Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanis...Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanisms and severe disturbances,which make for it difficult to achieve certain practically relevant control goals including emission and economic performances as well as system robustness.To address these challenges,a new robust control scheme based on uncertainty and disturbance estimator(UDE)and model predictive control(MPC)is proposed in this paper.The UDE is used to estimate and dynamically compensate acting disturbances,whereas MPC is deployed for optimal feedback regulation of the resultant dynamics.By viewing the system nonlinearities and unknown dynamics as disturbances,the proposed control framework allows to locally treat the considered nonlinear plant as a linear one.The obtained simulation results confirm that the utilization of UDE makes the tracking error negligibly small,even in the presence of unmodeled dynamics.In the conducted comparison study,the introduced control scheme outperforms both the standard MPC and PID(proportional-integral-derivative)control strategies in terms of transient performance and robustness.Furthermore,the results reveal that a lowpass-filter time constant has a significant effect on the robustness and the convergence range of the tracking error.展开更多
In this paper,we consider the limit distribution of the error density function estima-tor in the rst-order autoregressive models with negatively associated and positively associated random errors.Under mild regularity...In this paper,we consider the limit distribution of the error density function estima-tor in the rst-order autoregressive models with negatively associated and positively associated random errors.Under mild regularity assumptions,some asymptotic normality results of the residual density estimator are obtained when the autoregressive models are stationary process and explosive process.In order to illustrate these results,some simulations such as con dence intervals and mean integrated square errors are provided in this paper.It shows that the residual density estimator can replace the density\estimator"which contains errors.展开更多
We study the Nadaraya-Watson estimators for the drift function of two-sided reflected stochastic differential equations.The estimates,based on either the continuously observed process or the discretely observed proces...We study the Nadaraya-Watson estimators for the drift function of two-sided reflected stochastic differential equations.The estimates,based on either the continuously observed process or the discretely observed process,are considered.Under certain conditions,we prove the strong consistency and the asymptotic normality of the two estimators.Our method is also suitable for one-sided reflected stochastic differential equations.Simulation results demonstrate that the performance of our estimator is superior to that of the estimator proposed by Cholaquidis et al.(Stat Sin,2021,31:29-51).Several real data sets of the currency exchange rate are used to illustrate our proposed methodology.展开更多
Despite some efforts and attempts have been made to improve the direction-of-arrival(DOA)estimation performance of the standard Capon beamformer(SCB)in array processing,rigorous statistical performance analyses of the...Despite some efforts and attempts have been made to improve the direction-of-arrival(DOA)estimation performance of the standard Capon beamformer(SCB)in array processing,rigorous statistical performance analyses of these modified Capon estimators are still lacking.This paper studies an improved Capon estimator(ICE)for estimating the DOAs of multiple uncorrelated narrowband signals,where the higherorder inverse(sample)array covariance matrix is used in the Capon-like cost function.By establishing the relationship between this nonparametric estimator and the parametric and classic subspace-based MUSIC(multiple signal classification),it is clarified that as long as the power order of the inverse covariance matrix is increased to reduce the influence of signal subspace components in the ICE,the estimation performance of the ICE becomes equivalent to that of the MUSIC regardless of the signal-to-noise ratio(SNR).Furthermore the statistical performance of the ICE is analyzed,and the large-sample mean-squared-error(MSE)expression of the estimated DOA is derived.Finally the effectiveness and the theoretical analysis of the ICE are substantiated through numerical examples,where the Cramer-Rao lower bound(CRB)is used to evaluate the validity of the derived asymptotic MSE expression.展开更多
The present paper proposes a new robust estimator for Poisson regression models. We used the weighted maximum likelihood estimators which are regarded as Mallows-type estimators. We perform a Monte Carlo simulation st...The present paper proposes a new robust estimator for Poisson regression models. We used the weighted maximum likelihood estimators which are regarded as Mallows-type estimators. We perform a Monte Carlo simulation study to assess the performance of a suggested estimator compared to the maximum likelihood estimator and some robust methods. The result shows that, in general, all robust methods in this paper perform better than the classical maximum likelihood estimators when the model contains outliers. The proposed estimators showed the best performance compared to other robust estimators.展开更多
The conformal array can make full use of the aperture,save space,meet the requirements of aerodynamics,and is sensitive to polarization information.It has broad application prospects in military,aerospace,and communic...The conformal array can make full use of the aperture,save space,meet the requirements of aerodynamics,and is sensitive to polarization information.It has broad application prospects in military,aerospace,and communication fields.The joint polarization and direction-of-arrival(DOA)estimation based on the conformal array and the theoretical analysis of its parameter estimation performance are the key factors to promote the engineering application of the conformal array.To solve these problems,this paper establishes the wave field signal model of the conformal array.Then,for the case of a single target,the cost function of the maximum likelihood(ML)estimator is rewritten with Rayleigh quotient from a problem of maximizing the ratio of quadratic forms into those of minimizing quadratic forms.On this basis,rapid parameter estimation is achieved with the idea of manifold separation technology(MST).Compared with the modified variable projection(MVP)algorithm,it reduces the computational complexity and improves the parameter estimation performance.Meanwhile,the MST is used to solve the partial derivative of the steering vector.Then,the theoretical performance of ML,the multiple signal classification(MUSIC)estimator and Cramer-Rao bound(CRB)based on the conformal array are derived respectively,which provides theoretical foundation for the engineering application of the conformal array.Finally,the simulation experiment verifies the effectiveness of the proposed method.展开更多
In this article,we consider a new family of exponential type estimators for estimating the unknown population mean of the study variable.We propose estimators taking advantage of the auxiliary variable information und...In this article,we consider a new family of exponential type estimators for estimating the unknown population mean of the study variable.We propose estimators taking advantage of the auxiliary variable information under the first and second non-response cases separately.The required theoretical comparisons are obtained and the numerical studies are conducted.In conclusion,the results show that the proposed family of estimators is the most efficient estimator with respect to the estimators in literature under the obtained conditions for both cases.展开更多
Proceeded from trimmed Hill estimators and distributed inference, a new distributed version of trimmed Hill estimator for heavy tail index is proposed. Considering the case where the number of observations involved in...Proceeded from trimmed Hill estimators and distributed inference, a new distributed version of trimmed Hill estimator for heavy tail index is proposed. Considering the case where the number of observations involved in each machine can be either the same or different and either fixed or varying to the total sample size, its consistency and asymptotic normality are discussed. Simulation studies are particularized to show the new estimator performs almost in line with the trimmed Hill estimator.展开更多
For a 5G wireless communication system,a convolutional deep neural network(CNN)is employed to synthesize a robust channel state estimator(CSE).The proposed CSE extracts channel information from transmit-and-receive pa...For a 5G wireless communication system,a convolutional deep neural network(CNN)is employed to synthesize a robust channel state estimator(CSE).The proposed CSE extracts channel information from transmit-and-receive pairs through offline training to estimate the channel state information.Also,it utilizes pilots to offer more helpful information about the communication channel.The proposedCNN-CSE performance is compared with previously published results for Bidirectional/long short-term memory(BiLSTM/LSTM)NNs-based CSEs.The CNN-CSE achieves outstanding performance using sufficient pilots only and loses its functionality at limited pilots compared with BiLSTM and LSTM-based estimators.Using three different loss function-based classification layers and the Adam optimization algorithm,a comparative study was conducted to assess the performance of the presented DNNs-based CSEs.The BiLSTM-CSE outperforms LSTM,CNN,conventional least squares(LS),and minimum mean square error(MMSE)CSEs.In addition,the computational and learning time complexities for DNN-CSEs are provided.These estimators are promising for 5G and future communication systems because they can analyze large amounts of data,discover statistical dependencies,learn correlations between features,and generalize the gotten knowledge.展开更多
In this paper,a robust torque speed estimator(RTSE)for linear parameter changing(LPC)system is proposed and designed for an encoderless five-phase permanent magnet assisted synchronous reluctance motor(5-phase PMa-Syn...In this paper,a robust torque speed estimator(RTSE)for linear parameter changing(LPC)system is proposed and designed for an encoderless five-phase permanent magnet assisted synchronous reluctance motor(5-phase PMa-SynRM).This estimator is utilized for estimating the rotor speed and the load torque as well as can solve the speed sensor fault problem,as the feedback speed information is obtained directly from the virtual sensor.In addition,this technique is able to enhance the 5-phase PMa-SynRM performance by estimating the load torque for the real time compensation.The stability analysis of the proposed estimator is performed via Schur complement along with Lyapunov analysis.Furthermore,for improving the 5-phase PMa-SynRM performance,five super-twisting sliding mode controllers(ST-SMCs)are employed with providing a robust response without the impacts of high chattering problem.A super-twisting sliding mode speed controller(ST-SMSC)is employed for controlling the PMa-SynRM rotor speed,and four super-twisting sliding mode current controllers(ST-SMCCs)are employed for controlling the 5-phase PMa-SynRM currents.The stability analysis and the experimental results indicate the effectiveness along with feasibility of the proposed RTSE and the ST-SMSC with ST-SMCCs approach for a 750-W 5-phase PMa-SynRM under load disturbance,parameters variations,single open-phase fault,and adjacent two-phase open circuit fault conditions.展开更多
基金supported by the key project of the National Nature Science Foundation of China(51736002).
文摘Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanisms and severe disturbances,which make for it difficult to achieve certain practically relevant control goals including emission and economic performances as well as system robustness.To address these challenges,a new robust control scheme based on uncertainty and disturbance estimator(UDE)and model predictive control(MPC)is proposed in this paper.The UDE is used to estimate and dynamically compensate acting disturbances,whereas MPC is deployed for optimal feedback regulation of the resultant dynamics.By viewing the system nonlinearities and unknown dynamics as disturbances,the proposed control framework allows to locally treat the considered nonlinear plant as a linear one.The obtained simulation results confirm that the utilization of UDE makes the tracking error negligibly small,even in the presence of unmodeled dynamics.In the conducted comparison study,the introduced control scheme outperforms both the standard MPC and PID(proportional-integral-derivative)control strategies in terms of transient performance and robustness.Furthermore,the results reveal that a lowpass-filter time constant has a significant effect on the robustness and the convergence range of the tracking error.
基金supported by the National Natural Science Foundation of China(12131015,12071422)。
文摘In this paper,we consider the limit distribution of the error density function estima-tor in the rst-order autoregressive models with negatively associated and positively associated random errors.Under mild regularity assumptions,some asymptotic normality results of the residual density estimator are obtained when the autoregressive models are stationary process and explosive process.In order to illustrate these results,some simulations such as con dence intervals and mean integrated square errors are provided in this paper.It shows that the residual density estimator can replace the density\estimator"which contains errors.
基金partially supported by the National Natural Science Foundation of China(11871244)the Fundamental Research Funds for the Central Universities,JLU。
文摘We study the Nadaraya-Watson estimators for the drift function of two-sided reflected stochastic differential equations.The estimates,based on either the continuously observed process or the discretely observed process,are considered.Under certain conditions,we prove the strong consistency and the asymptotic normality of the two estimators.Our method is also suitable for one-sided reflected stochastic differential equations.Simulation results demonstrate that the performance of our estimator is superior to that of the estimator proposed by Cholaquidis et al.(Stat Sin,2021,31:29-51).Several real data sets of the currency exchange rate are used to illustrate our proposed methodology.
基金supported in part by the National Natural Science Foundation of China(62201447)the Project Supported by Natural Science Basic Research Plan in Shaanxi Province of China(2022JQ-640)。
文摘Despite some efforts and attempts have been made to improve the direction-of-arrival(DOA)estimation performance of the standard Capon beamformer(SCB)in array processing,rigorous statistical performance analyses of these modified Capon estimators are still lacking.This paper studies an improved Capon estimator(ICE)for estimating the DOAs of multiple uncorrelated narrowband signals,where the higherorder inverse(sample)array covariance matrix is used in the Capon-like cost function.By establishing the relationship between this nonparametric estimator and the parametric and classic subspace-based MUSIC(multiple signal classification),it is clarified that as long as the power order of the inverse covariance matrix is increased to reduce the influence of signal subspace components in the ICE,the estimation performance of the ICE becomes equivalent to that of the MUSIC regardless of the signal-to-noise ratio(SNR).Furthermore the statistical performance of the ICE is analyzed,and the large-sample mean-squared-error(MSE)expression of the estimated DOA is derived.Finally the effectiveness and the theoretical analysis of the ICE are substantiated through numerical examples,where the Cramer-Rao lower bound(CRB)is used to evaluate the validity of the derived asymptotic MSE expression.
文摘The present paper proposes a new robust estimator for Poisson regression models. We used the weighted maximum likelihood estimators which are regarded as Mallows-type estimators. We perform a Monte Carlo simulation study to assess the performance of a suggested estimator compared to the maximum likelihood estimator and some robust methods. The result shows that, in general, all robust methods in this paper perform better than the classical maximum likelihood estimators when the model contains outliers. The proposed estimators showed the best performance compared to other robust estimators.
基金the National Natural Science Foundation of China(62071144,61971159,61871149).
文摘The conformal array can make full use of the aperture,save space,meet the requirements of aerodynamics,and is sensitive to polarization information.It has broad application prospects in military,aerospace,and communication fields.The joint polarization and direction-of-arrival(DOA)estimation based on the conformal array and the theoretical analysis of its parameter estimation performance are the key factors to promote the engineering application of the conformal array.To solve these problems,this paper establishes the wave field signal model of the conformal array.Then,for the case of a single target,the cost function of the maximum likelihood(ML)estimator is rewritten with Rayleigh quotient from a problem of maximizing the ratio of quadratic forms into those of minimizing quadratic forms.On this basis,rapid parameter estimation is achieved with the idea of manifold separation technology(MST).Compared with the modified variable projection(MVP)algorithm,it reduces the computational complexity and improves the parameter estimation performance.Meanwhile,the MST is used to solve the partial derivative of the steering vector.Then,the theoretical performance of ML,the multiple signal classification(MUSIC)estimator and Cramer-Rao bound(CRB)based on the conformal array are derived respectively,which provides theoretical foundation for the engineering application of the conformal array.Finally,the simulation experiment verifies the effectiveness of the proposed method.
文摘In this article,we consider a new family of exponential type estimators for estimating the unknown population mean of the study variable.We propose estimators taking advantage of the auxiliary variable information under the first and second non-response cases separately.The required theoretical comparisons are obtained and the numerical studies are conducted.In conclusion,the results show that the proposed family of estimators is the most efficient estimator with respect to the estimators in literature under the obtained conditions for both cases.
文摘Proceeded from trimmed Hill estimators and distributed inference, a new distributed version of trimmed Hill estimator for heavy tail index is proposed. Considering the case where the number of observations involved in each machine can be either the same or different and either fixed or varying to the total sample size, its consistency and asymptotic normality are discussed. Simulation studies are particularized to show the new estimator performs almost in line with the trimmed Hill estimator.
基金funded by Taif University Researchers Supporting Project No.(TURSP-2020/214),Taif University,Taif,Saudi Arabia。
文摘For a 5G wireless communication system,a convolutional deep neural network(CNN)is employed to synthesize a robust channel state estimator(CSE).The proposed CSE extracts channel information from transmit-and-receive pairs through offline training to estimate the channel state information.Also,it utilizes pilots to offer more helpful information about the communication channel.The proposedCNN-CSE performance is compared with previously published results for Bidirectional/long short-term memory(BiLSTM/LSTM)NNs-based CSEs.The CNN-CSE achieves outstanding performance using sufficient pilots only and loses its functionality at limited pilots compared with BiLSTM and LSTM-based estimators.Using three different loss function-based classification layers and the Adam optimization algorithm,a comparative study was conducted to assess the performance of the presented DNNs-based CSEs.The BiLSTM-CSE outperforms LSTM,CNN,conventional least squares(LS),and minimum mean square error(MMSE)CSEs.In addition,the computational and learning time complexities for DNN-CSEs are provided.These estimators are promising for 5G and future communication systems because they can analyze large amounts of data,discover statistical dependencies,learn correlations between features,and generalize the gotten knowledge.
文摘In this paper,a robust torque speed estimator(RTSE)for linear parameter changing(LPC)system is proposed and designed for an encoderless five-phase permanent magnet assisted synchronous reluctance motor(5-phase PMa-SynRM).This estimator is utilized for estimating the rotor speed and the load torque as well as can solve the speed sensor fault problem,as the feedback speed information is obtained directly from the virtual sensor.In addition,this technique is able to enhance the 5-phase PMa-SynRM performance by estimating the load torque for the real time compensation.The stability analysis of the proposed estimator is performed via Schur complement along with Lyapunov analysis.Furthermore,for improving the 5-phase PMa-SynRM performance,five super-twisting sliding mode controllers(ST-SMCs)are employed with providing a robust response without the impacts of high chattering problem.A super-twisting sliding mode speed controller(ST-SMSC)is employed for controlling the PMa-SynRM rotor speed,and four super-twisting sliding mode current controllers(ST-SMCCs)are employed for controlling the 5-phase PMa-SynRM currents.The stability analysis and the experimental results indicate the effectiveness along with feasibility of the proposed RTSE and the ST-SMSC with ST-SMCCs approach for a 750-W 5-phase PMa-SynRM under load disturbance,parameters variations,single open-phase fault,and adjacent two-phase open circuit fault conditions.