated birds would evolve more rapidly and pose a greater risk to humans.In this review,we summarize the successes in controlling highly pathogenic avian influenza in China and make suggestions regarding the requirements for vaccine selection and effectiveness.In addition,we present evidence that vaccination of poultry not only eliminates human infection with avian influenza virus,but also significantly reduces and abolishes some harmful characteristics of avian influenza virus.
基金Fundamental Research Program of Shanxi Province,China(202103021224156)National Natural Science Foundation of China(32202788)+5 种基金Special Research Fund of Shanxi Agricultural University for High-level Talents,China(2021XG004)Science and Technology Innovation Program of Shanxi Agricultural University,China(2021BQ78)special fund for Science and Technology Innovation Teams of Shanxi Province,China(202304051001041)?Shanxi Province Excellent Doctoral Work Award-Scientific Research Project,China(SXBYKY2021005,SXBYKY2021063,SXBYKY2022014)the Fund for Shanxi“1331 Project”,China(20211331-13)earmarked fund for Modern Agro-industry Technology Research System of Shanxi Province,China.
文摘The H9N2 subtype of avian influenza virus(AIV)is widely prevalent in poultry and wild birds globally,and has become the predominant subtype circulating in poultry in China.The H9N2 AIV can directly or indirectly(by serving as a"donor virus")infect humans,posing a significant threat to public health.Currently,there is a lack of in-depth research on the prevalence of H9N2 viruses in Shanxi Province,central China.In this study,we isolated 14 H9N2 AIVs from October 2020 to April 2022 in Shanxi Province,and genetic analysis revealed that these viruses belonged to 7 different genotypes.Our study on animals revealed that the H9N2 strains we identified displayed high transmission efficiency among chicken populations,and exhibited diverse replication abilities within these birds.These viruses could replicate efficiently in the lungs of mice,with one strain also demonstrating the capacity to reproduce in organs like the brain and kidneys.At the cellular level,the replication ability of different H9N2 strains was evaluated using plaque formation assays and multi-step growth curve assays,revealing significant differences in the replication and proliferation efficiency of the various H9N2 viruses at the cellular level.The antigenicity analysis suggested that these isolates could be classified into 2 separate antigenic clusters.Our research provides crucial data to help understand the prevalence and biological characteristics of H9N2 AIVs in central China.It also highlights the necessity of enhancing the surveillance of H9N2 AIVs.
基金supported by the earmarked fund for China Agriculture Research System(CARS-40)the Key Research and Development Project of Yangzhou(Modern Agriculture),China(YZ2022052)the‘‘High-end Talent Support Program’’of Yangzhou University,China。
文摘H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.
文摘BACKGROUND Most of the first symptoms of avian influenza are respiratory symptoms,and cases with occipital neuralgia as the first manifestation are rarely reported.CASE SUMMARY A middle-aged patient complaining of paroxysmal pain behind the ear was admitted to our hospital.The patient’s condition changed rapidly,and high fever,unexpected respiratory failure,and multiple organ failure developed rapidly.The patient was diagnosed with H7N9 avian influenza based on etiology.CONCLUSION We believe that the etiology of occipital neuralgia is complex and could be the earliest manifestation of severe diseases.The possibility of an infectious disease should be considered when occipital neuralgia is accompanied by fever.Avian influenza is one of these causative agents.
基金Supported by the National Key Technologies Research and Develop-ment Program of China during the 10th Five-Year Plan Period(2004BA519A05)Technologies Research and Development Program of China during the 10th Five-Year Plan Period in Jiangsu Province(BE2002346).~~
文摘Five monoclonal antibodies(Mabs) to nuclear protein of avain influenza virus(AIV) were developed by syncretizing SP 2/0 and the spleen cells from BALB of mice immuized with H9 subtype AIV. Specificity of these Mabs were identified by immunofluorescent assay(IFA) and enzyme linked immunosorbent assay (ELISA). These five Mabs which were named as AIV-NP-2C3, AIV-NP-6A5, AIV-NP-3 H9, AIV-NP-7B4, AIV-NP-2H4 could react with all viruses of AIV-H9 strains in tests. The result of Western blotting showed that only the 60 ku protein antigen of AIV-H9 could be recognized by the Mabs but never recognized by New castle disease virus, REV and infectious bursa disease virus. The result of preliminary application showed that avian influenza viruses could be deetected bv Mabs in IFA and ELISA. All these Mabs will probably play important roles in preventing and monitoring avian influenza viruses.
基金Supported by Important Project of Jinlin Provincial Science and Technology Department(20065020)~~
文摘[Objective] The research aimed to design primers that are suitable for detecting H5 and H7 subtypes of avian influenza virus (AIV) ; [Method] DNAStar was used to analyze the homology of the sequences of H5 and H7 subtypes of AIV accessed in GenBank, and design primers( by Primer Premier 5.0) on high homologous region of these sequences, and then amplified by RT-PCR. [Result] The multiplex RT-PCR amplification, agarose gel electrophoresis and sequencing results showed that the self-designed primers are successful for detecting AIV. [Conclusion] It is feasible to rapidly diagnose AIV through this method.
文摘[ Objective] The study aimed to understand the genetic characters of H9N2 subtype avian influenza viruses isolated in Belling area. [ Method] HA genes of three H9N2 subtype avian influenza viruses A/Chicken/Beijing/xu/00, A/Chicken/Beijing/bei/00 and A/Chicken/Beijing/ liu/00 were amplified by RT-PCR and then sequenced. [ Result] The results of phylogenetic analysis showed that A/Chicken/Beijing/xu/00, A/ Chicken/Beijing/bei/00 and A/Chicken/Beijing/liu/00 shared the nucleotide homologies of 84.8% ( Dk/HK/Y439/97 ) -98.0% ( Ck/GX17/00 ), 85.1% (Dk/HK/Y439/97) - 99.1% ( Ck/GXl 7/00), 90.7% ( Ck/BJ/3/01 ) - 99.1% (Ck/GX17/00) with the isolates from Hongkong and other are- as of Chinese Mainland respectively. At the same time, the analysis of amino acid indicated that the three isolates belonged to low pathogenic H9N2 isolates of avian origin. The 226^th amino acid of them were L ( Leu), suggesting their high binding affinity to human cells. There were seven glyco- sylation sites in HA protein, five from HA1 and two from HA2. [ Cenclusien] By analysis at molecular level, it could be concluded that A/Chicken/ Beijing/xu/00, A/Chicken/Beijing/bei/00 and A/Chicken/Beijing/liu/00 were low pathogenic H9N2 isolates of avian origin.
基金Supported by a Sub-project of 973 Program of China(2005CB523001)~~
文摘[Objective] The study aimed to investigate the genetic variation characters of entire sequences between two H9N2 subtype avian influenza virus strains and other reference strains.[Method] The entire sequences of 8 genes were obtained by using RT-PCR,and these sequences were analyzed with that of six H9N2 subtype avian influenza isolates in homology comparison and genetic evolution relation.[Result] The results showed that the nucleotide sequence of entire gene of the strain shared 91.1%-95.4% homology with other seven reference strains,and PG08 shared the highest homology 91.3% with C/BJ/1/94;ZD06 shared the highest homology 92.3% with D/HK/Y280/97.HA cleavage sites of two H9N2 subtype avian influenza virus isolated strains were PARSSR/GLF,typical of mildly pathogenic avian influenza virus.[Conclusion] Phylogenetic tree for entire gene of eight strains showed that the genetic relationship was the closest between ZD06 and C/Pak/2/99 strains,which belonged to the Eurasian lineage;PG08 shared the highest homology 91.3% with ZD06,it may be the product of gene rearrangements of other sub-lines.
基金Supported by subproject of Major State Basic Research Development Program of China (2005CB523001)~~
文摘[ Objective] To determine the HA gene sequences of four H9N2 Avian influenza virus (AIV) strains and carry out comparative analysis so as to understand the difference and variation pattern of each strain from the angle of molecular biology and to know the distribution and epidemic law of H9N2 AIV. [Method] One pair of primers was designed referring to HA gene sequences of H9N2 AIV. The HA genes of A/Chicken/Hebei/WD/98 (H9N2; WD98 for short), A/Chicken/Hebei/ZD/04 (H9N2; ZD04 for short)), A/Chicken/Beijing/MY/06 (H9N2; MY06 for short) ), and A/Chicken/Beijing/PG/08 (H9N2; PG08 for short)) were amplified, cloned and sequenced. Then the HA gene sequences of these strains were compared with that of 10 H9N2 AIV stains in GenBank. [Result] The ORF of HA genes of the four strains was 1 683 bp in size, encoding 516 amino acids. The HA gene sequences of the four strains, WD98, MY06, PG08, and ZD04, were 82.6% -95.1%, 83.0% -99.0%, 82.7% -95.5%, and 81.3% -95.7% homologous to that of the 10 H9N2 AIV stains, respectively. And the homology of amino acid was respectively 86.6% -96.3%, 86.6% -97.9%, 87.0% -97.1%, and 86.9% -97.3%. [ Conclusion] The HA gene has greatly high homology among different strains.
基金supported by the Russian Government(Government Project#11.519.11.2014)the Bio Industry Initiative(BII) USA (ISTC#3436)
文摘Wild birds of the orders Anseriformes and Charadriiformes represent a natural reservoir of low pathogenic avian influenza(LPAI) viruses(family Orthomyxoviridae).Wild geese(order Anseriformes)relating to waterfowls undertake extensive migration flights reaching thousands of kilometers.Isolation of the avian influenza virus(AIV) from wild geese is quite low or absent.The aims of this study are to monitor the AIV in different wild goose species,nesting on Russian territory and the Tibet Plateau and to analyze the derived data for the purpose of determining the role of these wild bird species in spreading pathogens.In our study 3245 samples from nine wild goose species in nine regions of Russia and on the territory of the Tibet Plateau(the Xizang Autonomous Region) were tested and no AIV were detected.Our study shows the non-essential role of wild geese in the spread of the AIV over long distances and reaches theconclusion that geese are probably not natural reservoirs for the primary viruses.However,further inquiry of AIV in wild goose populations is required.Studies of wild geese and AIV ecology will allow us to obtainmore information about pathogen-host relationships and to make arrangements for the maintenance ofwild goose populations.
基金Supported by the Supporting Program of the"Eleventh Five-year Plan"for Sci&Tech Research of China(2006BAK20A29)Strategical Project for Science and Technology of Guangdong Province(2004A2090102)~~
文摘[Objective] The aim is to develop the piezoelectric immunosensor to detect H9-subtype avian influenza virus(AIV).[Method] The immunosensor chip was constructed by self-assembling mercaptopmpionic acid(MPA) to be monolayer on the silver-coated electrode of quartz crystal and coupling the monoclonal antibody to H9 subtype AIV with N-ethy-N'-(3-dimethyl aminopropyl)carbodiimide hydrochloride(EDC) and N-hydroxysuccinimide(NHS).The immunosensor to detect H9 subtype AIV was established.[Result] The results showed that the immunosensor displayed better specificity to H9 AIV and had no response to H5AIV and NDV when it was used for detection.The sensitivity test indicated the detection sensitivity for the H9 subtype AIV could reach 20-100 EID50.[Conclusion] The research provided a foundation for further research on the immunosensor for detecting AIV and it could be a new approach to detect other related viruses.
基金supported by funds provided by South China Agricultural University and Guangzhou work team project(No 2011A020102009)
文摘This study investigated the humoral immunization of Astragalus polysaccharide (APS) against HgN2 avian influenza virus (H9N2 AIV) infection in chickens. The effects of APS treatment on H9N2 infection was evaluated by an Mqq- [3(4, 5-dimethylthiazol-2-yl)-2, 3-diphenyl tetrazolium bromide] assay and analysis of MFIC and cytokine mRNA expression. The effect on lymphocyte and serum antibody titers in vivo was also investigated. IL-4, IL-6, IL-10, LITAF, IL-12 and antibody titers to H9N2 AIV wet enhanced in the first week after APS treatment. The results indicated that APS treatment reduces H9N2 AIV replication and promotes early humoral immune responses in young chickens.This study investigated the humoral immunization of Astragalus polysaccharide (APS) against HgN2 avian influenza virus (H9N2 AIV) infection in chickens. The effects of APS treatment on HgN2 infection was evaluated by an M]q- [3(4, 5-dimethylthiazol-2-yl)-2, 3-diphenyl tetrazolium bromide] assay and analysis of MHC and cytokine mRNA expression. The effect on lymphocyte and serum antibody titers in vivo was also investigated. IL-4, IL-6, IL-10, LITAF, IL-12 and antibody titers to PIgN2 AIV were enhanced in the first week after APS treatment. The results indicated that APS treatment reduces HgN2 AIV replication and promotes early humoral immune responses in young chickens.
基金supported by the Jiangsu Province Health Development Project with Science and Education (No.ZX201109 and RC2011085)the Research Projects of Jiangsu Preventive Medicine (No.YZ201020)
文摘A novel avian influenza A (H7N9) virus was discovered in February 2013 in China and has resulted in more than 100 comfirmed human infections including 26 fatal cases as of May 2, 2013. The situation raises many ur- gent questions and global public health concerns. In this study, epidemiologic characteristics of infected human cases in Jiangsu province were analyzed and risk assessment was undertaken based on the information available. Briefly, it is highly unlikely that a pandemic of human infection with avian influenza A (HTN9) virus will happen in Jiangsu Province in the near future. Iia the end, some measures are recommended to prevent the situation from becoming worse.
基金supported by the Special Foundation for State Basic Research Program of China(2013FY113300-8)the National Key R&D Program of China(2016YFD0500800)
文摘In recent years,the avian influenza has brought not only serious economic loss to the poultry industry in China but also a serious threat to human health because of the avian influenza virus(AIV) gene recombination and reassortment.Until now,traditional RT-PCR,fluorescence RT-PCR and virus isolation identification have been developed and utilized to detect AIV,but these methods require high-level instruments and experimental conditions,not suitable for the rapid detection in field and farms.In order to develop a rapid,sensitive and practical method to detect and identify AIV subtypes,4 specific primers to the conserved region of AIV M gene were designed and a loop-mediated isothermal amplification(RT-LAMP) method was established.Using this method,the M gene of H1–H16 subtypes of AIV were amplified in 30 min with a water bath and all 16 H subtypes of AIV were able to be visually identified in presence of fluorescein,without cross reaction with other susceptible avian viruses.In addition,the detection limit of the common H1,H5,H7,and H9 AIV subtypes with the RT-LAMP method was 0.1 PFU(plaque-forming unit),which was 10 times more sensitive than that using the routine RT-PCR.Further comparative tests found that the positivity rate of RT-LAMP on detecting clinical samples was 4.18%(14/335) comparing with 3.58%(12/335) from real-time RT-PCR.All these results suggested that the RT-LAMP method can specifically detect and identify AIV with high sensitivity and can be considered as a fast,convenient and practical method for the clinic test and epidemiological investigation of AIV.
基金Chinese National S&T“1Oth Five-Year"Plan (2004BA519A23) the National Natural Science Foundation ofChina (30200201 , 30440009).
文摘We have developed a rapid microarray-based assay for the reliable detection of H5, H7 and H9 subtypes of avian influenza virus (AIV). The strains used in the experiment were A/Goose/Guangdong/1/96 (H5N1), A/African starling/983/79 (H7N1) and A/Turkey/Wiscosin/1/66 (H9N2). The capture DNAs clones which encoding approximate 500-bp avian influenza virus gene fragments obtained by RT-PCR, were spotted on a slide-bound microarray. Cy5-labeled fluorescent cDNAs, which generated from virus RNA during reverse transcription were hybridized to these capture DNAs. These capture DNAs contained multiple fragments of the hemagglutinin and matrix protein genes of AIV respectively, for subtyping and typing AIV. The arrays were scanned to determine the probe binding sites. The hybridization pattern agreed approximately with the known grid location of each target. The results show that DNA microarray technology provides a useful diagnostic method for AIV.
基金supported by subproject of National Program on Key Basic Research Project (973 Program )(2005CB523001)
文摘A Objective3 This study was to understand the genetic variation characters of the H9N2 subtype avian influenza virus isolate (A/Chicken/ Hebei/WD/98, abbreviated as WD98) by comparing with other reference strains. I-Method3 Eight complete genes were amplified by RT-PCR and sequenced. The homology and genetic evolution relationship were analyzed between these sequences and that of the seven reference strains. [Result] The whole genomic sequence of WD98 strain was 91.1% -95.8% homologous to that of seven reference strains tested. This isolate shared the highest homology (95.8%) to D/HK/Y280/97 and the lowest homology (91.1% ) to C/Pak/2/99. The HA cleavage site of the WD98 strain was R-S-S-R G, and the 226th amino acid at receptor-binding site was Gin. [ Condmion] WD98 strain belongs to mildly pathogenic avian in- fluenza virus and may not infect human. The genetic relationship is the closest between A/Chicken/Hebei/wD/98 and A/duck/HongKong/Y280/ 97, both of which belong to the sub-line of A/Chicken/Beijing/1/94 in Eurasian line. And A/Chicken/Hebei/WD/98 and A/Chicken/Beijing/1/94 are genetically distant within the same sub-line.
基金supported by the General Program of the National Natural Science Foundation of China[No.31570162]the National Key Research Program[No.2016YFC1200200].
文摘Objective To recover broad-neutralizing monoclonal antibodies(Bn Abs)from avian influenza A(H5N1)virus infection cases and investigate their genetic and functional features.Methods We screened the Abs repertoires of expanded B cells circulating in the peripheral blood of H5N1 patients.The genetic basis,biological functions,and epitopes of the obtained Bn Abs were assessed and modeled.Results Two Bn Abs,2-12 D5,and 3-37 G7.1,were respectively obtained from two human H5N1 cases on days 12 and 21 after disease onset.Both Abs demonstrated cross-neutralizing and Ab-dependent cellular cytotoxicity(ADCC)activity.Albeit derived from distinct Ab lineages,i.e.,V^H1-69-D2-15-JH^4(2-12D5)and V^H1-2-D3-9-JH^5(3-32 G7.1),the Bn Abs were directed toward CR6261-like epitopes in the HA stem,and HA2 I45 in the hydrophobic pocket was the critical residue for their binding.Signature motifs for binding with the HA stem,namely,IFY in VH1-69-encoded Abs and LXYFXW in D3-9-encoded Abs,were also observed in 2-12D5 and 3-32 G7.1,respectively.Conclusions Cross-reactive B cells of different germline origins could be activated and re-circulated by avian influenza virus.The HA stem epitopes targeted by the Bn Abs,and the two Ab-encoding genes usage implied the VH1-69 and D3-9 are the ideal candidates triggered by influenza virus for vaccine development.
文摘The DNA vaccine pCIHA5 encoding hemagglutinin can protect SPF chicken against lethal H5N1 avian influenza virus challenge. The more characters about its protection efficacity were studied. The protective rates in 10, 40, 70, 100 and 150 μg groups immunized with pCIHA5 were 12.5 (1/8), 58.3 (7/12), 72.7 (8/11), 50.0 (6/12) and 66.7% (8/12), respectively. The protective rates in 5, 20, 35 and 50 μg groups were 145.5 (5/11), 58.3 (7/12), 58.3 (7/12) and 91.7% (11/12), respectively. The 70, 100 and 5 μg groups have virus shedding of 1/8, 2/6 and 1/5. Though the inactived oil-emulsion vaccine has high HI antibody titers and 100% protective rate, the AGP antibody could be detected after vaccination. Results show that the pCIHA5 is fit to boost by intramuscular injection. This would be useful to the study on gene engineering vaccine of avian influenza virus.
文摘HA Gene of H9N2. sub-type avian influenza virus from three strains in different times was amplified, purified and then sequenced. The results of its sequence analysis showed that the whole length of the amplified HA Gene was 1 683 bp, encoding 560 amino acids. The amino acid sequence of three virulent strains at cleavage site was R-S-S-R, which was low-pathogenicity strain. According to the amino acid sequence of the isolated strains, there were 7 potential glycosylation sites, and the receptor-binding site was the specific sequence of the avian-derived influenza virus. Amino acids on the left edge of receptor-binding site were all NGQQG, while amino acids on the right edge of receptor-binding site were GTSKA. From the comparative sequence analysis of HA Gene from some referenced strains, the results indicated that nucleotide and amino acid homology between isolated strains and referenced strains was higher. Evolutionary tree analysis showed that three strains were all Eurasian species, and there was a close relationship with the representative strains of A / duck / Hong Kong/Y280/97.