期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Hirzebruch和与二次域的类数
1
作者 陆洪文 《科学通报》 EI CAS CSCD 北大核心 1990年第18期1361-1363,共3页
<正> 本文目的在于给出文献[1]中一些结论的证明。对一个实二次无理数β。
关键词 二次域 类数 连分数 hirzebruch和
原文传递
Algorithm for Fast Calculation of Hirzebruch-Jung Continued Fraction Expansions to Coding of Graph Manifolds
2
作者 Fernando I. Becerra López Vladimir N. Efremov Alfonso M. Hernández Magdaleno 《Applied Mathematics》 2015年第10期1676-1684,共9页
We present a new algorithm for the fast expansion of rational numbers into continued fractions. This algorithm permits to compute the complete set of integer Euler numbers of the sophisticate tree graph manifolds, whi... We present a new algorithm for the fast expansion of rational numbers into continued fractions. This algorithm permits to compute the complete set of integer Euler numbers of the sophisticate tree graph manifolds, which we used to simulate the coupling constant hierarchy for the universe with five fundamental interactions. Moreover, we can explicitly compute the integer Laplacian block matrix associated with any tree plumbing graph. This matrix coincides up to sign with the integer linking matrix (the main topological invariant) of the graph manifold corresponding to the plumbing graph. The need for a special algorithm appeared during computations of these topological invariants of complicated graph manifolds since there emerged a set of special rational numbers (fractions) with huge numerators and denominators;for these rational numbers, the ordinary methods of expansion in continued fraction became unusable. 展开更多
关键词 hirzebruch-Jung Continued Fraction Fast Expansion ALGORITHM GRAPH MANIFOLDS
下载PDF
奇数维spin^c流形和S^1作用(英文)
3
作者 王勇 《数学杂志》 CSCD 北大核心 2011年第6期967-972,共6页
本文研究了奇数维spin^c流形上的等边指标定理.用这些指标定理和一些复分析的讨论,得到了两个奇数维spin^c流形上的Atiyah-Hirzebruch类型消灭定理,结果推广了刘-王的消灭定理.
关键词 spin^c流形 TOEPLITZ算子 Atiyah-hirzebruch消灭定理 反演 S^1作用
下载PDF
On fundamental groups related to the Hirzebruch surface F_1
4
作者 Michael FRIEDMAN Mina TEICHER 《Science China Mathematics》 SCIE 2008年第4期728-745,共18页
Given a projective surface and a generic projection to the plane,the braid monodromy factorization(and thus,the braid monodromy type)of the complement of its branch curve is one of the most important topological invar... Given a projective surface and a generic projection to the plane,the braid monodromy factorization(and thus,the braid monodromy type)of the complement of its branch curve is one of the most important topological invariants,stable on deformations.From this factorization,one can compute the fundamental group of the complement of the branch curve,either in C^2 or in CP^2.In this article,we show that these groups,for the Hirzebruch surface F_1,(a,b),are almost-solvable.That is, they are an extension of a solvable group,which strengthen the conjecture on degeneratable surfaces. 展开更多
关键词 hirzebruch SURFACES DEGENERATION generic PROJECTION branch curve BRAID MONODROMY FUNDAMENTAL group classification of SURFACES
原文传递
Nonexistence of Almost Complex Structures on S^(2m)×S^(2n)
5
作者 唐梓洲 《Chinese Science Bulletin》 SCIE EI CAS 1993年第7期529-532,共4页
Let X be a finite CW complex, and let ξ be a real vector bundle over X. We say that ξ has a complex structure if it is isomorphic to the real bundle r(ω)underlying some complex vector bundle ω over X. Let M be a c... Let X be a finite CW complex, and let ξ be a real vector bundle over X. We say that ξ has a complex structure if it is isomorphic to the real bundle r(ω)underlying some complex vector bundle ω over X. Let M be a closed connected smooth manifold. We say that M has an almost structure if its tangent bundle has a complex structure. 展开更多
关键词 ALMOST COMPLEX structure K-THEORY hirzebruch’s SIGNATURE theorem.
原文传递
The Equivariant Family Index Theorem in Odd Dimensions
6
作者 Kai Hua BAO Jian WANG Yong WANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第7期1149-1162,共14页
In this paper, we prove a local odd dimensional equivariant family index theorem which generalizes Freed's odd dimensional index formula. Then we extend this theorem to the noncommuta- tive geometry framework. As a c... In this paper, we prove a local odd dimensional equivariant family index theorem which generalizes Freed's odd dimensional index formula. Then we extend this theorem to the noncommuta- tive geometry framework. As a corollary, we get the odd family Lichnerowicz vanishing theorem and the odd family Atiyah-Hirzebruch vanishing theorem. 展开更多
关键词 Odd equivariant family index formula Chern-Connes character Atiyah-hirzebruch vanishing theorem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部