Using real fields instead of complex ones, it was recently claimed, that all fermions are made of pairs of coupled fields (strings) with an internal tension related to mutual attraction forces, related to Planck’s co...Using real fields instead of complex ones, it was recently claimed, that all fermions are made of pairs of coupled fields (strings) with an internal tension related to mutual attraction forces, related to Planck’s constant. Quantum mechanics is described with real fields and real operators. Schrodinger and Dirac equations then are solved. The solution to Dirac equation gives four, real, 2-vectors solutions ψ1=(U1D1)ψ2=(U2D2)ψ3=(U3D3)ψ4=(U4D4)where (ψ1,ψ4) are coupled via linear combinations to yield spin-up and spin-down fermions. Likewise, (ψ2,ψ3) are coupled via linear combinations to represent spin-up and spin-down anti-fermions. For an incoming entangled pair of fermions, the combined solution is Ψin=c1ψ1+c4ψ4where c1and c4are some hidden variables. By applying a magnetic field in +Z and +x the theoretical results of a triple Stern-Gerlach experiment are predicted correctly. Then, by repeating Bell’s and Mermin Gedanken experiment with three magnetic filters σθ, at three different inclination angles θ, the violation of Bell’s inequality is proven. It is shown that all fermions are in a mixed state of spins and the ratio between spin-up to spin-down depends on the hidden variables.展开更多
We prove the L estimate for the isotropic version of the homogeneous landau problem, which was explored by M. Gualdani and N. Guillen. As shown in a region of the smooth potentials range under values of the interactio...We prove the L estimate for the isotropic version of the homogeneous landau problem, which was explored by M. Gualdani and N. Guillen. As shown in a region of the smooth potentials range under values of the interaction exponent (2), a weighted Poincaré inequality is a natural consequence of the traditional weighted Hardy inequality, which in turn implies that the norms of solutions propagate in the L1 space. Now, the L estimate is based on the work of De Giorgi, Nash, and Moser, as well as a few weighted Sobolev inequalities.展开更多
Holder’s inequality, its refinement, and reverse have received considerable attention in the theory of mathematical analysis and differential equations. In this paper, we give some refinements of Holder’s inequality...Holder’s inequality, its refinement, and reverse have received considerable attention in the theory of mathematical analysis and differential equations. In this paper, we give some refinements of Holder’s inequality and its reverse using a simple analytical technique of algebra and calculus. Our results show many results related to holder’s inequality as special cases of the inequalities presented.展开更多
In this paper, by introducing some parameters and estimating the weight coefficient, we give a new Hilbert’s inequality with the integral in whole plane and with a non-homogeneous and the equivalent form is given as ...In this paper, by introducing some parameters and estimating the weight coefficient, we give a new Hilbert’s inequality with the integral in whole plane and with a non-homogeneous and the equivalent form is given as well. The best constant factor is calculated by the way of Complex Analysis.展开更多
In this paper, by introducting a weight coefficient of the form: π/sin(π/r)-1/10(2n+1)1+1/r (r>1, n∈N0), Hardy-Hilbert's inequality is refined. As its applications, an equivalent Hard y-Hilbert's typ...In this paper, by introducting a weight coefficient of the form: π/sin(π/r)-1/10(2n+1)1+1/r (r>1, n∈N0), Hardy-Hilbert's inequality is refined. As its applications, an equivalent Hard y-Hilbert's type inequality and its strengthened form are given, and Hardy-Li ttlewood's inequality is generalized and improved.展开更多
In this paper, by introducing three parameters a, b and λ, we give some new generalizations of Hardy-Hilbert’s integral inequality. As applications, we con-sider its equivalent form and some particular results.
A new improvement of Hilbert's inequality for double series can be establishedby means of a strengthened Cauchy's inequality. As application, a quite sharp result onFejer-Riesz's inequality is obtained.
By introducing some parameters and estimating the weight function,we obtain an extension of reverse Hilbert-type inequality with the best constant factor.As applications,we build its equivalent forms and some particul...By introducing some parameters and estimating the weight function,we obtain an extension of reverse Hilbert-type inequality with the best constant factor.As applications,we build its equivalent forms and some particular results.展开更多
In this paper, by introducing the norm ||x|| (x ∈ Rn), a multiple Hardy- Hilbert's integral inequality with the best constant factor and it's equivalent form are given.
The main result of this paper is presented as follows Let h is homogeneous and symmetric of degree and Then where provided the integrals on the RHS do exists. Some other special cases are also
Through using weight function, we give a new Hilbert-type integral inequality with two independent parameters and two pair of conjugate exponents, which is a best extension of a Hilbert-type integral inequality with t...Through using weight function, we give a new Hilbert-type integral inequality with two independent parameters and two pair of conjugate exponents, which is a best extension of a Hilbert-type integral inequality with the homogeneous kernel of 0-degree. The equivalent form, the reverses and some particular results are considered.展开更多
In this note,by introudcing a couple of parameters T,t and estimating the weight function effectively,Hilberts integral inequalities are well generalized. As applications,we give some new Hilbers type inequalities.
This paper gives a new generalization of Hilbert's inequality with a best constant factor involving the β function. An applications, we consider the equivalent form and some particular results.
文摘Using real fields instead of complex ones, it was recently claimed, that all fermions are made of pairs of coupled fields (strings) with an internal tension related to mutual attraction forces, related to Planck’s constant. Quantum mechanics is described with real fields and real operators. Schrodinger and Dirac equations then are solved. The solution to Dirac equation gives four, real, 2-vectors solutions ψ1=(U1D1)ψ2=(U2D2)ψ3=(U3D3)ψ4=(U4D4)where (ψ1,ψ4) are coupled via linear combinations to yield spin-up and spin-down fermions. Likewise, (ψ2,ψ3) are coupled via linear combinations to represent spin-up and spin-down anti-fermions. For an incoming entangled pair of fermions, the combined solution is Ψin=c1ψ1+c4ψ4where c1and c4are some hidden variables. By applying a magnetic field in +Z and +x the theoretical results of a triple Stern-Gerlach experiment are predicted correctly. Then, by repeating Bell’s and Mermin Gedanken experiment with three magnetic filters σθ, at three different inclination angles θ, the violation of Bell’s inequality is proven. It is shown that all fermions are in a mixed state of spins and the ratio between spin-up to spin-down depends on the hidden variables.
文摘We prove the L estimate for the isotropic version of the homogeneous landau problem, which was explored by M. Gualdani and N. Guillen. As shown in a region of the smooth potentials range under values of the interaction exponent (2), a weighted Poincaré inequality is a natural consequence of the traditional weighted Hardy inequality, which in turn implies that the norms of solutions propagate in the L1 space. Now, the L estimate is based on the work of De Giorgi, Nash, and Moser, as well as a few weighted Sobolev inequalities.
文摘Holder’s inequality, its refinement, and reverse have received considerable attention in the theory of mathematical analysis and differential equations. In this paper, we give some refinements of Holder’s inequality and its reverse using a simple analytical technique of algebra and calculus. Our results show many results related to holder’s inequality as special cases of the inequalities presented.
文摘In this paper, by introducing some parameters and estimating the weight coefficient, we give a new Hilbert’s inequality with the integral in whole plane and with a non-homogeneous and the equivalent form is given as well. The best constant factor is calculated by the way of Complex Analysis.
文摘In this paper, by introducting a weight coefficient of the form: π/sin(π/r)-1/10(2n+1)1+1/r (r>1, n∈N0), Hardy-Hilbert's inequality is refined. As its applications, an equivalent Hard y-Hilbert's type inequality and its strengthened form are given, and Hardy-Li ttlewood's inequality is generalized and improved.
基金Foundation item:The NSF (0177) of Guangdong Institutions of Higher Learning,College and University
文摘In this paper, by introducing three parameters a, b and λ, we give some new generalizations of Hardy-Hilbert’s integral inequality. As applications, we con-sider its equivalent form and some particular results.
文摘A new improvement of Hilbert's inequality for double series can be establishedby means of a strengthened Cauchy's inequality. As application, a quite sharp result onFejer-Riesz's inequality is obtained.
文摘By introducing some parameters and estimating the weight function,we obtain an extension of reverse Hilbert-type inequality with the best constant factor.As applications,we build its equivalent forms and some particular results.
文摘In this paper, by introducing the norm ||x|| (x ∈ Rn), a multiple Hardy- Hilbert's integral inequality with the best constant factor and it's equivalent form are given.
文摘The main result of this paper is presented as follows Let h is homogeneous and symmetric of degree and Then where provided the integrals on the RHS do exists. Some other special cases are also
基金Project supported by the Natural Science Foundation of the Institutions of Higher Learning of Guangdong Province (GrantNo.05Z026)the Natural Science Foundation of Guangdong Province (Grant No.7004344)
文摘Through using weight function, we give a new Hilbert-type integral inequality with two independent parameters and two pair of conjugate exponents, which is a best extension of a Hilbert-type integral inequality with the homogeneous kernel of 0-degree. The equivalent form, the reverses and some particular results are considered.
文摘In this note,by introudcing a couple of parameters T,t and estimating the weight function effectively,Hilberts integral inequalities are well generalized. As applications,we give some new Hilbers type inequalities.
基金Supported by the NSF of Guangdong Institutions of Higher Learning, College and University(0177).
文摘This paper gives a new generalization of Hilbert's inequality with a best constant factor involving the β function. An applications, we consider the equivalent form and some particular results.