In fault diagnosis of rotating machinery, Hil- bert-Huang transform (HHT) is often used to extract the fault characteristic signal and analyze decomposition results in time-frequency domain. However, end effect occu...In fault diagnosis of rotating machinery, Hil- bert-Huang transform (HHT) is often used to extract the fault characteristic signal and analyze decomposition results in time-frequency domain. However, end effect occurs in HHT, which leads to a series of problems such as modal aliasing and false IMF (Intrinsic Mode Func- tion). To counter such problems in HHT, a new method is put forward to process signal by combining the general- ized regression neural network (GRNN) with the bound- ary local characteristic-scale continuation (BLCC). Firstly, the improved EMD (Empirical Mode Decompo- sition) method is used to inhibit the end effect problem that appeared in conventional EMD. Secondly, the gen- erated IMF components are used in HHT. Simulation and measurement experiment for the cases of time domain, frequency domain and related parameters of Hilbert- Huang spectrum show that the method described here can restrain the end effect compared with the results obtained through mirror continuation, as the absolute percentage of the maximum mean of the beginning end point offset and the terminal point offset are reduced from 30.113% and 27.603% to 0.510% and 6.039% respectively, thus reducing the modal aliasing, and eliminating the false IMF components of HHT. The proposed method caneffectively inhibit end effect, reduce modal aliasing and false IMF components, and show the real structure of signal components accuratelX.展开更多
The flow of supersonic plasma is accompanied by a highly thermalized region called the Magnetoshealth found after the bow shock. Enclosed within this region are different wave modes associated with classes of boundari...The flow of supersonic plasma is accompanied by a highly thermalized region called the Magnetoshealth found after the bow shock. Enclosed within this region are different wave modes associated with classes of boundaries which have been determined by different methods. The efficacy of Hilbert-Huang transform (HHT) is based on the conditionality of allowing for the local analysis of frequencies, which presents the physical meaning of the original signal at that instant. The observed data have been taken from Cluster II Fluxgate Magnetometer (FGM) instrument that provides advantage for the analysis in three dimensions. The result compares favourably with instantaneous frequencies computed using simple Hilbert transform (SHT) with electric field measurements of Cluster II mission already carried out in literatures. The result of this study has shown that HHT provides the best applicability in the magnetosheath data analysis than the wavelet and Fast Fourier Transform (FFT). The application of HHT based on its advantages over other methods is viewed to be very critical in the analysis of multi-frequency signals where different frequencies could be determined distinctively at a point.展开更多
The flow of supersonic plasma is accompanied by a highly thermalized region called the Magnetoshealth found after the bow shock. Enclosed within this region are different wave modes associated with classes of boundari...The flow of supersonic plasma is accompanied by a highly thermalized region called the Magnetoshealth found after the bow shock. Enclosed within this region are different wave modes associated with classes of boundaries which have been determined by different methods. The efficacy of Hilbert-Huang transform (HHT) is based on the conditionality of allowing for the local analysis of frequencies, which presents the physical meaning of the original signal at that instant. The observed data have been taken from Cluster II Fluxgate Magnetometer (FGM) instrument that provides advantage for the analysis in three dimensions. The result compares favourably with instantaneous frequencies computed using simple Hilbert transform (SHT) with electric field measurements of Cluster II mission already carried out in literatures. The result of this study has shown that HHT provides the best applicability in the magnetosheath data analysis than the wavelet and Fast Fourier Transform (FFT). The application of HHT based on its advantages over other methods is viewed to be very critical in the analysis of multi-frequency signals where different frequencies could be determined distinctively at a point.展开更多
Hilbert-Huang Transform (HHT) is a newly developed powerful method for nonlinear and non-stationary time series analysis. The empirical mode decomposition is the key part of HHT, while its algorithm was protected by N...Hilbert-Huang Transform (HHT) is a newly developed powerful method for nonlinear and non-stationary time series analysis. The empirical mode decomposition is the key part of HHT, while its algorithm was protected by NASA as a US patent, which limits the wide application among the scientific community. Two approaches, mirror periodic and extrema extending methods, have been developed for handling the end effects of empirical mode decomposition. The implementation of the HHT is realized in detail to widen the application. The detailed comparison of the results from two methods with that from Huang et al. (1998, 1999), and the comparison between two methods are presented. Generally, both methods reproduce faithful results as those of Huang et al. For mirror periodic method (MPM), the data are extended once forever. Ideally, it is a way for handling the end effects of the HHT, especially for the signal that has symmetric waveform. The extrema extending method (EEM) behaves as good as MPM, and it is better than MPM for the signal that has strong asymmetric waveform. However, it has to perform extrema envelope extending in every shifting process.展开更多
Traditional modal parameter identifi cation methods have many disadvantages,especially when used for processing nonlinear and non-stationary signals.In addition,they are usually not able to accurately identify the dam...Traditional modal parameter identifi cation methods have many disadvantages,especially when used for processing nonlinear and non-stationary signals.In addition,they are usually not able to accurately identify the damping ratio and damage.In this study,methods based on the Hilbert-Huang transform(HHT) are investigated for structural modal parameter identifi cation and damage diagnosis.First,mirror extension and prediction via a radial basis function(RBF) neural network are used to restrain the troublesome end-effect issue in empirical mode decomposition(EMD),which is a crucial part of HHT.Then,the approaches based on HHT combined with other techniques,such as the random decrement technique(RDT),natural excitation technique(NExT) and stochastic subspace identifi cation(SSI),are proposed to identify modal parameters of structures.Furthermore,a damage diagnosis method based on the HHT is also proposed.Time-varying instantaneous frequency and instantaneous energy are used to identify the damage evolution of the structure.The relative amplitude of the Hilbert marginal spectrum is used to identify the damage location of the structure.Finally,acceleration records at gauge points from shaking table testing of a 12-story reinforced concrete frame model are taken to validate the proposed approaches.The results show that the proposed approaches based on HHT for modal parameter identifi cation and damage diagnosis are reliable and practical.展开更多
Objective: To study the characteristics of pulse tracings in CHD, and objectively evaluate the significance of pulse signal in diagnosis and appreciation of therapeutic effect in patients with coronary heart disease(C...Objective: To study the characteristics of pulse tracings in CHD, and objectively evaluate the significance of pulse signal in diagnosis and appreciation of therapeutic effect in patients with coronary heart disease(CHD), and accordingly provide with theoretic proofs for developing non-invasive technique of pulse diagnosis. Methods: By using the pulse detection system, pulse graphs in CHD patients, patients without CHD and "health" adults were collected and compared. Then characters of the pulse signal were analyzed with Hilbert-Huang transformation routine (HHT) and time-domain method respectively. Results: There existed characteristic change in pulse graph in CHD. ① h1,h3,h4,h3/h1,t,t5/t4 in time domain parameters of pulse graph increased and w1 was widened. ② 44% of C2 wave in HHT display showed chaotic and disorderly wave and irregularly wave amplitude in CHD. And 72% of C5 Wave exhibited in irregular wave with average wave amplitude over 10 gram-forces. These changes were significantly different from health adults. Conclusion: Characteristic wave of pulse graph extracted with methods of time domain or HHT routine might be considered as proofs for diagnosis and differentiation in CHD. Our researches prognosticate that pulse diagnosis can be used as an ancillary determination in occurrence of CHD for reasons of the advantage of convenient operation and non-invasion.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51375467)Quality Inspection of Public Welfare Industry Research Projects,China(Grant No.201410009)
文摘In fault diagnosis of rotating machinery, Hil- bert-Huang transform (HHT) is often used to extract the fault characteristic signal and analyze decomposition results in time-frequency domain. However, end effect occurs in HHT, which leads to a series of problems such as modal aliasing and false IMF (Intrinsic Mode Func- tion). To counter such problems in HHT, a new method is put forward to process signal by combining the general- ized regression neural network (GRNN) with the bound- ary local characteristic-scale continuation (BLCC). Firstly, the improved EMD (Empirical Mode Decompo- sition) method is used to inhibit the end effect problem that appeared in conventional EMD. Secondly, the gen- erated IMF components are used in HHT. Simulation and measurement experiment for the cases of time domain, frequency domain and related parameters of Hilbert- Huang spectrum show that the method described here can restrain the end effect compared with the results obtained through mirror continuation, as the absolute percentage of the maximum mean of the beginning end point offset and the terminal point offset are reduced from 30.113% and 27.603% to 0.510% and 6.039% respectively, thus reducing the modal aliasing, and eliminating the false IMF components of HHT. The proposed method caneffectively inhibit end effect, reduce modal aliasing and false IMF components, and show the real structure of signal components accuratelX.
文摘The flow of supersonic plasma is accompanied by a highly thermalized region called the Magnetoshealth found after the bow shock. Enclosed within this region are different wave modes associated with classes of boundaries which have been determined by different methods. The efficacy of Hilbert-Huang transform (HHT) is based on the conditionality of allowing for the local analysis of frequencies, which presents the physical meaning of the original signal at that instant. The observed data have been taken from Cluster II Fluxgate Magnetometer (FGM) instrument that provides advantage for the analysis in three dimensions. The result compares favourably with instantaneous frequencies computed using simple Hilbert transform (SHT) with electric field measurements of Cluster II mission already carried out in literatures. The result of this study has shown that HHT provides the best applicability in the magnetosheath data analysis than the wavelet and Fast Fourier Transform (FFT). The application of HHT based on its advantages over other methods is viewed to be very critical in the analysis of multi-frequency signals where different frequencies could be determined distinctively at a point.
文摘The flow of supersonic plasma is accompanied by a highly thermalized region called the Magnetoshealth found after the bow shock. Enclosed within this region are different wave modes associated with classes of boundaries which have been determined by different methods. The efficacy of Hilbert-Huang transform (HHT) is based on the conditionality of allowing for the local analysis of frequencies, which presents the physical meaning of the original signal at that instant. The observed data have been taken from Cluster II Fluxgate Magnetometer (FGM) instrument that provides advantage for the analysis in three dimensions. The result compares favourably with instantaneous frequencies computed using simple Hilbert transform (SHT) with electric field measurements of Cluster II mission already carried out in literatures. The result of this study has shown that HHT provides the best applicability in the magnetosheath data analysis than the wavelet and Fast Fourier Transform (FFT). The application of HHT based on its advantages over other methods is viewed to be very critical in the analysis of multi-frequency signals where different frequencies could be determined distinctively at a point.
基金This study is supported by the National Natural Science Foundation of China(NSFC)under contract Nos 49790010,40076010 and 49634140,National Key Basic Research and Development Plan in China under contract No.G1999043701)and the OCEAN-863 Project of China.
文摘Hilbert-Huang Transform (HHT) is a newly developed powerful method for nonlinear and non-stationary time series analysis. The empirical mode decomposition is the key part of HHT, while its algorithm was protected by NASA as a US patent, which limits the wide application among the scientific community. Two approaches, mirror periodic and extrema extending methods, have been developed for handling the end effects of empirical mode decomposition. The implementation of the HHT is realized in detail to widen the application. The detailed comparison of the results from two methods with that from Huang et al. (1998, 1999), and the comparison between two methods are presented. Generally, both methods reproduce faithful results as those of Huang et al. For mirror periodic method (MPM), the data are extended once forever. Ideally, it is a way for handling the end effects of the HHT, especially for the signal that has symmetric waveform. The extrema extending method (EEM) behaves as good as MPM, and it is better than MPM for the signal that has strong asymmetric waveform. However, it has to perform extrema envelope extending in every shifting process.
基金Gansu Science and Technology Key Project under Grant No.2GS057-A52-008
文摘Traditional modal parameter identifi cation methods have many disadvantages,especially when used for processing nonlinear and non-stationary signals.In addition,they are usually not able to accurately identify the damping ratio and damage.In this study,methods based on the Hilbert-Huang transform(HHT) are investigated for structural modal parameter identifi cation and damage diagnosis.First,mirror extension and prediction via a radial basis function(RBF) neural network are used to restrain the troublesome end-effect issue in empirical mode decomposition(EMD),which is a crucial part of HHT.Then,the approaches based on HHT combined with other techniques,such as the random decrement technique(RDT),natural excitation technique(NExT) and stochastic subspace identifi cation(SSI),are proposed to identify modal parameters of structures.Furthermore,a damage diagnosis method based on the HHT is also proposed.Time-varying instantaneous frequency and instantaneous energy are used to identify the damage evolution of the structure.The relative amplitude of the Hilbert marginal spectrum is used to identify the damage location of the structure.Finally,acceleration records at gauge points from shaking table testing of a 12-story reinforced concrete frame model are taken to validate the proposed approaches.The results show that the proposed approaches based on HHT for modal parameter identifi cation and damage diagnosis are reliable and practical.
基金The National Basic Research Program (973 Program)grant number: 2003CB517108
文摘Objective: To study the characteristics of pulse tracings in CHD, and objectively evaluate the significance of pulse signal in diagnosis and appreciation of therapeutic effect in patients with coronary heart disease(CHD), and accordingly provide with theoretic proofs for developing non-invasive technique of pulse diagnosis. Methods: By using the pulse detection system, pulse graphs in CHD patients, patients without CHD and "health" adults were collected and compared. Then characters of the pulse signal were analyzed with Hilbert-Huang transformation routine (HHT) and time-domain method respectively. Results: There existed characteristic change in pulse graph in CHD. ① h1,h3,h4,h3/h1,t,t5/t4 in time domain parameters of pulse graph increased and w1 was widened. ② 44% of C2 wave in HHT display showed chaotic and disorderly wave and irregularly wave amplitude in CHD. And 72% of C5 Wave exhibited in irregular wave with average wave amplitude over 10 gram-forces. These changes were significantly different from health adults. Conclusion: Characteristic wave of pulse graph extracted with methods of time domain or HHT routine might be considered as proofs for diagnosis and differentiation in CHD. Our researches prognosticate that pulse diagnosis can be used as an ancillary determination in occurrence of CHD for reasons of the advantage of convenient operation and non-invasion.