On the basis of Hill's lemma for classical Cauchy continuum, a version of Hill's lemma for micro-macro homogenization modeling of heterogeneous Cosserat continuum is presented in the flame of average-field theory. T...On the basis of Hill's lemma for classical Cauchy continuum, a version of Hill's lemma for micro-macro homogenization modeling of heterogeneous Cosserat continuum is presented in the flame of average-field theory. The admissible boundary conditions required to prescribe on the representative volume element for the modeling are extracted and discussed to ensure the satisfaction of Hill-Mandel energy condition and the first-order average field theory.展开更多
A pearlitic steel is composed of numerous pearlitic colonies with random orientations, and each colony consists of many parallel lamellas of ferrite and cementite. The constitutive behavior of this kind of materials m...A pearlitic steel is composed of numerous pearlitic colonies with random orientations, and each colony consists of many parallel lamellas of ferrite and cementite. The constitutive behavior of this kind of materials may involve both inherent anisotropy and plastic deformation induced anisotropy. A description of the cyclic plasticity for this kind of dual-phase materials is proposed by use of a microstructure-based constitutive model for a pearlitic colony, and the Hill's self-consistent scheme incorporating anisotropic Eshelby tensor for ellipsoidal inclusions. The corresponding numerical algorithm is developed. The responses of pearlitic steel BS 11 and single-phase hard-drawn copper subjected to asymmetrically cyclic loading are analyzed. The analytical results agree very well with experimental ones. Compared with the results using isotropic Eshelby tensor, it is shown that the isotropic approximation can provide acceptable overall responses in a much simpler way.展开更多
The structural parameters, chemical bonding and elastic properties of the tetragonal phase quaternary arsenide oxides YZnAsO and LaZnAsO were investigated by using density-functional theory (DFT) within generalized ...The structural parameters, chemical bonding and elastic properties of the tetragonal phase quaternary arsenide oxides YZnAsO and LaZnAsO were investigated by using density-functional theory (DFT) within generalized gradient approximation (GGA). The GGA calculated structural parameters are in agreement with the experimental results. Population analysis suggests that the chemical bonding in YZnAsO and LaZnAsO can be classified as a mixture of ionic and covalent characteristic. Single-crystal elastic constants were calculated and the polycrystalline elastic modules were estimated according to Voigt, Reuss and Hill's approximations (VRH). The result shows that both YZnAsO and LaZnAsO are relatively soft materials exhibiting ductile behavior. The calculated polycrystalline elastic anisotropy result shows that LaZnAsO is more anisotropy in compressibility and YZnAsO is more anisotropy in shear.展开更多
基金supported by the National Natural Science Foundation of China (90715011, 10672033 and 10590354) the National Key Basic Research and Development Program (2002CB412709) the Australia Research Council through the ARC International Fellowship Offered at University of Newcastle (LX0666274)
文摘On the basis of Hill's lemma for classical Cauchy continuum, a version of Hill's lemma for micro-macro homogenization modeling of heterogeneous Cosserat continuum is presented in the flame of average-field theory. The admissible boundary conditions required to prescribe on the representative volume element for the modeling are extracted and discussed to ensure the satisfaction of Hill-Mandel energy condition and the first-order average field theory.
基金the National Natural Science Foundation of China (10472135)
文摘A pearlitic steel is composed of numerous pearlitic colonies with random orientations, and each colony consists of many parallel lamellas of ferrite and cementite. The constitutive behavior of this kind of materials may involve both inherent anisotropy and plastic deformation induced anisotropy. A description of the cyclic plasticity for this kind of dual-phase materials is proposed by use of a microstructure-based constitutive model for a pearlitic colony, and the Hill's self-consistent scheme incorporating anisotropic Eshelby tensor for ellipsoidal inclusions. The corresponding numerical algorithm is developed. The responses of pearlitic steel BS 11 and single-phase hard-drawn copper subjected to asymmetrically cyclic loading are analyzed. The analytical results agree very well with experimental ones. Compared with the results using isotropic Eshelby tensor, it is shown that the isotropic approximation can provide acceptable overall responses in a much simpler way.
基金Project(50474051)supported by the National Natural Science Foundation of China
文摘The structural parameters, chemical bonding and elastic properties of the tetragonal phase quaternary arsenide oxides YZnAsO and LaZnAsO were investigated by using density-functional theory (DFT) within generalized gradient approximation (GGA). The GGA calculated structural parameters are in agreement with the experimental results. Population analysis suggests that the chemical bonding in YZnAsO and LaZnAsO can be classified as a mixture of ionic and covalent characteristic. Single-crystal elastic constants were calculated and the polycrystalline elastic modules were estimated according to Voigt, Reuss and Hill's approximations (VRH). The result shows that both YZnAsO and LaZnAsO are relatively soft materials exhibiting ductile behavior. The calculated polycrystalline elastic anisotropy result shows that LaZnAsO is more anisotropy in compressibility and YZnAsO is more anisotropy in shear.