The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are...The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are used to start networks.Here we explored the effects of diethyl(3,4-dihydroxyphenethylamino)(quinolin-4-yl)methylphosphonate(DDQ)on neurite developmental features in HT22 neuronal cells.In this work,we examined the protective effects of DDQ on neuronal processes and synaptic outgrowth in differentiated HT22cells expressing mutant Tau(mTau)cDNA.To investigate DDQ chara cteristics,cell viability,biochemical,molecular,western blotting,and immunocytochemistry were used.Neurite outgrowth is evaluated through the segmentation and measurement of neural processes.These neural processes can be seen and measured with a fluorescence microscope by manually tracing and measuring the length of the neurite growth.These neuronal processes can be observed and quantified with a fluorescent microscope by manually tracing and measuring the length of the neuronal HT22.DDQ-treated mTau-HT22 cells(HT22 cells transfected with cDNA mutant Tau)were seen to display increased levels of synaptophysin,MAP-2,andβ-tubulin.Additionally,we confirmed and noted reduced levels of both total and p-Tau,as well as elevated levels of microtubule-associated protein 2,β-tubulin,synaptophysin,vesicular acetylcholine transporter,and the mitochondrial biogenesis protein-pe roxisome prolife rator-activated receptor-gamma coactivator-1α.In mTa u-expressed HT22 neurons,we observed DDQ enhanced the neurite characteristics and improved neurite development through increased synaptic outgrowth.Our findings conclude that mTa u-HT22(Alzheimer's disease)cells treated with DDQ have functional neurite developmental chara cteristics.The key finding is that,in mTa u-HT22 cells,DDQ preserves neuronal structure and may even enhance nerve development function with mTa u inhibition.展开更多
Objective To detect the effects of microwave on calcium levels in primary hippocampal neurons and primary cardiomyocytes by the real-time microwave exposure combined with laser scanning confocal microscopy. Methods Th...Objective To detect the effects of microwave on calcium levels in primary hippocampal neurons and primary cardiomyocytes by the real-time microwave exposure combined with laser scanning confocal microscopy. Methods The primary hippocampal neurons and primary cardiomyocytes were cultured and labeled with probes, including Fluo-4 AM, Mag-Fluo-AM, and Rhod-2, to reflect the levels of whole calcium [Ca], endoplasmic reticulum calcium [Ca]ER, and mitochondrial calcium [Ca]MIT, respectively. Then, the cells were exposed to a pulsed microwave of 2.856 GHz with specific absorption rate(SAR) values of 0, 4, and 40 W/kg for 6 min to observe the changes in calcium levels. Results The results showed that the 4 and 40 W/kg microwave radiation caused a significant decrease in the levels of [Ca], [Ca]ER, and [Ca]MIT in primary hippocampal neurons. In the primary cardiomyocytes, only the 40 W/kg microwave radiation caused the decrease in the levels of [Ca], [Ca]ER, and [Ca]MIT. Primary hippocampal neurons were more sensitive to microwave exposure than primary cardiomyocytes. The mitochondria were more sensitive to microwave exposure than the endoplasmic reticulum. Conclusion The calcium efflux was occurred during microwave exposure in primary hippocampal neurons and primary cardiomyocytes. Additionally, neurons and mitochondria were sensitive cells and organelle respectively.展开更多
Ginsenoside Rg1(Rg1) has anti-aging and anti-neurodegenerative effects. However, the mechanisms underlying these actions remain unclear. The aim of the present study was to determine whether Rg1 affects hippocampal ...Ginsenoside Rg1(Rg1) has anti-aging and anti-neurodegenerative effects. However, the mechanisms underlying these actions remain unclear. The aim of the present study was to determine whether Rg1 affects hippocampal survival and neurite outgrowth in vitro after exposure to amyloid-beta peptide fragment 25–35(Aβ_(25–35)), and to explore whether the extracellular signal-regulated kinase(ERK) and Akt signaling pathways are involved in these biological processes. We cultured hippocampal neurons from newborn rats for 24 hours, then added Rg1 to the medium for another 24 hours, with or without pharmacological inhibitors of the mitogen-activated protein kinase(MAPK) family or Akt signaling pathways for a further 24 hours. We then immunostained the neurons for growth associated protein-43, and measured neurite length. In a separate experiment, we exposed cultured hippocampal neurons to Aβ_(25–35) for 30 minutes, before adding Rg1 for 48 hours, with or without Akt or MAPK inhibitors, and assessed neuronal survival using Hoechst 33258 staining, and phosphorylation of ERK1/2 and Akt by western blot analysis. Rg1 induced neurite outgrowth, and this effect was blocked by API-2(Akt inhibitor) and PD98059(MAPK/ERK kinase inhibitor), but not by SP600125 or SB203580(inhibitors of c-Jun N-terminal kinase and p38 MAPK, respectively). Consistent with this effect, Rg1 upregulated the phosphorylation of Akt and ERK1/2; these effects were reversed by API-2 and PD98059, respectively. In addition, Rg1 significantly reversed Aβ_(25–35)-induced apoptosis; this effect was blocked by API-2 and PD98059, but not by SP600125 or SB203580. Finally, Rg1 significantly reversed the Aβ_(25–35)-induced decrease in Akt and ERK1/2 phosphorylation, but API-2 prevented this reversal. Our results indicate that Rg1 enhances neurite outgrowth and protects against Aβ_(25–35)-induced damage, and that its mechanism may involve the activation of Akt and ERK1/2 signaling.展开更多
BACKGROUND: In studies concerning cell injury induced by cerebral ischemia-reperfusion, current experiments have primarily focused on altered protein levels. In addition, the apoptotic proteins Bax and Bcl-2 have bee...BACKGROUND: In studies concerning cell injury induced by cerebral ischemia-reperfusion, current experiments have primarily focused on altered protein levels. In addition, the apoptotic proteins Bax and Bcl-2 have been thoroughly studied with regard to initiating neuronal apoptosis. OBJECTIVE: To establish an in vitro model of oxygen-glucose deprivation and reintroduction in the rat hippocampus to simulate cerebral ischemia-reperfusion injury; to observe c-Jun N-terminal kinase 3 (JNK3) mRNA expression in hippocampal neurons following Astragalus injection; and thus to determine changes in the signaling and downstream pathways of neuronal apoptosis at the cellular and molecular level. DESIGN, TIME AND SETTING: A randomized, controlled, cellular and molecular experiment was performed at the Department of Central Laboratory, Chengde Medical College from February to June 2008. MATERIALS: Astragalus injection, the main ingredient of astragaloside, was purchased from Chengdu Di'ao Jiuhong Pharmaceutical Manufactory, China. JNK3 mRNA probe and in situ hybridization kit were purchased from Tianjin Haoyang Biological Technology, China, and JNK3 RT-PCR primers were designed by Shanghai Bio-engineering, China. METHODS: Primary cultures of hippocampal neurons derived from Sprague Dawley rats, aged 1 2 days, were established. After 8 days, the hippocampal neurons were assigned to the following interventions: model group, Astragalus group, and vehicle control group, cells were subjected to oxygen-glucose reintroduction after oxygen-glucose deprivation for 30 minutes in sugar-free Earle's solution and a hypoxia device, which contained high-purity nitrogen. The normal control group was subjected to primary culture techniques and was not treated using above-mentioned interventions. In addition, the Astragalus and vehicle control groups were treated with Astragalus injection (0.5 g/L raw drug) or sterile, deionized water at 2 hours prior to oxygen-glucose deprivation, respectively. MAIN OUTCOME MEASURES: JNK3 mRNA expression was measured by in situ hybridization and RT-PCR at 0, 0.5, 2, 6, 24, 72, and 120 hours after oxygen-glucose reintroduction. RESULTS: Hippocampal neuronal morphology was normal in the normal control group. Hippocampal neurons exhibited apparent apoptosis-like pathological changes in the model, as well as the vehicle control, groups. The apoptosis-like pathological changes in the hippocampal neurons were less in the Astragalus group. Results from in situ hybridization and RT-PCR showed that JNK3 mRNA expression significantly increased in hippocampal neurons from model group, as well as the vehicle control group, compared with the normal control group (P 〈 0.05). In addition, JNK3 mRNA expression significantly decreased in hippocampal neurons of the Astragalus group, compared with the model group and vehicle control group (P 〈 0.05). CONCLUSION: Astragalus injection inhibited apoptosis-related JNK3 mRNA expression following oxygen-glucose deprivation and reintroduction, and accordingly played a role in inhibiting hippocampal neuronal apoptosis.展开更多
Hypoxic injuries during fetal distress have been shown to cause reduced expression of micro RNA-27a(mi R-27a),which regulates sensitivity of cortical neurons to apoptosis.We hypothesized that miR-27 a overexpression...Hypoxic injuries during fetal distress have been shown to cause reduced expression of micro RNA-27a(mi R-27a),which regulates sensitivity of cortical neurons to apoptosis.We hypothesized that miR-27 a overexpression attenuates hypoxia- and ischemia-induced neuronal apoptosis by regulating FOXO1,an important transcription factor for regulating the oxidative stress response.miR-27 a mimic was transfected into hippocampal neurons to overexpress miR-27 a.Results showed increased hippocampal neuronal viability and decreased caspase-3 expression.The luciferase reporter gene system demonstrated that mi R-27 a directly binded to FOXO1 3′UTR in hippocampal neurons and inhibited FOXO1 expression,suggesting that FOXO1 was the target gene for mi R-27 a.These findings confirm that mi R-27 a protects hippocampal neurons against oxygen-glucose deprivation-induced injuries.The mechanism might be mediated by modulation of FOXO1 and apoptosis-related gene caspase-3 expression.展开更多
Previous studies have shown that chrysophanol protects against learning and memory impairments in lead-exposed adult mice. In the present study, we investigated whether chrysophanol can alleviate learning and memory d...Previous studies have shown that chrysophanol protects against learning and memory impairments in lead-exposed adult mice. In the present study, we investigated whether chrysophanol can alleviate learning and memory dysfunction and hippocampal neuronal injury in lead-exposed neonatal mice. At the end of lactation, chrysophanol(0.1, 1.0, 10.0 mg/kg) was administered to the neonatal mice by intraperitoneal injection for 15 days. Chrysophanol significantly alleviated injury to hippocampal neurons and improved learning and memory abilities in the lead-poisoned neonatal mice. Chrysophanol also significantly decreased lead content in blood, brain, heart, spleen, liver and kidney in the lead-exposed neonatal mice. The levels of malondialdehyde in the brain, liver and kidney were significantly reduced, and superoxide dismutase and glutathione peroxidase activities were significantly increased after chrysophanol treatment. Collectively, these findings indicate that chrysophanol can significantly reduce damage to hippocampal neurons in lead-exposed neonatal mice.展开更多
BACKGROUND: Evidence illustrates that androgen has a neuroprotective role. However, whether androgen also has the protective effect on hippocampal neurons during free radical mediated injury remains unclear. OBJECTIV...BACKGROUND: Evidence illustrates that androgen has a neuroprotective role. However, whether androgen also has the protective effect on hippocampal neurons during free radical mediated injury remains unclear. OBJECTIVE: To investigate the neuroprotective effect of androgen on hippocampal neurons during free radical damage. DESIGN, TIME AND SETTING: A controlled in vitro experiment was performed at the Department of Human Anatomy, Cell Culture Lab, and Neuroendocrinology Lab, Basic Medical School, Hebei Medical University from February to June 2009. MATERIALS: Testosterone was provided by Tianjin Jinyao Amino Acid Company, China. METHODS: Primary cultured neurons from 24 Sprague Dawley rats were randomly assigned into four groups: control, H202, testosterone, and testosterone (pre-added) plus H2O2 groups. MAIN OUTCOME MEASURES: The positive cell ratio of microtubule associated protein-Ⅱ and neuron specific enolase was determined by immunocytochemistry. Neuronal morphology was observed by hematoxylin-eosin staining and Nissl staining. Cell vitality and viability were determined using an inverted phase contrast microscope. The content of nitric oxide synthase, malondialdehyde, and superoxide dismutase were measured with a spectrophotometer. RESULTS: As compared with the control group, cell vitality and viability, and superoxide dismutase level were significantly decreased in the H202 group (P 〈 0.05), while nitric oxide synthase and malondialdehyde levels were significantly increased (P 〈 0.05). Neuronal vitality and viability as well as superoxide dismutase level in the testosterone plus H2O2 group were significantly greater than in the H2O2 group (P 〈 0.05), and nitric oxide synthase and malondialdehyde levels were significantly less than in the H2O2 group (P〈 0.05). CONCLUSION: Androgen partially reversed H2O2-induced neuronal damage and protected neurons.展开更多
In this study, we investigated the role of the TYRO3/Akt signaling pathway in hypoxic injury to hippocampal neurons. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that hypoxia inhibited t...In this study, we investigated the role of the TYRO3/Akt signaling pathway in hypoxic injury to hippocampal neurons. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that hypoxia inhibited the proliferation and viability of hippocampal neurons. Terminal deoxynucleotidyl transferase-mediated d UTP nick end labeling assay demonstrated that hypoxia induced neuronal apoptosis in a time-dependent manner, with a greater number of apoptotic cells with longer hypoxic exposure. Immunofluorescence labeling revealed that hypoxia suppressed TYRO3 expression. Western blot assay showed that hypoxia decreased Akt phosphorylation levels in a time-dependent manner. Taken together, these findings suggest that hypoxia inhibits the proliferation of hippocampal neurons and promotes apoptosis, and that the inhibition of the TYRO3/Akt signaling pathway plays an important role in hypoxia-induced neuronal injury.展开更多
Designing and/or searching for novel antioxidants against oxygen glucose effective strategy for the treatment of human isdlemic stroke. Selenium is deprivation (OGD)-induced oxidative damage represents an an essenti...Designing and/or searching for novel antioxidants against oxygen glucose effective strategy for the treatment of human isdlemic stroke. Selenium is deprivation (OGD)-induced oxidative damage represents an an essential trace dement, which is beneficial in the chemo- prevention and chemotherapy of cerebral ischemic stroke. The underlying mechanisms for its therapeutic effects, however, are not well documented. Selenocysteine (SeC) is a selenium-containing amino acid with neuroprotective potential. Studies have shown that SeC can reduce irradiation-induced DNA apoptosis by reducing DNA damage. In this study, the in vitro protective potential and mechanism of action of SeC against OGD-induced apoptosis and neurotoxicity were evaluated in HT22 mouse hippocampal neurons. We cultured HT22 cells in a glucose-free medium containing 2 mM Na2S402, which formed an OGD environment, for 90 minutes. Findings from MTT, flow cytometry and TUNEL staining showed obvious cytotoxicity and apoptosis in HT22 cells in the OGD condition. The activation of Caspa se-7 and Caspase-9 further revealed that OGD-induced apoptosis of HT22 cells was mainly achieved by triggering a mitochondrial-medi- ated pathway. Moreover, the OGD condition also induced serious DNA damage through the accumulation of reactive oxygen species and superoxide anions. However, SeC pre-treatment for 6 hours effectively inhibited OGD-induced cytotoxicity and apoptosis in HT22 cells by inhibiting reactive oxygen species-mediated oxidative damage. Our findings provide evidence that SeC has the potential to suppress OGD-induced oxidative damage and apoptosis in hippocampal neurons.展开更多
Objective To examine the effects of Pb2+ on N-methyl-D-aspartate (NMDA)-, K+- and quisqualate(QA)/kainite(KA)-induced increases in intracellular free calcium concentration ([Ca2+],) in cultured fetal rat hippocampal n...Objective To examine the effects of Pb2+ on N-methyl-D-aspartate (NMDA)-, K+- and quisqualate(QA)/kainite(KA)-induced increases in intracellular free calcium concentration ([Ca2+],) in cultured fetal rat hippocampal neurons in order to explain the cognitive and learning deficits produced by this heavy metal. Methods Laser scanning confocal microscopy was used. Results The results clearly demonstrated that adding Pb2+ before or after NMDA/glycine stimulation selectively inhibited the stimulated increases in [Ca2+], in a concentration-dependent manner. In contrast, Pb2+ treatment did not markedly affect increases in [Ca2+], induced by an admixture of QA and KA. The minimal inhibitory effect of Pb2+ occurred at 1 μmol/L, and more than seventy percent abolition of the NMDA-stimulated increase in [Ca2+]; was observed at 100 Jμmoll/L Pb2+. Evaluation of Pb2+-induced increase in [Ca2+], response to elevating extracellular concentrations of NMDA, glycine or calcium revealed that Pb2+ was a noncompetitive antagonist of both NMDA and glycine, and a competitive antagonist of Ca2+ at NMDA receptor channels. In addition. Pb2+ inhibited depolarization-evoked increases in [Ca2+], mediated by K+ stimulation(30μmol/L). indicating that Pb2+ also depressed the voltage-dependent calcium channels. Also, the results showed that Pb2+ appeared to be able to elevate the resting levels of [Ca2+|, in cultured neurons, implying a reason for Pb2+-enhanced spontaneous release of several neurotransmitters reported in several previous studies. Conclusion Lead can inhibit NMDA-. K+-, QA/KA-jnduced increases in intracellular [Ca2+], in cultured hippocampal neurons.展开更多
Gentianine has been shown to have a protective effect on hippocampal CA1 neurons in rats subjected to recurrent febrile convulsion(FC).The present study sought to explore the possible mechanism of gentianine by intr...Gentianine has been shown to have a protective effect on hippocampal CA1 neurons in rats subjected to recurrent febrile convulsion(FC).The present study sought to explore the possible mechanism of gentianine by intraperitoneally injecting gentianine into rats with warm water-induced FC.The results revealed that neuronal organelle injury was slightly ameliorated in the hippocampal CA1 region.The level of glutamate was decreased,but the level of γ-aminobutyric acid was increased,as detected by ninhydrin staining.In addition,glutamate acid decarboxylase expression in hippocampal CA1 was increased,as determined by immunohistochemistry.The results demonstrated that gentianine can ameliorate FC-induced neuronal injury by enhancing glutamate acid decarboxylase activity,decreasing glutamate levels and increasing γ-aminobutyric acid levels.展开更多
BACKGROUND: Previous studies have suggested that the hippocampus is one of the neurotoxic target sites for lead. However, the molecular mechanisms of action, including the effect of lead on cell-cycle arrest, remain ...BACKGROUND: Previous studies have suggested that the hippocampus is one of the neurotoxic target sites for lead. However, the molecular mechanisms of action, including the effect of lead on cell-cycle arrest, remain poorly understood. OBJECTIVE: To investigate the effects of different lead concentrations on cell-cycle arrest, DNA damage, and cyclin D1 expression in primary cultured rat hippocampal neurons. DESIGN, TIME AND SETTING: A randomized, controlled, in vitro experiment was performed at the China Medical University between July 2008 and May 2009. MATERIALS: Antibodies specific to cyclin D1 and actin were synthesized and purified by Santa Cruz Biotechnology, USA. FACStar flow cytometer was purchased from Becton Dickinson, San Jose, California, USA. METHODS: Wistar rat hippocampal neurons were primary cultured for 7 days. Neurons in the control group were treated with 0.01 mol/L phosphate buffered saline. Neurons in the 0.2, 1.0, and 10 umol/L lead acetate groups were subjected to 0.2, 1.0, and 10 umol/L lead acetate. Subsequently hippocampal neurons in each group were cultured for 24 hours. MAIN OUTCOME MEASURES: The effects of lead on cell cycle were measured by flow cytometry, DNA damage was measured using the comet assay, and cyclin D1 expression was measured using Western blot analysis. RESULTS: Treatment of hippocampal neurons with 0.2 umol/L lead acetate did not significantly alter cell cycle phase distribution, i.e., sub-G1, S, G0/G1, G2/M, whereas treatment with 1.0 and 10 umol/L lead acetate significantly increased the percentage of S and sub-G1 phase cells (P 〈 0.05). Olive tail moment in all lead-treated groups and the percentage of DNA in the tail in 1.0 umol/L and 10 umol/L lead acetate groups were significantly greater compared with the control group (P 〈 0.05). In addition, the percentage of tail DNA was greater in the 0.2 umol/L lead acetate group compared with the control group (P 〉 0.05). Following incubation with 0.2, 1.0, and 10 umol/L lead acetate for 24 hours, cyclin D1 expression gradually decreased with exposure to increasing lead acetate concentrations (1.0-10 umol/L). CONCLUSION: Lead exposure to primary cultured rat hippocampal neurons resulted in dose-dependently disturbed cellular homeostasis, including DNA damage, reduced cyclin D1 expression, and stagnation of cell-cycle progression.展开更多
Hippocampal neurons were treated by thrombin and thrombin receptor activatingpeptides (TRAP). Cell survival rate was decreased in a dose-dependent manner by MTT assay. Thenumbers of apoptotic cell and apoptotic rate o...Hippocampal neurons were treated by thrombin and thrombin receptor activatingpeptides (TRAP). Cell survival rate was decreased in a dose-dependent manner by MTT assay. Thenumbers of apoptotic cell and apoptotic rate of hippocampal neurons treated bydifferentconcentrations of thrombin were increased in a dose-dependent manner by terminal deoxynucleotidyltransferase (TdT) mediated dUTP-biotin nick end-labeling (TUNED method and Flow Cytometry. When theconcentration of thrombin is 40 U/mL, TUNEL positive cells and apoptotic rate of hippocampal neuronsreached peak value, were 27. 3 +- 4. 0 and (29. 333 +- 4. 633 ) % , respectively.Immunocytochemistry assay show that Bcl-2 protein expression was down- regulated and Bax proteinexpression was up-regulated with the concentration of thrombin increased. TRAP can mimic the effectof thrombin to induce apoptosis on hippocampal neurons. These data demonstrated that thrombininduced hippocampal neuron apoptosis in a dose-dependent manner through activatingprotease-acti-vated protein-1 (PAR-1). The change in expression of Bcl-2 and Bax was related withthe effect of high concentration thrombin induced apoptosis on hippocampal neurons.展开更多
Septic encephalopathy is a frequent complication of sepsis,but there are few studies examining the role of micro RNAs(mi Rs) in its pathogenesis.In this study,a mi R-219 mimic was transfected into rat hippocampal ne...Septic encephalopathy is a frequent complication of sepsis,but there are few studies examining the role of micro RNAs(mi Rs) in its pathogenesis.In this study,a mi R-219 mimic was transfected into rat hippocampal neurons to model mi R-219 overexpression.A protective effect of mi R-219 was observed for glutamate-induced neurotoxicity of rat hippocampal neurons,and an underlying mechanism involving calmodulin-dependent protein kinase II γ(Ca MKIIγ) was demonstrated.mi R-219 and Ca MKIIγ m RNA expression induced by glutamate in hippocampal neurons was determined by quantitative real-time reverse transcription-polymerase chain reaction(q RT-PCR).After neurons were transfected with mi R-219 mimic,effects on cell viability and apoptosis were measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide(MTT) assay and flow cytometry.In addition,a luciferase reporter gene system was used to confirm Ca MKIIγ as a target gene of mi R-219.Western blot assay and rescue experiments were also utilized to detect Ca MKIIγ expression and further verify that mi R-219 in hippocampal neurons exerted its effect through regulation of Ca MKIIγ.MTT assay and q RT-PCR results revealed obvious decreases in cell viability and mi R-219 expression after glutamate stimulation,while Ca MKIIγ m RNA expression was increased.MTT,flow cytometry,and caspase-3 activity assays showed that mi R-219 overexpression could elevate glutamate-induced cell viability,and reduce cell apoptosis and caspase-3 activity.Moreover,luciferase Ca MKIIγ-reporter activity was remarkably decreased by co-transfection with mi R-219 mimic,and the results of a rescue experiment showed that Ca MKIIγ overexpression could reverse the biological effects of mi R-219.Collectively,these findings verify that mi R-219 expression was decreased in glutamate-induced neurons,Ca MKIIγ was a target gene of mi R-219,and mi R-219 alleviated glutamate-induced neuronal excitotoxicity by negatively controlling Ca MKIIγ expression.展开更多
Summary: To investigate the exact mechanism of epileptogenesis induced by coriaria lactone (CL), the effect of CL on NMDA receptor mediated current (IAsp) in rat hippocampal CA1 neu- rons was investigated by using ny...Summary: To investigate the exact mechanism of epileptogenesis induced by coriaria lactone (CL), the effect of CL on NMDA receptor mediated current (IAsp) in rat hippocampal CA1 neu- rons was investigated by using nystatin perforated whole-cell patch clamp. 10-6-10-4 mol/L Asp acted on NMDA receptors and elicited an inward current (IAsp) at a holding potential (VH) of -40 mV in presence of 10-6 mol/L glycine and absence of Mg2+ extracellularly. CL enhanced NMDA receptor mediated current induced by Asp, but had no effect on threshold concentration, EC50, Hill coefficient as well as maximal-effect concentration and reversal potential of IAsp. The effect had no relationship with holding potential. These results showed that CL could enhance NMDA receptor mediated current to increase [Ca2+]i of neurons by acting on Gly site, thereby inducing epilepsy.展开更多
s Oxidative stress is involved in the progression of neurodegenerative diseases.Previous evidences showed that plasma-logens could improve neurodegenerative diseases.In this study,we investigated the function of phosp...s Oxidative stress is involved in the progression of neurodegenerative diseases.Previous evidences showed that plasma-logens could improve neurodegenerative diseases.In this study,we investigated the function of phosphoethanolamine plasmalogens enriched with EPA(EPA-pPE)and phosphatidylethanolamine enriched with EPA(EPA-PE)on oxidative damage prevention after hy-drogen peroxide(H2O2)and tert-butylhydroperoxide(t-BHP)challenge in primary hippocampal neurons.Results showed that neurons pretreated with EPA-pPE and EPA-PE demonstrated the ability to alleviate oxidative damage,which was proved by the in-creased cell viability.Moreover,the shape and number of neurons were more similar to those of the control group.Antioxidant acti-vity,apoptosis,as well as TrkB/ERK/CREB signaling pathway were investigated to explore the mechanisms.The results suggested that EPA-PE was superior to EPA-pPE in regulating mitochondrial apoptosis.EPA-pPE was more prominent than EPA-PE in upre-gulating TrkB/ERK/CREB signaling pathway.Phospholipids with EPA exerted neuroprotective effects via inhibiting oxidative stress,suppressing apoptosis,and regulating TrkB/ERK/CREB signaling pathway.Therefore,the results provide a scientific basis for utili-zation of phospholipids enriched with EPA on the treatment of neurodegenerative disease.展开更多
Ischemic preconditioning elicited by a non-fatal brief occlusion of blood flow has been applied for an experimental therapeutic strategy against a subsequent fatal ischemic insult. In this study, we investigated the n...Ischemic preconditioning elicited by a non-fatal brief occlusion of blood flow has been applied for an experimental therapeutic strategy against a subsequent fatal ischemic insult. In this study, we investigated the neuroprotective effects of ischemic preconditioning(2-minute transient cerebral ischemia) on calbindin D28k immunoreactivity in the gerbil hippocampal CA1 area following a subsequent fatal transient ischemic insult(5-minute transient cerebral ischemia). A large number of pyramidal neurons in the hippocampal CA1 area died 4 days after 5-minute transient cerebral ischemia. Ischemic preconditioning reduced the death of pyramidal neurons in the hippocampal CA1 area. Calbindin D28k immunoreactivity was greatly attenuated at 2 days after 5-minute transient cerebral ischemia and it was hardly detected at 5 days post-ischemia. Ischemic preconditioning maintained calbindin D28 k immunoreactivity after transient cerebral ischemia. These findings suggest that ischemic preconditioning can attenuate transient cerebral ischemia-caused damage to the pyramidal neurons in the hippocampal CA1 area through maintaining calbindin D28k immunoreactivity.展开更多
Objective To explore the protective effects and mechanism of Zuogui Jiangtang Jieyu Formula(左归降糖解郁方,ZGJTJYF)on hippocampal neurons in rats of diabetes complicated with depression(DD)via the TRP/KYN metabolic pa...Objective To explore the protective effects and mechanism of Zuogui Jiangtang Jieyu Formula(左归降糖解郁方,ZGJTJYF)on hippocampal neurons in rats of diabetes complicated with depression(DD)via the TRP/KYN metabolic pathway.Methods(i)In vivo experiments:60 specified pathogen free(SPF)grade male Sprague-Dawley(SD)rats were randomly divided into six groups with 10 rats in each groups:control,DD model,positive(1.8 mg/kg fluoxetine+0.18 g/kg metformin),high-dose ZGJTJYF(ZGJTJYFH,40.500 g/kg ZGJTJYF),middle-dose ZGJTJYF(ZGJTJYF-M,20.250 g/kg ZGJTJYF),and lowdose ZGJTJYF(ZGJTJYF-L,10.125 g/kg ZGJTJYF)groups.Except for the control group,other groups were established DD model by high-fat emulsion intake with single tail vein streptozotocin(STZ)and four weeks of chronic unpredictable mild stress(CUMS).All drug administration groups were treated by gavage during CUMS modeling,and the control and model groups were given equal amount of distilled water.After four weeks,the serum levels of blood glucose and glycosylated hemoglobin were measured to determine the hypoglycemic effect of ZGJTJYF.Moreover,the open field test and Morris water maze test were performed to evaluate the antidepressant effect of ZGJTJYF.Changes in 5-hydroxytryptamine(5-HT)level were detected via high-performance liquid chromatography with electrochemical detection(HPLC-ECD);the levels of tryptophan(TRP),kynurenine(KYN),and indoleamine 2,3-dioxygenase(IDO)in the hippocampus were detected using enzyme-linked immunosorbent assay(ELISA);the protein expression levels of synaptophysin(SYN)and postsynaptic density material-95(PSD-95)were detected via immunohistochemistry(IHC);and the protein expression levels of N-methyl-D-aspartate receptor(NR)2 A and NR2 B were detected using Western blot.(ii)In vitro experiments:five SPF grade SD pregnant rats(E16–18)were used to obtain primary hippocampal neurons(Ne),six SD new-born rats were used to collected primary astrocytes(As)and microglia(MG),and to establish a Ne-As-MG co-culture system.All co-culture systems were divided into six groups:control(PBS),model[150 mmol/L glucose+200μmol/L corticosterone(G&P)+PBS],blank(G&P+blank serum),positive(G&P+positive drug-containing serum),ZGJTJYF(G&P+ZGJTJYF serum),and 1-methyl-D-tryptophan(1-MT,IDO inhibitor)(G&P+1-MT)groups.After 18 h of intervention by corresponding treatment,immunofluorescence was used to analyze the protein expression levels of SYN,PSD-95,NR2 A,and NR2 B;ELISA was performed to measure the levels of interleukin(IL)-1β,IL-6,tumor necrosis factor(TNF)-α,and TRP/KYN metabolic pathway-related factors[TRP,KYN,kynurenine acid(KYNA),quinolinic acid(QUIN)].Results(i)In vivo experimental results showed that ZGJTJYF-M and ZGJTJYF-L significantly improved the elevated blood glucose state of DD rats(P<0.01 and P<0.05,respectively);ZGJTJYF-H,ZGJTJYF-M,and ZGJTJYF-L increased their autonomous activity,learning,and memory ability(P<0.01,P<0.01,and P<0.05,respectively).Moreover,the levels of 5-HT and TRP were significantly increased(P<0.01),and the levels of KYN and IDO were significantly decreased in the hippocampus(P<0.01)of rats after ZGJTJYF-M treatment.The protein expression levels of SYN and PSD-95 were significantly upregulated in hippocampal neurons(P<0.01),while the abnormal activation of NR2A and NR2B was markedly inhibited in hippocampus(P<0.05)of rats after ZGJTJYF-M treatment.(ii)In vitro experimental results showed that ZGJTJYF-containing serum significantly increased the protein expression levels of SYN and PSD-95 in hippocampal neurons(P<0.01),decreased the levels of IL-1β(P<0.01),IL-6(P<0.05),TNF-α(P<0.01),IDO(P<0.05),KYN(P<0.05),and QUIN(P<0.01),and increased the levels of TRP and KYNA(P<0.01)in the simulated DD state.ZGJTJYF also had an significantly inhibitory effect on the abnormal activation of NR2A and NR2B in neurons(P<0.05)in a stimulated DD state.Conclusion ZGJTJYF can effectively improve 5-HT deficiency in the hippocampus of rats by inhibiting IDO expression and regulating the TRP/KYN metabolic pathway,and it has a favorable protective effect on hippocampal neuron injury caused by DD.Therefore,ZGJTJYF is an effective potential therapeutic drug for the prevention and treatment of DD.展开更多
OBJECTIVE To explore the protective effects and mechanisms of Ginsenoside Rg1(Rg1) on H_2O_2-induced hippocampal neurons aging in vitro.METHODS The primary culture hippo.campal neurons(7 d) were randomly placed into s...OBJECTIVE To explore the protective effects and mechanisms of Ginsenoside Rg1(Rg1) on H_2O_2-induced hippocampal neurons aging in vitro.METHODS The primary culture hippo.campal neurons(7 d) were randomly placed into six groups:normal control group,H_2O_2(200 μM) treat.ment group,and H_2O_2+Rg1(1,5 and 10μM) groups.The neurons were with Rg1(1,5 and 10 μmol·L^(-1))for 6 h.H_2O_2(200 μmol · L-1) was added to the medium and incubate for 18 h.The Dihydroethidium(DHE) staining was performed for ROS production assessment.The LDH release and Hoechst 33258 were performed to examine the neuronal damage and apoptosis.The immunoblot was used to deter.mine the expression of β-Gal,NOX2,p22 phox,p47 phox,NLRP-1,ASC and Caspase-1 in hippocampal neurons.The ELISA was performed to detect the levels of IL-1β and IL-18 released in the supernatant in hippocampal neurons.RESULTS Rg1(5 and 10 μmol·L^(-1)) significantly reduced the ROS production,attenuated H_2O_2-induced neuronal damage and apoptosis(P<0.05,P<0.01).The immunoblot results showed that Rg1(5 and 10 μmol·L^(-1)) treatment significantly decreased the expression of β-Gal,NOX2,p22 phox,p47 phox,NLRP-1,ASC and Caspase-1 in hippocampal neurons(P<0.05,P<0.01).Additionally,Rg1(5 and 10 μmol·L^(-1)) treatment significantly decreased IL-1β and IL-18 release in the supernatant.CONCLUSION The protective effect of Rg1 in H_2O_2-induced hippocampal neurons aging may be due to inhibit NOX2-NLRP1 activation.展开更多
Oxidative stress is one of the main causes of neurodegenerative diseases such as Alzheimer disease(AD).Our previous studies have shown that artemisinin,a anti-malaria Chinese medicine,with neuroprotective effect,howev...Oxidative stress is one of the main causes of neurodegenerative diseases such as Alzheimer disease(AD).Our previous studies have shown that artemisinin,a anti-malaria Chinese medicine,with neuroprotective effect,however,the antioxidative effect of artemisinin and its potential mechanism remain to be elucidated.In the present study,the protective effect and the underlying mechanism of artemisinin against injury of hydrogen peroxide(H_2O_2) in SH-SY5Y and hippocampal neurons were studied.Our results show that artemisinin protected SH-SY5Y and hippocampal neuronal cells from H_2O_2-induced cell death at clinically relevant concentrations in a concentration-dependent manner.Further studies showed that artemisinin significantly reduced cell death caused by H_2O_2 by restoring nuclear morphology,abnormal changes in intracellular ROS,activation of caspase 3,lactate dehydrogenase release and mitochondrial membrane potential.Hoechst staining and flow cytometry showed that artemisinin significantly reduced the apoptosis of SH-SY5Y cells exposed to H_2O_2.Western blotting analysis showed that artemisinin stimulated the phosphorylation and activation of AMP-activated protein kinase(AMPK) in SH-SY5Y cells in a time and concentration-dependent manner,whereas the application of AMPK inhibitor Compound C or decrease in expression of AMPKα with shRNA specific for AMPKα blocked the protective effect of artemisinin.Similar results were obtained in primary cultured hippocampal neurons.Taken together,these results indicate that artemisinin can protect neuronal cells from oxidative damage,at least in part through the activation of AMPK.Because artemisinin is relatively inexpensive and has few side effects,our findings support the role of artemisinin as a potential therapeutic agent for neurodegenerative diseases.展开更多
基金supported by NIH grants AG079264(to PHR)and AG071560(to APR)。
文摘The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are used to start networks.Here we explored the effects of diethyl(3,4-dihydroxyphenethylamino)(quinolin-4-yl)methylphosphonate(DDQ)on neurite developmental features in HT22 neuronal cells.In this work,we examined the protective effects of DDQ on neuronal processes and synaptic outgrowth in differentiated HT22cells expressing mutant Tau(mTau)cDNA.To investigate DDQ chara cteristics,cell viability,biochemical,molecular,western blotting,and immunocytochemistry were used.Neurite outgrowth is evaluated through the segmentation and measurement of neural processes.These neural processes can be seen and measured with a fluorescence microscope by manually tracing and measuring the length of the neurite growth.These neuronal processes can be observed and quantified with a fluorescent microscope by manually tracing and measuring the length of the neuronal HT22.DDQ-treated mTau-HT22 cells(HT22 cells transfected with cDNA mutant Tau)were seen to display increased levels of synaptophysin,MAP-2,andβ-tubulin.Additionally,we confirmed and noted reduced levels of both total and p-Tau,as well as elevated levels of microtubule-associated protein 2,β-tubulin,synaptophysin,vesicular acetylcholine transporter,and the mitochondrial biogenesis protein-pe roxisome prolife rator-activated receptor-gamma coactivator-1α.In mTa u-expressed HT22 neurons,we observed DDQ enhanced the neurite characteristics and improved neurite development through increased synaptic outgrowth.Our findings conclude that mTa u-HT22(Alzheimer's disease)cells treated with DDQ have functional neurite developmental chara cteristics.The key finding is that,in mTa u-HT22 cells,DDQ preserves neuronal structure and may even enhance nerve development function with mTa u inhibition.
基金funded by the National Natural Science Foundation of China General [Grant No.81172620,No.81402629,and No.61401497]Innovation Foundation of Academy of Military Medical Sciences [2017CXJJ17,2015CXJJ06]
文摘Objective To detect the effects of microwave on calcium levels in primary hippocampal neurons and primary cardiomyocytes by the real-time microwave exposure combined with laser scanning confocal microscopy. Methods The primary hippocampal neurons and primary cardiomyocytes were cultured and labeled with probes, including Fluo-4 AM, Mag-Fluo-AM, and Rhod-2, to reflect the levels of whole calcium [Ca], endoplasmic reticulum calcium [Ca]ER, and mitochondrial calcium [Ca]MIT, respectively. Then, the cells were exposed to a pulsed microwave of 2.856 GHz with specific absorption rate(SAR) values of 0, 4, and 40 W/kg for 6 min to observe the changes in calcium levels. Results The results showed that the 4 and 40 W/kg microwave radiation caused a significant decrease in the levels of [Ca], [Ca]ER, and [Ca]MIT in primary hippocampal neurons. In the primary cardiomyocytes, only the 40 W/kg microwave radiation caused the decrease in the levels of [Ca], [Ca]ER, and [Ca]MIT. Primary hippocampal neurons were more sensitive to microwave exposure than primary cardiomyocytes. The mitochondria were more sensitive to microwave exposure than the endoplasmic reticulum. Conclusion The calcium efflux was occurred during microwave exposure in primary hippocampal neurons and primary cardiomyocytes. Additionally, neurons and mitochondria were sensitive cells and organelle respectively.
基金financially supported by the National Program on Key Basic Research Project of China(973 Program),No.2010CB945600,2011CB965100the National Natural Science Foundation of China,No.81070987,30971531,81371213a grant from the International Science & Technology Collaboration Program,No.2011DF30010
文摘Ginsenoside Rg1(Rg1) has anti-aging and anti-neurodegenerative effects. However, the mechanisms underlying these actions remain unclear. The aim of the present study was to determine whether Rg1 affects hippocampal survival and neurite outgrowth in vitro after exposure to amyloid-beta peptide fragment 25–35(Aβ_(25–35)), and to explore whether the extracellular signal-regulated kinase(ERK) and Akt signaling pathways are involved in these biological processes. We cultured hippocampal neurons from newborn rats for 24 hours, then added Rg1 to the medium for another 24 hours, with or without pharmacological inhibitors of the mitogen-activated protein kinase(MAPK) family or Akt signaling pathways for a further 24 hours. We then immunostained the neurons for growth associated protein-43, and measured neurite length. In a separate experiment, we exposed cultured hippocampal neurons to Aβ_(25–35) for 30 minutes, before adding Rg1 for 48 hours, with or without Akt or MAPK inhibitors, and assessed neuronal survival using Hoechst 33258 staining, and phosphorylation of ERK1/2 and Akt by western blot analysis. Rg1 induced neurite outgrowth, and this effect was blocked by API-2(Akt inhibitor) and PD98059(MAPK/ERK kinase inhibitor), but not by SP600125 or SB203580(inhibitors of c-Jun N-terminal kinase and p38 MAPK, respectively). Consistent with this effect, Rg1 upregulated the phosphorylation of Akt and ERK1/2; these effects were reversed by API-2 and PD98059, respectively. In addition, Rg1 significantly reversed Aβ_(25–35)-induced apoptosis; this effect was blocked by API-2 and PD98059, but not by SP600125 or SB203580. Finally, Rg1 significantly reversed the Aβ_(25–35)-induced decrease in Akt and ERK1/2 phosphorylation, but API-2 prevented this reversal. Our results indicate that Rg1 enhances neurite outgrowth and protects against Aβ_(25–35)-induced damage, and that its mechanism may involve the activation of Akt and ERK1/2 signaling.
基金the Natural Science Foundation of Hebei Province,No.C2006000865
文摘BACKGROUND: In studies concerning cell injury induced by cerebral ischemia-reperfusion, current experiments have primarily focused on altered protein levels. In addition, the apoptotic proteins Bax and Bcl-2 have been thoroughly studied with regard to initiating neuronal apoptosis. OBJECTIVE: To establish an in vitro model of oxygen-glucose deprivation and reintroduction in the rat hippocampus to simulate cerebral ischemia-reperfusion injury; to observe c-Jun N-terminal kinase 3 (JNK3) mRNA expression in hippocampal neurons following Astragalus injection; and thus to determine changes in the signaling and downstream pathways of neuronal apoptosis at the cellular and molecular level. DESIGN, TIME AND SETTING: A randomized, controlled, cellular and molecular experiment was performed at the Department of Central Laboratory, Chengde Medical College from February to June 2008. MATERIALS: Astragalus injection, the main ingredient of astragaloside, was purchased from Chengdu Di'ao Jiuhong Pharmaceutical Manufactory, China. JNK3 mRNA probe and in situ hybridization kit were purchased from Tianjin Haoyang Biological Technology, China, and JNK3 RT-PCR primers were designed by Shanghai Bio-engineering, China. METHODS: Primary cultures of hippocampal neurons derived from Sprague Dawley rats, aged 1 2 days, were established. After 8 days, the hippocampal neurons were assigned to the following interventions: model group, Astragalus group, and vehicle control group, cells were subjected to oxygen-glucose reintroduction after oxygen-glucose deprivation for 30 minutes in sugar-free Earle's solution and a hypoxia device, which contained high-purity nitrogen. The normal control group was subjected to primary culture techniques and was not treated using above-mentioned interventions. In addition, the Astragalus and vehicle control groups were treated with Astragalus injection (0.5 g/L raw drug) or sterile, deionized water at 2 hours prior to oxygen-glucose deprivation, respectively. MAIN OUTCOME MEASURES: JNK3 mRNA expression was measured by in situ hybridization and RT-PCR at 0, 0.5, 2, 6, 24, 72, and 120 hours after oxygen-glucose reintroduction. RESULTS: Hippocampal neuronal morphology was normal in the normal control group. Hippocampal neurons exhibited apparent apoptosis-like pathological changes in the model, as well as the vehicle control, groups. The apoptosis-like pathological changes in the hippocampal neurons were less in the Astragalus group. Results from in situ hybridization and RT-PCR showed that JNK3 mRNA expression significantly increased in hippocampal neurons from model group, as well as the vehicle control group, compared with the normal control group (P 〈 0.05). In addition, JNK3 mRNA expression significantly decreased in hippocampal neurons of the Astragalus group, compared with the model group and vehicle control group (P 〈 0.05). CONCLUSION: Astragalus injection inhibited apoptosis-related JNK3 mRNA expression following oxygen-glucose deprivation and reintroduction, and accordingly played a role in inhibiting hippocampal neuronal apoptosis.
基金supported by the National Natural Science Foundation of China,No.81101159the Natural Science Foundation of Jiangsu Province of China,No.BK20151268
文摘Hypoxic injuries during fetal distress have been shown to cause reduced expression of micro RNA-27a(mi R-27a),which regulates sensitivity of cortical neurons to apoptosis.We hypothesized that miR-27 a overexpression attenuates hypoxia- and ischemia-induced neuronal apoptosis by regulating FOXO1,an important transcription factor for regulating the oxidative stress response.miR-27 a mimic was transfected into hippocampal neurons to overexpress miR-27 a.Results showed increased hippocampal neuronal viability and decreased caspase-3 expression.The luciferase reporter gene system demonstrated that mi R-27 a directly binded to FOXO1 3′UTR in hippocampal neurons and inhibited FOXO1 expression,suggesting that FOXO1 was the target gene for mi R-27 a.These findings confirm that mi R-27 a protects hippocampal neurons against oxygen-glucose deprivation-induced injuries.The mechanism might be mediated by modulation of FOXO1 and apoptosis-related gene caspase-3 expression.
基金financially supported by the Science and Technology Commission Foundation of Zhangjiakou City,No.1021098Dthe Medical Scientific Research Project of Health Bureau of Hebei Province,No.20100144+2 种基金the Natural Science Foundation of Hebei Province,No.H2012405016the Innovative Talents Project of Hebei North University,No.CXRC1325the Major Projects of Hebei North University,No.ZD201310
文摘Previous studies have shown that chrysophanol protects against learning and memory impairments in lead-exposed adult mice. In the present study, we investigated whether chrysophanol can alleviate learning and memory dysfunction and hippocampal neuronal injury in lead-exposed neonatal mice. At the end of lactation, chrysophanol(0.1, 1.0, 10.0 mg/kg) was administered to the neonatal mice by intraperitoneal injection for 15 days. Chrysophanol significantly alleviated injury to hippocampal neurons and improved learning and memory abilities in the lead-poisoned neonatal mice. Chrysophanol also significantly decreased lead content in blood, brain, heart, spleen, liver and kidney in the lead-exposed neonatal mice. The levels of malondialdehyde in the brain, liver and kidney were significantly reduced, and superoxide dismutase and glutathione peroxidase activities were significantly increased after chrysophanol treatment. Collectively, these findings indicate that chrysophanol can significantly reduce damage to hippocampal neurons in lead-exposed neonatal mice.
文摘BACKGROUND: Evidence illustrates that androgen has a neuroprotective role. However, whether androgen also has the protective effect on hippocampal neurons during free radical mediated injury remains unclear. OBJECTIVE: To investigate the neuroprotective effect of androgen on hippocampal neurons during free radical damage. DESIGN, TIME AND SETTING: A controlled in vitro experiment was performed at the Department of Human Anatomy, Cell Culture Lab, and Neuroendocrinology Lab, Basic Medical School, Hebei Medical University from February to June 2009. MATERIALS: Testosterone was provided by Tianjin Jinyao Amino Acid Company, China. METHODS: Primary cultured neurons from 24 Sprague Dawley rats were randomly assigned into four groups: control, H202, testosterone, and testosterone (pre-added) plus H2O2 groups. MAIN OUTCOME MEASURES: The positive cell ratio of microtubule associated protein-Ⅱ and neuron specific enolase was determined by immunocytochemistry. Neuronal morphology was observed by hematoxylin-eosin staining and Nissl staining. Cell vitality and viability were determined using an inverted phase contrast microscope. The content of nitric oxide synthase, malondialdehyde, and superoxide dismutase were measured with a spectrophotometer. RESULTS: As compared with the control group, cell vitality and viability, and superoxide dismutase level were significantly decreased in the H202 group (P 〈 0.05), while nitric oxide synthase and malondialdehyde levels were significantly increased (P 〈 0.05). Neuronal vitality and viability as well as superoxide dismutase level in the testosterone plus H2O2 group were significantly greater than in the H2O2 group (P 〈 0.05), and nitric oxide synthase and malondialdehyde levels were significantly less than in the H2O2 group (P〈 0.05). CONCLUSION: Androgen partially reversed H2O2-induced neuronal damage and protected neurons.
基金supported by the National Natural Science Foundation of China,No.81001541the Natural Science Foundation of Fujian Province of China,No.2013J01331
文摘In this study, we investigated the role of the TYRO3/Akt signaling pathway in hypoxic injury to hippocampal neurons. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that hypoxia inhibited the proliferation and viability of hippocampal neurons. Terminal deoxynucleotidyl transferase-mediated d UTP nick end labeling assay demonstrated that hypoxia induced neuronal apoptosis in a time-dependent manner, with a greater number of apoptotic cells with longer hypoxic exposure. Immunofluorescence labeling revealed that hypoxia suppressed TYRO3 expression. Western blot assay showed that hypoxia decreased Akt phosphorylation levels in a time-dependent manner. Taken together, these findings suggest that hypoxia inhibits the proliferation of hippocampal neurons and promotes apoptosis, and that the inhibition of the TYRO3/Akt signaling pathway plays an important role in hypoxia-induced neuronal injury.
基金supported by the Sci-Tech Development Project of Taian in Shandong,No.2016NS1058&2015NS2081the Sci-Tech Development Project of Linyi in Shandong,No.201515006
文摘Designing and/or searching for novel antioxidants against oxygen glucose effective strategy for the treatment of human isdlemic stroke. Selenium is deprivation (OGD)-induced oxidative damage represents an an essential trace dement, which is beneficial in the chemo- prevention and chemotherapy of cerebral ischemic stroke. The underlying mechanisms for its therapeutic effects, however, are not well documented. Selenocysteine (SeC) is a selenium-containing amino acid with neuroprotective potential. Studies have shown that SeC can reduce irradiation-induced DNA apoptosis by reducing DNA damage. In this study, the in vitro protective potential and mechanism of action of SeC against OGD-induced apoptosis and neurotoxicity were evaluated in HT22 mouse hippocampal neurons. We cultured HT22 cells in a glucose-free medium containing 2 mM Na2S402, which formed an OGD environment, for 90 minutes. Findings from MTT, flow cytometry and TUNEL staining showed obvious cytotoxicity and apoptosis in HT22 cells in the OGD condition. The activation of Caspa se-7 and Caspase-9 further revealed that OGD-induced apoptosis of HT22 cells was mainly achieved by triggering a mitochondrial-medi- ated pathway. Moreover, the OGD condition also induced serious DNA damage through the accumulation of reactive oxygen species and superoxide anions. However, SeC pre-treatment for 6 hours effectively inhibited OGD-induced cytotoxicity and apoptosis in HT22 cells by inhibiting reactive oxygen species-mediated oxidative damage. Our findings provide evidence that SeC has the potential to suppress OGD-induced oxidative damage and apoptosis in hippocampal neurons.
基金This work was supported by the Chinese Academy of Preventive Medicine Fund.
文摘Objective To examine the effects of Pb2+ on N-methyl-D-aspartate (NMDA)-, K+- and quisqualate(QA)/kainite(KA)-induced increases in intracellular free calcium concentration ([Ca2+],) in cultured fetal rat hippocampal neurons in order to explain the cognitive and learning deficits produced by this heavy metal. Methods Laser scanning confocal microscopy was used. Results The results clearly demonstrated that adding Pb2+ before or after NMDA/glycine stimulation selectively inhibited the stimulated increases in [Ca2+], in a concentration-dependent manner. In contrast, Pb2+ treatment did not markedly affect increases in [Ca2+], induced by an admixture of QA and KA. The minimal inhibitory effect of Pb2+ occurred at 1 μmol/L, and more than seventy percent abolition of the NMDA-stimulated increase in [Ca2+]; was observed at 100 Jμmoll/L Pb2+. Evaluation of Pb2+-induced increase in [Ca2+], response to elevating extracellular concentrations of NMDA, glycine or calcium revealed that Pb2+ was a noncompetitive antagonist of both NMDA and glycine, and a competitive antagonist of Ca2+ at NMDA receptor channels. In addition. Pb2+ inhibited depolarization-evoked increases in [Ca2+], mediated by K+ stimulation(30μmol/L). indicating that Pb2+ also depressed the voltage-dependent calcium channels. Also, the results showed that Pb2+ appeared to be able to elevate the resting levels of [Ca2+|, in cultured neurons, implying a reason for Pb2+-enhanced spontaneous release of several neurotransmitters reported in several previous studies. Conclusion Lead can inhibit NMDA-. K+-, QA/KA-jnduced increases in intracellular [Ca2+], in cultured hippocampal neurons.
基金the Key Project of Technology of Ministry of Education, No. 2007029
文摘Gentianine has been shown to have a protective effect on hippocampal CA1 neurons in rats subjected to recurrent febrile convulsion(FC).The present study sought to explore the possible mechanism of gentianine by intraperitoneally injecting gentianine into rats with warm water-induced FC.The results revealed that neuronal organelle injury was slightly ameliorated in the hippocampal CA1 region.The level of glutamate was decreased,but the level of γ-aminobutyric acid was increased,as detected by ninhydrin staining.In addition,glutamate acid decarboxylase expression in hippocampal CA1 was increased,as determined by immunohistochemistry.The results demonstrated that gentianine can ameliorate FC-induced neuronal injury by enhancing glutamate acid decarboxylase activity,decreasing glutamate levels and increasing γ-aminobutyric acid levels.
基金the National Natural Science Foundation of China, No. 39970651
文摘BACKGROUND: Previous studies have suggested that the hippocampus is one of the neurotoxic target sites for lead. However, the molecular mechanisms of action, including the effect of lead on cell-cycle arrest, remain poorly understood. OBJECTIVE: To investigate the effects of different lead concentrations on cell-cycle arrest, DNA damage, and cyclin D1 expression in primary cultured rat hippocampal neurons. DESIGN, TIME AND SETTING: A randomized, controlled, in vitro experiment was performed at the China Medical University between July 2008 and May 2009. MATERIALS: Antibodies specific to cyclin D1 and actin were synthesized and purified by Santa Cruz Biotechnology, USA. FACStar flow cytometer was purchased from Becton Dickinson, San Jose, California, USA. METHODS: Wistar rat hippocampal neurons were primary cultured for 7 days. Neurons in the control group were treated with 0.01 mol/L phosphate buffered saline. Neurons in the 0.2, 1.0, and 10 umol/L lead acetate groups were subjected to 0.2, 1.0, and 10 umol/L lead acetate. Subsequently hippocampal neurons in each group were cultured for 24 hours. MAIN OUTCOME MEASURES: The effects of lead on cell cycle were measured by flow cytometry, DNA damage was measured using the comet assay, and cyclin D1 expression was measured using Western blot analysis. RESULTS: Treatment of hippocampal neurons with 0.2 umol/L lead acetate did not significantly alter cell cycle phase distribution, i.e., sub-G1, S, G0/G1, G2/M, whereas treatment with 1.0 and 10 umol/L lead acetate significantly increased the percentage of S and sub-G1 phase cells (P 〈 0.05). Olive tail moment in all lead-treated groups and the percentage of DNA in the tail in 1.0 umol/L and 10 umol/L lead acetate groups were significantly greater compared with the control group (P 〈 0.05). In addition, the percentage of tail DNA was greater in the 0.2 umol/L lead acetate group compared with the control group (P 〉 0.05). Following incubation with 0.2, 1.0, and 10 umol/L lead acetate for 24 hours, cyclin D1 expression gradually decreased with exposure to increasing lead acetate concentrations (1.0-10 umol/L). CONCLUSION: Lead exposure to primary cultured rat hippocampal neurons resulted in dose-dependently disturbed cellular homeostasis, including DNA damage, reduced cyclin D1 expression, and stagnation of cell-cycle progression.
文摘Hippocampal neurons were treated by thrombin and thrombin receptor activatingpeptides (TRAP). Cell survival rate was decreased in a dose-dependent manner by MTT assay. Thenumbers of apoptotic cell and apoptotic rate of hippocampal neurons treated bydifferentconcentrations of thrombin were increased in a dose-dependent manner by terminal deoxynucleotidyltransferase (TdT) mediated dUTP-biotin nick end-labeling (TUNED method and Flow Cytometry. When theconcentration of thrombin is 40 U/mL, TUNEL positive cells and apoptotic rate of hippocampal neuronsreached peak value, were 27. 3 +- 4. 0 and (29. 333 +- 4. 633 ) % , respectively.Immunocytochemistry assay show that Bcl-2 protein expression was down- regulated and Bax proteinexpression was up-regulated with the concentration of thrombin increased. TRAP can mimic the effectof thrombin to induce apoptosis on hippocampal neurons. These data demonstrated that thrombininduced hippocampal neuron apoptosis in a dose-dependent manner through activatingprotease-acti-vated protein-1 (PAR-1). The change in expression of Bcl-2 and Bax was related withthe effect of high concentration thrombin induced apoptosis on hippocampal neurons.
基金supported by the National Natural Science Foundation of China,No.81101159the Natural Science Foundation of Jiangsu Province of China,No.BK20151268
文摘Septic encephalopathy is a frequent complication of sepsis,but there are few studies examining the role of micro RNAs(mi Rs) in its pathogenesis.In this study,a mi R-219 mimic was transfected into rat hippocampal neurons to model mi R-219 overexpression.A protective effect of mi R-219 was observed for glutamate-induced neurotoxicity of rat hippocampal neurons,and an underlying mechanism involving calmodulin-dependent protein kinase II γ(Ca MKIIγ) was demonstrated.mi R-219 and Ca MKIIγ m RNA expression induced by glutamate in hippocampal neurons was determined by quantitative real-time reverse transcription-polymerase chain reaction(q RT-PCR).After neurons were transfected with mi R-219 mimic,effects on cell viability and apoptosis were measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide(MTT) assay and flow cytometry.In addition,a luciferase reporter gene system was used to confirm Ca MKIIγ as a target gene of mi R-219.Western blot assay and rescue experiments were also utilized to detect Ca MKIIγ expression and further verify that mi R-219 in hippocampal neurons exerted its effect through regulation of Ca MKIIγ.MTT assay and q RT-PCR results revealed obvious decreases in cell viability and mi R-219 expression after glutamate stimulation,while Ca MKIIγ m RNA expression was increased.MTT,flow cytometry,and caspase-3 activity assays showed that mi R-219 overexpression could elevate glutamate-induced cell viability,and reduce cell apoptosis and caspase-3 activity.Moreover,luciferase Ca MKIIγ-reporter activity was remarkably decreased by co-transfection with mi R-219 mimic,and the results of a rescue experiment showed that Ca MKIIγ overexpression could reverse the biological effects of mi R-219.Collectively,these findings verify that mi R-219 expression was decreased in glutamate-induced neurons,Ca MKIIγ was a target gene of mi R-219,and mi R-219 alleviated glutamate-induced neuronal excitotoxicity by negatively controlling Ca MKIIγ expression.
基金This project was supported by a grant from the National Natural Science Foundation of China !(No. 39330210).
文摘Summary: To investigate the exact mechanism of epileptogenesis induced by coriaria lactone (CL), the effect of CL on NMDA receptor mediated current (IAsp) in rat hippocampal CA1 neu- rons was investigated by using nystatin perforated whole-cell patch clamp. 10-6-10-4 mol/L Asp acted on NMDA receptors and elicited an inward current (IAsp) at a holding potential (VH) of -40 mV in presence of 10-6 mol/L glycine and absence of Mg2+ extracellularly. CL enhanced NMDA receptor mediated current induced by Asp, but had no effect on threshold concentration, EC50, Hill coefficient as well as maximal-effect concentration and reversal potential of IAsp. The effect had no relationship with holding potential. These results showed that CL could enhance NMDA receptor mediated current to increase [Ca2+]i of neurons by acting on Gly site, thereby inducing epilepsy.
基金This work was supported by the National Natural Science Foundation of China(No.31901688).
文摘s Oxidative stress is involved in the progression of neurodegenerative diseases.Previous evidences showed that plasma-logens could improve neurodegenerative diseases.In this study,we investigated the function of phosphoethanolamine plasmalogens enriched with EPA(EPA-pPE)and phosphatidylethanolamine enriched with EPA(EPA-PE)on oxidative damage prevention after hy-drogen peroxide(H2O2)and tert-butylhydroperoxide(t-BHP)challenge in primary hippocampal neurons.Results showed that neurons pretreated with EPA-pPE and EPA-PE demonstrated the ability to alleviate oxidative damage,which was proved by the in-creased cell viability.Moreover,the shape and number of neurons were more similar to those of the control group.Antioxidant acti-vity,apoptosis,as well as TrkB/ERK/CREB signaling pathway were investigated to explore the mechanisms.The results suggested that EPA-PE was superior to EPA-pPE in regulating mitochondrial apoptosis.EPA-pPE was more prominent than EPA-PE in upre-gulating TrkB/ERK/CREB signaling pathway.Phospholipids with EPA exerted neuroprotective effects via inhibiting oxidative stress,suppressing apoptosis,and regulating TrkB/ERK/CREB signaling pathway.Therefore,the results provide a scientific basis for utili-zation of phospholipids enriched with EPA on the treatment of neurodegenerative disease.
基金supported by Hallym University Research Fund,2016(HRF-201605-012)Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2016R1A6A3A01011698)
文摘Ischemic preconditioning elicited by a non-fatal brief occlusion of blood flow has been applied for an experimental therapeutic strategy against a subsequent fatal ischemic insult. In this study, we investigated the neuroprotective effects of ischemic preconditioning(2-minute transient cerebral ischemia) on calbindin D28k immunoreactivity in the gerbil hippocampal CA1 area following a subsequent fatal transient ischemic insult(5-minute transient cerebral ischemia). A large number of pyramidal neurons in the hippocampal CA1 area died 4 days after 5-minute transient cerebral ischemia. Ischemic preconditioning reduced the death of pyramidal neurons in the hippocampal CA1 area. Calbindin D28k immunoreactivity was greatly attenuated at 2 days after 5-minute transient cerebral ischemia and it was hardly detected at 5 days post-ischemia. Ischemic preconditioning maintained calbindin D28 k immunoreactivity after transient cerebral ischemia. These findings suggest that ischemic preconditioning can attenuate transient cerebral ischemia-caused damage to the pyramidal neurons in the hippocampal CA1 area through maintaining calbindin D28k immunoreactivity.
基金National Natural Science Foundation of China(81874464and 82104793)the Scientific Research Project of Education Department of Hunan Province(19K066)。
文摘Objective To explore the protective effects and mechanism of Zuogui Jiangtang Jieyu Formula(左归降糖解郁方,ZGJTJYF)on hippocampal neurons in rats of diabetes complicated with depression(DD)via the TRP/KYN metabolic pathway.Methods(i)In vivo experiments:60 specified pathogen free(SPF)grade male Sprague-Dawley(SD)rats were randomly divided into six groups with 10 rats in each groups:control,DD model,positive(1.8 mg/kg fluoxetine+0.18 g/kg metformin),high-dose ZGJTJYF(ZGJTJYFH,40.500 g/kg ZGJTJYF),middle-dose ZGJTJYF(ZGJTJYF-M,20.250 g/kg ZGJTJYF),and lowdose ZGJTJYF(ZGJTJYF-L,10.125 g/kg ZGJTJYF)groups.Except for the control group,other groups were established DD model by high-fat emulsion intake with single tail vein streptozotocin(STZ)and four weeks of chronic unpredictable mild stress(CUMS).All drug administration groups were treated by gavage during CUMS modeling,and the control and model groups were given equal amount of distilled water.After four weeks,the serum levels of blood glucose and glycosylated hemoglobin were measured to determine the hypoglycemic effect of ZGJTJYF.Moreover,the open field test and Morris water maze test were performed to evaluate the antidepressant effect of ZGJTJYF.Changes in 5-hydroxytryptamine(5-HT)level were detected via high-performance liquid chromatography with electrochemical detection(HPLC-ECD);the levels of tryptophan(TRP),kynurenine(KYN),and indoleamine 2,3-dioxygenase(IDO)in the hippocampus were detected using enzyme-linked immunosorbent assay(ELISA);the protein expression levels of synaptophysin(SYN)and postsynaptic density material-95(PSD-95)were detected via immunohistochemistry(IHC);and the protein expression levels of N-methyl-D-aspartate receptor(NR)2 A and NR2 B were detected using Western blot.(ii)In vitro experiments:five SPF grade SD pregnant rats(E16–18)were used to obtain primary hippocampal neurons(Ne),six SD new-born rats were used to collected primary astrocytes(As)and microglia(MG),and to establish a Ne-As-MG co-culture system.All co-culture systems were divided into six groups:control(PBS),model[150 mmol/L glucose+200μmol/L corticosterone(G&P)+PBS],blank(G&P+blank serum),positive(G&P+positive drug-containing serum),ZGJTJYF(G&P+ZGJTJYF serum),and 1-methyl-D-tryptophan(1-MT,IDO inhibitor)(G&P+1-MT)groups.After 18 h of intervention by corresponding treatment,immunofluorescence was used to analyze the protein expression levels of SYN,PSD-95,NR2 A,and NR2 B;ELISA was performed to measure the levels of interleukin(IL)-1β,IL-6,tumor necrosis factor(TNF)-α,and TRP/KYN metabolic pathway-related factors[TRP,KYN,kynurenine acid(KYNA),quinolinic acid(QUIN)].Results(i)In vivo experimental results showed that ZGJTJYF-M and ZGJTJYF-L significantly improved the elevated blood glucose state of DD rats(P<0.01 and P<0.05,respectively);ZGJTJYF-H,ZGJTJYF-M,and ZGJTJYF-L increased their autonomous activity,learning,and memory ability(P<0.01,P<0.01,and P<0.05,respectively).Moreover,the levels of 5-HT and TRP were significantly increased(P<0.01),and the levels of KYN and IDO were significantly decreased in the hippocampus(P<0.01)of rats after ZGJTJYF-M treatment.The protein expression levels of SYN and PSD-95 were significantly upregulated in hippocampal neurons(P<0.01),while the abnormal activation of NR2A and NR2B was markedly inhibited in hippocampus(P<0.05)of rats after ZGJTJYF-M treatment.(ii)In vitro experimental results showed that ZGJTJYF-containing serum significantly increased the protein expression levels of SYN and PSD-95 in hippocampal neurons(P<0.01),decreased the levels of IL-1β(P<0.01),IL-6(P<0.05),TNF-α(P<0.01),IDO(P<0.05),KYN(P<0.05),and QUIN(P<0.01),and increased the levels of TRP and KYNA(P<0.01)in the simulated DD state.ZGJTJYF also had an significantly inhibitory effect on the abnormal activation of NR2A and NR2B in neurons(P<0.05)in a stimulated DD state.Conclusion ZGJTJYF can effectively improve 5-HT deficiency in the hippocampus of rats by inhibiting IDO expression and regulating the TRP/KYN metabolic pathway,and it has a favorable protective effect on hippocampal neuron injury caused by DD.Therefore,ZGJTJYF is an effective potential therapeutic drug for the prevention and treatment of DD.
基金supported by National Natural Science Foundation of China(8167138481371329)
文摘OBJECTIVE To explore the protective effects and mechanisms of Ginsenoside Rg1(Rg1) on H_2O_2-induced hippocampal neurons aging in vitro.METHODS The primary culture hippo.campal neurons(7 d) were randomly placed into six groups:normal control group,H_2O_2(200 μM) treat.ment group,and H_2O_2+Rg1(1,5 and 10μM) groups.The neurons were with Rg1(1,5 and 10 μmol·L^(-1))for 6 h.H_2O_2(200 μmol · L-1) was added to the medium and incubate for 18 h.The Dihydroethidium(DHE) staining was performed for ROS production assessment.The LDH release and Hoechst 33258 were performed to examine the neuronal damage and apoptosis.The immunoblot was used to deter.mine the expression of β-Gal,NOX2,p22 phox,p47 phox,NLRP-1,ASC and Caspase-1 in hippocampal neurons.The ELISA was performed to detect the levels of IL-1β and IL-18 released in the supernatant in hippocampal neurons.RESULTS Rg1(5 and 10 μmol·L^(-1)) significantly reduced the ROS production,attenuated H_2O_2-induced neuronal damage and apoptosis(P<0.05,P<0.01).The immunoblot results showed that Rg1(5 and 10 μmol·L^(-1)) treatment significantly decreased the expression of β-Gal,NOX2,p22 phox,p47 phox,NLRP-1,ASC and Caspase-1 in hippocampal neurons(P<0.05,P<0.01).Additionally,Rg1(5 and 10 μmol·L^(-1)) treatment significantly decreased IL-1β and IL-18 release in the supernatant.CONCLUSION The protective effect of Rg1 in H_2O_2-induced hippocampal neurons aging may be due to inhibit NOX2-NLRP1 activation.
基金National Natural Science Foundation of China(31771128)the University of Macao (MYRG2016-00052-FHS+2 种基金MYRG2018-00134-FHS)Science and Technology Development Fund (FDCT)of Macao (FDCT 021/2015/A1016/2016/A1).
文摘Oxidative stress is one of the main causes of neurodegenerative diseases such as Alzheimer disease(AD).Our previous studies have shown that artemisinin,a anti-malaria Chinese medicine,with neuroprotective effect,however,the antioxidative effect of artemisinin and its potential mechanism remain to be elucidated.In the present study,the protective effect and the underlying mechanism of artemisinin against injury of hydrogen peroxide(H_2O_2) in SH-SY5Y and hippocampal neurons were studied.Our results show that artemisinin protected SH-SY5Y and hippocampal neuronal cells from H_2O_2-induced cell death at clinically relevant concentrations in a concentration-dependent manner.Further studies showed that artemisinin significantly reduced cell death caused by H_2O_2 by restoring nuclear morphology,abnormal changes in intracellular ROS,activation of caspase 3,lactate dehydrogenase release and mitochondrial membrane potential.Hoechst staining and flow cytometry showed that artemisinin significantly reduced the apoptosis of SH-SY5Y cells exposed to H_2O_2.Western blotting analysis showed that artemisinin stimulated the phosphorylation and activation of AMP-activated protein kinase(AMPK) in SH-SY5Y cells in a time and concentration-dependent manner,whereas the application of AMPK inhibitor Compound C or decrease in expression of AMPKα with shRNA specific for AMPKα blocked the protective effect of artemisinin.Similar results were obtained in primary cultured hippocampal neurons.Taken together,these results indicate that artemisinin can protect neuronal cells from oxidative damage,at least in part through the activation of AMPK.Because artemisinin is relatively inexpensive and has few side effects,our findings support the role of artemisinin as a potential therapeutic agent for neurodegenerative diseases.