期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Sharp L^2 Boundedness of the Oscillatory Hyper-Hilbert Transform along Curves 被引量:7
1
作者 Jie Cheng CHEN Da Shah FAN Xiang Rong ZHU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第4期653-658,共6页
Consider the oscillatory hyper-Hilbert transform Hn,α,βf(x)=∫0^1 f(x-Г(t))e^it-βt^-1-α dt along the curve P(t) = (tp1, tP2,..., tpn), where β 〉 α ≥ 0 and 0 〈 p1 〈 p2 〈 ... 〈 Pn. We prove that ... Consider the oscillatory hyper-Hilbert transform Hn,α,βf(x)=∫0^1 f(x-Г(t))e^it-βt^-1-α dt along the curve P(t) = (tp1, tP2,..., tpn), where β 〉 α ≥ 0 and 0 〈 p1 〈 p2 〈 ... 〈 Pn. We prove that H n,α,β is bounded on L2 if and only if β ≥ (n + 1)α. Our work extends and improves some known results. 展开更多
关键词 oscillatory hyper-hilbert transform
原文传递
Oscillatory hyper Hilbert transforms along general curves 被引量:2
2
作者 Jiecheng CHEN Belay Mitiku DAMTEW Xiangrong ZHU 《Frontiers of Mathematics in China》 SCIE CSCD 2017年第2期281-299,共19页
We consider the oscillatory hyper Hilbert transform Hγ,α,βf(x) = ∫0^∞ f(x - Г(t))eit-βt-(1+α)dt, where Г(t) = (t, γ(t)) in R^2 is a general curve. When γ is convex, we give a simple condition... We consider the oscillatory hyper Hilbert transform Hγ,α,βf(x) = ∫0^∞ f(x - Г(t))eit-βt-(1+α)dt, where Г(t) = (t, γ(t)) in R^2 is a general curve. When γ is convex, we give a simple condition on γ such that Hγ,α,βis bounded on L2 when β ≥ 3α, β 〉 0. As a corollary, under this condition, we obtain the LP-boundedness of Hγ,α,β when 2β/(2β - 3α) 〈 p 〈 2β/(3α). When F is a general nonconvex curve, we give some more complicated conditions on γ such that Hγ,α,βis bounded on L2. As an application, we construct a class of strictly convex curves along which Hγ,α,β is bounded on L2 only if β 〉 2α 〉 0. 展开更多
关键词 hilbert transform oscillatory integral oscillatory hyper hilberttransform
原文传递
Oscillatory hyper-Hilbert transform along curves on modulation spaces
3
作者 Xiaomei WU Dashan FAN 《Frontiers of Mathematics in China》 SCIE CSCD 2018年第3期647-666,共20页
We consider the boundedness of the n-dimension oscillatory hyper- Hilbert transform along homogeneous curves on the α-modulation spaces, including the inhomogeneous Besov spaces and the classical modulation spaces. T... We consider the boundedness of the n-dimension oscillatory hyper- Hilbert transform along homogeneous curves on the α-modulation spaces, including the inhomogeneous Besov spaces and the classical modulation spaces. The main theorems significantly improve some known results. 展开更多
关键词 oscillatory hyper-hilbert transform inhomogeneous Besov spaces α-modulation spaces homogeneous curves
原文传递
Singular Integrals with Bilinear Phases
4
作者 Elena PRESTINI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2006年第1期251-260,共10页
We prove the boundedness from Lp(T2) to itself, 1 〈 p 〈∞, of highly oscillatory singular integrals Sf(x, y) presenting singularities of the kind of the double Hilbert transform on a non-rectangular domain of in... We prove the boundedness from Lp(T2) to itself, 1 〈 p 〈∞, of highly oscillatory singular integrals Sf(x, y) presenting singularities of the kind of the double Hilbert transform on a non-rectangular domain of integration, roughly speaking, defined by |y′| 〉 |x′|, and presenting phases λ(Ax + By) with 0≤ A, B ≤ 1 and λ≥ 0. The norms of these oscillatory singular integrals are proved to be independent of all parameters A1 B and A involved. Our method extends to a more general family of phases. These results are relevant to problems of almost everywhere convergence of double Fourier and Walsh series. 展开更多
关键词 Hardy-Littlewood maximal function Maximal hilbert transform Maximal Carleson operator oscillatory singular integrals a.e. convergence of double Fourier series
原文传递
振荡超奇性Hilbert变换的Sobolev有界性 被引量:1
5
作者 赵俊燕 郑涛涛 《数学学报(中文版)》 CSCD 北大核心 2016年第1期65-74,共10页
主要研究R^n上沿曲线Γ(t)=(t^(p_1),t^(p_2),…,t^(p_n))的振荡超奇性Hilbert变换H_(n,α,β)=∫_0~1 f(x-Γ(t))e^(it-β)t^(-1-α),在Sobolev空间上的有界性,其中0<p_1<P_2<…<P_n,α>β>0.证明了对于0<γ<(... 主要研究R^n上沿曲线Γ(t)=(t^(p_1),t^(p_2),…,t^(p_n))的振荡超奇性Hilbert变换H_(n,α,β)=∫_0~1 f(x-Γ(t))e^(it-β)t^(-1-α),在Sobolev空间上的有界性,其中0<p_1<P_2<…<P_n,α>β>0.证明了对于0<γ<(nα)/((n+1))(p_1+α),当|1/p-1/2|<(β-(n+1)[α-(β+p_1)γ])/(2β)时,H_(n,α,β)是从L_γ~2(R^n))到L^2(R^n)的有界算子.特别地,当β≥(α-γp_1)/(γ+1/(n+1))等时,H_(n,α,β)是从L_γ~2(R^n)到L^2(R^n)的有界算子· 展开更多
关键词 振荡超奇性hilbert变换 SOBOLEV空间 插值
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部