This paper presents a method of lines solution based on the reproducing kernel Hilbert space method to the nonlinear one-dimensional Klein-Gordon equation that arises in many scientific fields areas.Our method uses di...This paper presents a method of lines solution based on the reproducing kernel Hilbert space method to the nonlinear one-dimensional Klein-Gordon equation that arises in many scientific fields areas.Our method uses discretization of the partial derivatives of the space variable to get a system of ODEs in the time variable and then solve the system of ODEs using reproducing kernel Hilbert space method.Consider two examples to validate the proposed method.Compare the results with the exact solution by calculating the error norms L_(2) and L_(∞) at various time levels.The results show that the presented scheme is a systematic,effective and powerful technique for the solution of Klein-Gordon equation.展开更多
Consider the positive d-dimensional lattice Z^d(d≥2) with partial ordering ≤, let {XK; K∈Z+^d} be i.i.d, random variables taking values in a real separable Hilbert space (H, ||·||) with mean zero and ...Consider the positive d-dimensional lattice Z^d(d≥2) with partial ordering ≤, let {XK; K∈Z+^d} be i.i.d, random variables taking values in a real separable Hilbert space (H, ||·||) with mean zero and covariance operator ∑ and set partial sums SN =∑K≤nXK,K,N∈Z+^d. Under some moment conditions, we obtain the precise asymptotics of a kind of weighted infinite series for partial sums SN as ε↓ by using the truncation and approximation methods. The results are related to the convergence rates of the law of the logarithm in Hilbert space, and they also extend the results of (Gut and Spataru, 2003).展开更多
许多算法被提出用来解决变分不等式问题,其中最简单的是G.M.Korpelevich(Matecon,1976,12:747-756.)超梯度算法.此算法被许多学者所改进.其中文献(Y.J.Wang,N.H.Xiu,J.Z.Zhang.JOptim Theory Appl,2003,119:167-168.)改进的超梯度算法...许多算法被提出用来解决变分不等式问题,其中最简单的是G.M.Korpelevich(Matecon,1976,12:747-756.)超梯度算法.此算法被许多学者所改进.其中文献(Y.J.Wang,N.H.Xiu,J.Z.Zhang.JOptim Theory Appl,2003,119:167-168.)改进的超梯度算法不用假设解存在,并且可以通过迭代产生的点列的收敛性检验解的存在性.将Y.J.Wang,N.H.Xiu和J.Z.Zhang改进的超梯度算法推广到无穷维Hilbert空间,并讨论在无穷维Hilbert空间中改进的超梯度算法的迭代序列关于伪单调变分不等式的解的强收敛性质.展开更多
In this work, by choosing an orthonormal basis for the Hilbert space L^2[0, 1], an approximation method for finding approximate solutions of the equation (I + K)x = y is proposed, called Haar wavelet approximation ...In this work, by choosing an orthonormal basis for the Hilbert space L^2[0, 1], an approximation method for finding approximate solutions of the equation (I + K)x = y is proposed, called Haar wavelet approximation method (HWAM). To prove the applicabifity of the HWAM, a more general applicability theorem on an approximation method (AM) for an operator equation Ax = y is proved first. As an application, applicability of the HWAM is obtained. Fhrthermore, four steps to use the HWAM are listed and three numerical examples are given in order to illustrate the effectiveness of the method.展开更多
For an anti-plane problem, the differential operator is self-adjoint and the corresponding eigenfunctions belong to the Hilbert space. The orthogonal property between eigenfunctions (or between the derivatives of eig...For an anti-plane problem, the differential operator is self-adjoint and the corresponding eigenfunctions belong to the Hilbert space. The orthogonal property between eigenfunctions (or between the derivatives of eigenfunctions) of anti-plane problem is exploited. We developed for the first time two sets of radius-independent orthogonal integrals for extraction of stress intensity factors (SIFs), so any order SIF can be extracted based on a certain known solution of displacement (an analytic result or a numerical result). Many numerical examples based on the finite element method of lines (FEMOL) show that the present method is very powerful and efficient.展开更多
The classical variational inequality problem with a Lipschitzian and strongly monotone operator on a nonempty closed convex subset in a real Hilbert space is studied. A new three-step relaxed hybrid steepest-descent m...The classical variational inequality problem with a Lipschitzian and strongly monotone operator on a nonempty closed convex subset in a real Hilbert space is studied. A new three-step relaxed hybrid steepest-descent method for this class of variational inequalities is introduced. Strong convergence of this method is established under suitable assumptions imposed on the algorithm parameters.展开更多
In this paper,an efficient multi-step scheme is presented based on reproducing kernel Hilbert space(RKHS)theory for solving ordinary stiff differential systems.The solution methodology depends on reproducing kernel fu...In this paper,an efficient multi-step scheme is presented based on reproducing kernel Hilbert space(RKHS)theory for solving ordinary stiff differential systems.The solution methodology depends on reproducing kernel functions to obtain analytic solutions in a uniform formfor a rapidly convergent series in the posed Sobolev space.Using the Gram-Schmidt orthogonality process,complete orthogonal essential functions are obtained in a compact field to encompass Fourier series expansion with the help of kernel properties reproduction.Consequently,by applying the standard RKHS method to each subinterval,approximate solutions that converge uniformly to the exact solutions are obtained.For this purpose,several numerical examples are tested to show proposed algorithm’s superiority,simplicity,and efficiency.The gained results indicate that themulti-step RKHSmethod is suitable for solving linear and nonlinear stiffness systems over an extensive duration and giving highly accurate outcomes.展开更多
文摘This paper presents a method of lines solution based on the reproducing kernel Hilbert space method to the nonlinear one-dimensional Klein-Gordon equation that arises in many scientific fields areas.Our method uses discretization of the partial derivatives of the space variable to get a system of ODEs in the time variable and then solve the system of ODEs using reproducing kernel Hilbert space method.Consider two examples to validate the proposed method.Compare the results with the exact solution by calculating the error norms L_(2) and L_(∞) at various time levels.The results show that the presented scheme is a systematic,effective and powerful technique for the solution of Klein-Gordon equation.
基金Project (No. 10471126) supported by the National Natural Science Foundation of China
文摘Consider the positive d-dimensional lattice Z^d(d≥2) with partial ordering ≤, let {XK; K∈Z+^d} be i.i.d, random variables taking values in a real separable Hilbert space (H, ||·||) with mean zero and covariance operator ∑ and set partial sums SN =∑K≤nXK,K,N∈Z+^d. Under some moment conditions, we obtain the precise asymptotics of a kind of weighted infinite series for partial sums SN as ε↓ by using the truncation and approximation methods. The results are related to the convergence rates of the law of the logarithm in Hilbert space, and they also extend the results of (Gut and Spataru, 2003).
文摘许多算法被提出用来解决变分不等式问题,其中最简单的是G.M.Korpelevich(Matecon,1976,12:747-756.)超梯度算法.此算法被许多学者所改进.其中文献(Y.J.Wang,N.H.Xiu,J.Z.Zhang.JOptim Theory Appl,2003,119:167-168.)改进的超梯度算法不用假设解存在,并且可以通过迭代产生的点列的收敛性检验解的存在性.将Y.J.Wang,N.H.Xiu和J.Z.Zhang改进的超梯度算法推广到无穷维Hilbert空间,并讨论在无穷维Hilbert空间中改进的超梯度算法的迭代序列关于伪单调变分不等式的解的强收敛性质.
基金support by the NSFC(11371012,11401359,11471200)the FRF for the Central Universities(GK201301007)the NSRP of Shaanxi Province(2014JQ1010)
文摘In this work, by choosing an orthonormal basis for the Hilbert space L^2[0, 1], an approximation method for finding approximate solutions of the equation (I + K)x = y is proposed, called Haar wavelet approximation method (HWAM). To prove the applicabifity of the HWAM, a more general applicability theorem on an approximation method (AM) for an operator equation Ax = y is proved first. As an application, applicability of the HWAM is obtained. Fhrthermore, four steps to use the HWAM are listed and three numerical examples are given in order to illustrate the effectiveness of the method.
基金Project supported by the National Natural Science Foundation of China (Nos. 59525813 and 19872066).
文摘For an anti-plane problem, the differential operator is self-adjoint and the corresponding eigenfunctions belong to the Hilbert space. The orthogonal property between eigenfunctions (or between the derivatives of eigenfunctions) of anti-plane problem is exploited. We developed for the first time two sets of radius-independent orthogonal integrals for extraction of stress intensity factors (SIFs), so any order SIF can be extracted based on a certain known solution of displacement (an analytic result or a numerical result). Many numerical examples based on the finite element method of lines (FEMOL) show that the present method is very powerful and efficient.
基金Project supported by the Key Science Foundation of Education Department of Sichuan Province of China (No.2003A081)Sichuan Province Leading Academic Discipline Project (No.SZD0406)
文摘The classical variational inequality problem with a Lipschitzian and strongly monotone operator on a nonempty closed convex subset in a real Hilbert space is studied. A new three-step relaxed hybrid steepest-descent method for this class of variational inequalities is introduced. Strong convergence of this method is established under suitable assumptions imposed on the algorithm parameters.
文摘In this paper,an efficient multi-step scheme is presented based on reproducing kernel Hilbert space(RKHS)theory for solving ordinary stiff differential systems.The solution methodology depends on reproducing kernel functions to obtain analytic solutions in a uniform formfor a rapidly convergent series in the posed Sobolev space.Using the Gram-Schmidt orthogonality process,complete orthogonal essential functions are obtained in a compact field to encompass Fourier series expansion with the help of kernel properties reproduction.Consequently,by applying the standard RKHS method to each subinterval,approximate solutions that converge uniformly to the exact solutions are obtained.For this purpose,several numerical examples are tested to show proposed algorithm’s superiority,simplicity,and efficiency.The gained results indicate that themulti-step RKHSmethod is suitable for solving linear and nonlinear stiffness systems over an extensive duration and giving highly accurate outcomes.