Intercellular communication between neurons and glial cells via extracellular vesicles(EVs)as a novel mechanism of information transfer has been shown to be involved in regeneration processes within the central nerv...Intercellular communication between neurons and glial cells via extracellular vesicles(EVs)as a novel mechanism of information transfer has been shown to be involved in regeneration processes within the central nervous system(CNS)(Rajendran et al.,2014).Hence,to take advantage of EV signaling for therapeutic applications appears to be a completely new approach to promote regeneration.展开更多
Adenosine modulates diverse physiological and pathological processes in the brain, including neuronal activities, blood flow, and inflammation. However, the mechanisms underlying the dynamics of extracellular adenosin...Adenosine modulates diverse physiological and pathological processes in the brain, including neuronal activities, blood flow, and inflammation. However, the mechanisms underlying the dynamics of extracellular adenosine are not fully understood. We have recently developed a novel biosensor, called an adenosine sensor cell, and we have characterized the neuronal and astrocytic pathways for elevating extracellular adenosine. In this review, the physiological implications and therapeutic potential of the pathways revealed by the adenosine sensor cells are discussed. We propose that the multiple pathways regulating extracellular adenosine allow for the diverse functions of this neuromodulator, and their malfunctions cause various neurological and psychiatric disorders.展开更多
Oscillatory neuronal activity is the fundamental signature of neural networks.In the EEG literature,the oscillations are described as belonging to different frequency bands that are commonly used in clinical monitoring.
文摘Intercellular communication between neurons and glial cells via extracellular vesicles(EVs)as a novel mechanism of information transfer has been shown to be involved in regeneration processes within the central nervous system(CNS)(Rajendran et al.,2014).Hence,to take advantage of EV signaling for therapeutic applications appears to be a completely new approach to promote regeneration.
文摘Adenosine modulates diverse physiological and pathological processes in the brain, including neuronal activities, blood flow, and inflammation. However, the mechanisms underlying the dynamics of extracellular adenosine are not fully understood. We have recently developed a novel biosensor, called an adenosine sensor cell, and we have characterized the neuronal and astrocytic pathways for elevating extracellular adenosine. In this review, the physiological implications and therapeutic potential of the pathways revealed by the adenosine sensor cells are discussed. We propose that the multiple pathways regulating extracellular adenosine allow for the diverse functions of this neuromodulator, and their malfunctions cause various neurological and psychiatric disorders.
文摘Oscillatory neuronal activity is the fundamental signature of neural networks.In the EEG literature,the oscillations are described as belonging to different frequency bands that are commonly used in clinical monitoring.