Wireless Sensor Networks are composed of autonomous sensing devices which are interconnected to form a closed network.This closed network is intended to share sensitive location-centric information from a source node ...Wireless Sensor Networks are composed of autonomous sensing devices which are interconnected to form a closed network.This closed network is intended to share sensitive location-centric information from a source node to the base station through efficient routing mechanisms.The efficiency of the sensor node is energy bounded,acts as a concentrated area for most researchers to offer a solution for the early draining power of sensors.Network management plays a significant role in wireless sensor networks,which was obsessed with the factors like the reliability of the network,resource management,energy-efficient routing,and scalability of services.The topology of the wireless sensor networks acts dri-ven factor for network efficiency which can be effectively maintained by perform-ing the clustering process effectively.More solutions and clustering algorithms have been offered by various researchers,but the concern of reduced efficiency in the routing process and network management still exists.This research paper offers a hybrid algorithm composed of a memetic algorithm which is an enhanced version of a genetic algorithm integrated with the adaptive hill-climbing algorithm for performing energy-efficient clustering process in the wireless sensor networks.The memetic algorithm employs a local searching methodology to mitigate the premature convergence,while the adaptive hill-climbing algorithm is a local search algorithm that persistently migrates towards the increased elevation to determine the peak of the mountain(i.e.,)best cluster head in the wireless sensor networks.The proposed hybrid algorithm is compared with the state of art clus-tering algorithm to prove that the proposed algorithm outperforms in terms of a network life-time,energy consumption,throughput,etc.展开更多
In order to generate an efficient common bitmap in single bitmap block truncation coding(SBBTC)of color images,an improved SBBTC scheme based on weighted plane(W-plane)method and hill climbing algorithm is proposed.Fi...In order to generate an efficient common bitmap in single bitmap block truncation coding(SBBTC)of color images,an improved SBBTC scheme based on weighted plane(W-plane)method and hill climbing algorithm is proposed.Firstly,the incoming color image is partitioned into non-overlapping blocks and each block is encoded using the W-plane method to get an initial common bitmap and quantization values.Then,the hill climbing algorithm is applied to optimize an initial common bitmap and generate a near-optimized common bitmap.Finally,the quantization values are recalculated by the near-optimized common bitmap and the considered color image is reconstructed block by block through the common bitmap and the new quantization values.Since the processing of each image block in SBBTC is independent and identical,parallel computing is applied to reduce the time consumption of this scheme.The simulation results show that the proposed scheme has better visual quality and time consumption than those of the reference SBBTC schemes.展开更多
In order to solve the constraint satisfied problem in the genetic algorithm, the partheno-genetic algorithm is designed. And then the schema theorem of the partheno-genetic algorithm is proposed to show that the high ...In order to solve the constraint satisfied problem in the genetic algorithm, the partheno-genetic algorithm is designed. And then the schema theorem of the partheno-genetic algorithm is proposed to show that the high rank schemas at the subsequent generation decrease exponentially even though its fitness is more optimal than the average one in the population and the low rank schemas at the subsequent generation increase exponentially when its fitness is more optimal than the average one in the population. In order to overcome the shortcoming that the optimal high rank schema can be deserted arbitrarily, the HGA (hybrid partheno-genetic algorithm) is proposed, that is, the hill-climbing algorithm is integrated to search for a better individual. Finally, the results of the simulation for facility layout problem and no-wait schedule problem are given. It is shown that the hybrid partheno- genetic algorithm is of high efficiency.展开更多
为了克服聚类算法对灰度不均匀和有噪声的医学图像分割存在鲁棒性较差等缺点,提出一种基于核密度估计的密度聚类方法分割医学图像。在分析DENCLUE密度聚类算法的思想及爬山策略存在的三个问题的基础上,改进了此密度聚类的爬山策略,并设...为了克服聚类算法对灰度不均匀和有噪声的医学图像分割存在鲁棒性较差等缺点,提出一种基于核密度估计的密度聚类方法分割医学图像。在分析DENCLUE密度聚类算法的思想及爬山策略存在的三个问题的基础上,改进了此密度聚类的爬山策略,并设计了适合于人体组织器官图像分割的DCMIS(Density Clusteringbased Medical Image Segmentation)算法。该算法先用核密度估计数学模型描述医学图像,然后用改进的爬山算法识别聚类,最后根据聚类分割医学图像。该算法有容忍大量噪声数据等特性。实验结果中的欠分割率、过分割率和错误分割率表明DCMIS比DENCLUE和FCM算法有更好的性能和较好的医学图像分割效能。展开更多
文摘Wireless Sensor Networks are composed of autonomous sensing devices which are interconnected to form a closed network.This closed network is intended to share sensitive location-centric information from a source node to the base station through efficient routing mechanisms.The efficiency of the sensor node is energy bounded,acts as a concentrated area for most researchers to offer a solution for the early draining power of sensors.Network management plays a significant role in wireless sensor networks,which was obsessed with the factors like the reliability of the network,resource management,energy-efficient routing,and scalability of services.The topology of the wireless sensor networks acts dri-ven factor for network efficiency which can be effectively maintained by perform-ing the clustering process effectively.More solutions and clustering algorithms have been offered by various researchers,but the concern of reduced efficiency in the routing process and network management still exists.This research paper offers a hybrid algorithm composed of a memetic algorithm which is an enhanced version of a genetic algorithm integrated with the adaptive hill-climbing algorithm for performing energy-efficient clustering process in the wireless sensor networks.The memetic algorithm employs a local searching methodology to mitigate the premature convergence,while the adaptive hill-climbing algorithm is a local search algorithm that persistently migrates towards the increased elevation to determine the peak of the mountain(i.e.,)best cluster head in the wireless sensor networks.The proposed hybrid algorithm is compared with the state of art clus-tering algorithm to prove that the proposed algorithm outperforms in terms of a network life-time,energy consumption,throughput,etc.
基金Supported by the National Natural Science Foundation of China(No.61402537)the Open Fund of Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis(No.HCIC201706)the Sichuan Science and Technology Programme(No.2018GZDZX0041)
文摘In order to generate an efficient common bitmap in single bitmap block truncation coding(SBBTC)of color images,an improved SBBTC scheme based on weighted plane(W-plane)method and hill climbing algorithm is proposed.Firstly,the incoming color image is partitioned into non-overlapping blocks and each block is encoded using the W-plane method to get an initial common bitmap and quantization values.Then,the hill climbing algorithm is applied to optimize an initial common bitmap and generate a near-optimized common bitmap.Finally,the quantization values are recalculated by the near-optimized common bitmap and the considered color image is reconstructed block by block through the common bitmap and the new quantization values.Since the processing of each image block in SBBTC is independent and identical,parallel computing is applied to reduce the time consumption of this scheme.The simulation results show that the proposed scheme has better visual quality and time consumption than those of the reference SBBTC schemes.
文摘In order to solve the constraint satisfied problem in the genetic algorithm, the partheno-genetic algorithm is designed. And then the schema theorem of the partheno-genetic algorithm is proposed to show that the high rank schemas at the subsequent generation decrease exponentially even though its fitness is more optimal than the average one in the population and the low rank schemas at the subsequent generation increase exponentially when its fitness is more optimal than the average one in the population. In order to overcome the shortcoming that the optimal high rank schema can be deserted arbitrarily, the HGA (hybrid partheno-genetic algorithm) is proposed, that is, the hill-climbing algorithm is integrated to search for a better individual. Finally, the results of the simulation for facility layout problem and no-wait schedule problem are given. It is shown that the hybrid partheno- genetic algorithm is of high efficiency.
文摘为了克服聚类算法对灰度不均匀和有噪声的医学图像分割存在鲁棒性较差等缺点,提出一种基于核密度估计的密度聚类方法分割医学图像。在分析DENCLUE密度聚类算法的思想及爬山策略存在的三个问题的基础上,改进了此密度聚类的爬山策略,并设计了适合于人体组织器官图像分割的DCMIS(Density Clusteringbased Medical Image Segmentation)算法。该算法先用核密度估计数学模型描述医学图像,然后用改进的爬山算法识别聚类,最后根据聚类分割医学图像。该算法有容忍大量噪声数据等特性。实验结果中的欠分割率、过分割率和错误分割率表明DCMIS比DENCLUE和FCM算法有更好的性能和较好的医学图像分割效能。