BACKGROUND Although surgery remains the primary treatment for gastric cancer(GC),the identification of effective alternative treatments for individuals for whom surgery is unsuitable holds significance.HER2 overexpres...BACKGROUND Although surgery remains the primary treatment for gastric cancer(GC),the identification of effective alternative treatments for individuals for whom surgery is unsuitable holds significance.HER2 overexpression occurs in approximately 15%-20%of advanced GC cases,directly affecting treatment-related decisions.Spectral-computed tomography(sCT)enables the quantification of material compositions,and sCT iodine concentration parameters have been demonstrated to be useful for the diagnosis of GC and prediction of its invasion depth,angioge-nesis,and response to systemic chemotherapy.No existing report describes the prediction of GC HER2 status through histogram analysis based on sCT iodine maps(IMs).AIM To investigate whether whole-volume histogram analysis of sCT IMs enables the prediction of the GC HER2 status.METHODS This study was performed with data from 101 patients with pathologically confirmed GC who underwent preoperative sCT examinations.Nineteen parameters were extracted via sCT IM histogram analysis:The minimum,maximum,mean,standard deviation,variance,coefficient of variation,skewness,kurtosis,entropy,percentiles(1st,5th,10th,25th,50th,75th,90th,95th,and 99th),and lesion volume.Spearman correlations of the parameters with the HER2 status and clinicopathological parameters were assessed.Receiver operating characteristic curves were used to evaluate the parameters’diagnostic performance.RESULTS Values for the histogram parameters of the maximum,mean,standard deviation,variance,entropy,and percentiles were significantly lower in the HER2+group than in the HER2–group(all P<0.05).The GC differentiation and Lauren classification correlated significantly with the HER2 status of tumor tissue(P=0.001 and 0.023,respectively).The 99th percentile had the largest area under the curve for GC HER2 status identification(0.740),with 76.2%,sensitivity,65.0%specificity,and 67.3%accuracy.All sCT IM histogram parameters correlated positively with the GC HER2 status(r=0.237-0.337,P=0.001-0.017).CONCLUSION Whole-lesion histogram parameters derived from sCT IM analysis,and especially the 99th percentile,can serve as imaging biomarkers of HER2 overexpression in GC.展开更多
Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solu...Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solution for detection and monitoring.Unmanned aerial vehicles(UAVs)have recently emerged as a tool for algal bloom detection,efficiently providing on-demand images at high spatiotemporal resolutions.This study developed an image processing method for algal bloom area estimation from the aerial images(obtained from the internet)captured using UAVs.As a remote sensing method of HAB detection,analysis,and monitoring,a combination of histogram and texture analyses was used to efficiently estimate the area of HABs.Statistical features like entropy(using the Kullback-Leibler method)were emphasized with the aid of a gray-level co-occurrence matrix.The results showed that the orthogonal images demonstrated fewer errors,and the morphological filter best detected algal blooms in real time,with a precision of 80%.This study provided efficient image processing approaches using on-board UAVs for HAB monitoring.展开更多
BACKGROUND Whole-tumor apparent diffusion coefficient(ADC)histogram analysis is relevant to predicting the neoadjuvant chemoradiation therapy(nCRT)response in patients with locally advanced rectal cancer(LARC).AIM To ...BACKGROUND Whole-tumor apparent diffusion coefficient(ADC)histogram analysis is relevant to predicting the neoadjuvant chemoradiation therapy(nCRT)response in patients with locally advanced rectal cancer(LARC).AIM To evaluate the performance of ADC histogram-derived parameters for predicting the outcomes of patients with LARC.METHODS This is a single-center,retrospective study,which included 48 patients with LARC.All patients underwent a pre-treatment magnetic resonance imaging(MRI)scan for primary tumor staging and a second restaging MRI for response evaluation.The sample was distributed as follows:18 responder patients(R)and 30 non-responders(non-R).Eight parameters derived from the whole-lesion histogram analysis(ADCmean,skewness,kurtosis,and ADC10^(th),25^(th),50^(th),75^(th),90^(th) percentiles),as well as the ADCmean from the hot spot region of interest(ROI),were calculated for each patient before and after treatment.Then all data were compared between R and non-R using the Mann-Whitney U test.Two measures of diagnostic accuracy were applied:the receiver operating characteristic curve and the diagnostic odds ratio(DOR).We also reported intra-and interobserver variability by calculating the intraclass correlation coefficient(ICC).RESULTS Post-nCRT kurtosis,as well as post-nCRT skewness,were significantly lower in R than in non-R(both P<0.001,respectively).We also found that,after treatment,R had a larger loss of both kurtosis and skewness than non-R(Δ%kurtosis and Δ skewness,P<0.001).Other parameters that demonstrated changes between groups were post-nCRT ADC10^(th),Δ%ADC10^(th),Δ%ADCmean,and ROIΔ%ADCmean.However,the best diagnostic performance was achieved byΔ%kurtosis at a threshold of 11.85%(Area under the receiver operating characteristic curve[AUC]=0.991,DOR=376),followed by post-nCRT kurtosis=0.78×10^(-3)mm^(2)/s(AUC=0.985,DOR=375.3),Δskewness=0.16(AUC=0.885,DOR=192.2)and post-nCRT skewness=1.59×10^(-3)mm^(2)/s(AUC=0.815,DOR=168.6).Finally,intraclass correlation coefficient analysis showed excellent intraobserver and interobserver agreement,ensuring the implementation of histogram analysis into routine clinical practice.CONCLUSION Whole-tumor ADC histogram parameters,particularly kurtosis and skewness,are relevant biomarkers for predicting the nCRT response in LARC.Both parameters appear to be more reliable than ADCmean from one-slice ROI.展开更多
Free energy calculations may provide vital information for studying various chemical and biological processes.Quantum mechanical methods are required to accurately describe interaction energies,but their computations ...Free energy calculations may provide vital information for studying various chemical and biological processes.Quantum mechanical methods are required to accurately describe interaction energies,but their computations are often too demanding for conformational sampling.As a remedy,level correction schemes that allow calculating high level free energies based on conformations from lower level simulations have been developed.Here,we present a variation of a Monte Carlo(MC)resampling approach in relation to the weighted histogram analysis method(WHAM).We show that our scheme can generate free energy surfaces that can practically converge to the exact one with sufficient sampling,and that it treats cases with insufficient sampling in a more stable manner than the conventional WHAM-based level correction scheme.It can also provide a guide for checking the uncertainty of the levelcorrected surface and a well-defined criterion for deciding the extent of smoothing on the free energy surface for its visual improvement.We demonstrate these aspects by obtaining the free energy maps associated with the alanine dipeptide and proton transfer network of the KillerRed protein in explicit water,and exemplify that the MC resampled WHAM scheme can be a practical tool for producing free energy surfaces of realistic systems.展开更多
Holoscopic 3D imaging is a true 3D imaging system mimics fly’s eye technique to acquire a true 3D optical model of a real scene. To reconstruct the 3D image computationally, an efficient implementation of an Auto-Fea...Holoscopic 3D imaging is a true 3D imaging system mimics fly’s eye technique to acquire a true 3D optical model of a real scene. To reconstruct the 3D image computationally, an efficient implementation of an Auto-Feature-Edge (AFE) descriptor algorithm is required that provides an individual feature detector for integration of 3D information to locate objects in the scene. The AFE descriptor plays a key role in simplifying the detection of both edge-based and region-based objects. The detector is based on a Multi-Quantize Adaptive Local Histogram Analysis (MQALHA) algorithm. This is distinctive for each Feature-Edge (FE) block i.e. the large contrast changes (gradients) in FE are easier to localise. The novelty of this work lies in generating a free-noise 3D-Map (3DM) according to a correlation analysis of region contours. This automatically combines the exploitation of the available depth estimation technique with edge-based feature shape recognition technique. The application area consists of two varied domains, which prove the efficiency and robustness of the approach: a) extracting a set of setting feature-edges, for both tracking and mapping process for 3D depthmap estimation, and b) separation and recognition of focus objects in the scene. Experimental results show that the proposed 3DM technique is performed efficiently compared to the state-of-the-art algorithms.展开更多
This paper propoes the water level measuring method based on the image, while the ruler used to indicate the water level is stained. The contamination of the ruler weakens or eliminates many features which are require...This paper propoes the water level measuring method based on the image, while the ruler used to indicate the water level is stained. The contamination of the ruler weakens or eliminates many features which are required for the image processing. However, the feature of the color difference between the ruler and the water surface are firmer on the environmental change compare to the other features. As the color differeaces are embossed, only the region of the ruler is limited to eliminate the noise, and the average image is produced by using several continuous frames. A histogram is then produced on the height axis of the produced intensity average image. Local peaks and local valleys are detected, and the section between the peak and valley which have the greatest change is looked for. The valley point at this very moment is used to detect the water level. The detected water level is then converted to the actual water level by using the mapping table. The proposed method is compared to the ultrasonic based method to evaluate its accuracy and efficiency on the various contaminated environments.展开更多
基金Supported by Science and Technology Program of Fujian Province,No.2021J01430Joint Funds for the Innovation of Science and Technology of Fujian Province,No.2021Y9229.
文摘BACKGROUND Although surgery remains the primary treatment for gastric cancer(GC),the identification of effective alternative treatments for individuals for whom surgery is unsuitable holds significance.HER2 overexpression occurs in approximately 15%-20%of advanced GC cases,directly affecting treatment-related decisions.Spectral-computed tomography(sCT)enables the quantification of material compositions,and sCT iodine concentration parameters have been demonstrated to be useful for the diagnosis of GC and prediction of its invasion depth,angioge-nesis,and response to systemic chemotherapy.No existing report describes the prediction of GC HER2 status through histogram analysis based on sCT iodine maps(IMs).AIM To investigate whether whole-volume histogram analysis of sCT IMs enables the prediction of the GC HER2 status.METHODS This study was performed with data from 101 patients with pathologically confirmed GC who underwent preoperative sCT examinations.Nineteen parameters were extracted via sCT IM histogram analysis:The minimum,maximum,mean,standard deviation,variance,coefficient of variation,skewness,kurtosis,entropy,percentiles(1st,5th,10th,25th,50th,75th,90th,95th,and 99th),and lesion volume.Spearman correlations of the parameters with the HER2 status and clinicopathological parameters were assessed.Receiver operating characteristic curves were used to evaluate the parameters’diagnostic performance.RESULTS Values for the histogram parameters of the maximum,mean,standard deviation,variance,entropy,and percentiles were significantly lower in the HER2+group than in the HER2–group(all P<0.05).The GC differentiation and Lauren classification correlated significantly with the HER2 status of tumor tissue(P=0.001 and 0.023,respectively).The 99th percentile had the largest area under the curve for GC HER2 status identification(0.740),with 76.2%,sensitivity,65.0%specificity,and 67.3%accuracy.All sCT IM histogram parameters correlated positively with the GC HER2 status(r=0.237-0.337,P=0.001-0.017).CONCLUSION Whole-lesion histogram parameters derived from sCT IM analysis,and especially the 99th percentile,can serve as imaging biomarkers of HER2 overexpression in GC.
文摘Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solution for detection and monitoring.Unmanned aerial vehicles(UAVs)have recently emerged as a tool for algal bloom detection,efficiently providing on-demand images at high spatiotemporal resolutions.This study developed an image processing method for algal bloom area estimation from the aerial images(obtained from the internet)captured using UAVs.As a remote sensing method of HAB detection,analysis,and monitoring,a combination of histogram and texture analyses was used to efficiently estimate the area of HABs.Statistical features like entropy(using the Kullback-Leibler method)were emphasized with the aid of a gray-level co-occurrence matrix.The results showed that the orthogonal images demonstrated fewer errors,and the morphological filter best detected algal blooms in real time,with a precision of 80%.This study provided efficient image processing approaches using on-board UAVs for HAB monitoring.
文摘BACKGROUND Whole-tumor apparent diffusion coefficient(ADC)histogram analysis is relevant to predicting the neoadjuvant chemoradiation therapy(nCRT)response in patients with locally advanced rectal cancer(LARC).AIM To evaluate the performance of ADC histogram-derived parameters for predicting the outcomes of patients with LARC.METHODS This is a single-center,retrospective study,which included 48 patients with LARC.All patients underwent a pre-treatment magnetic resonance imaging(MRI)scan for primary tumor staging and a second restaging MRI for response evaluation.The sample was distributed as follows:18 responder patients(R)and 30 non-responders(non-R).Eight parameters derived from the whole-lesion histogram analysis(ADCmean,skewness,kurtosis,and ADC10^(th),25^(th),50^(th),75^(th),90^(th) percentiles),as well as the ADCmean from the hot spot region of interest(ROI),were calculated for each patient before and after treatment.Then all data were compared between R and non-R using the Mann-Whitney U test.Two measures of diagnostic accuracy were applied:the receiver operating characteristic curve and the diagnostic odds ratio(DOR).We also reported intra-and interobserver variability by calculating the intraclass correlation coefficient(ICC).RESULTS Post-nCRT kurtosis,as well as post-nCRT skewness,were significantly lower in R than in non-R(both P<0.001,respectively).We also found that,after treatment,R had a larger loss of both kurtosis and skewness than non-R(Δ%kurtosis and Δ skewness,P<0.001).Other parameters that demonstrated changes between groups were post-nCRT ADC10^(th),Δ%ADC10^(th),Δ%ADCmean,and ROIΔ%ADCmean.However,the best diagnostic performance was achieved byΔ%kurtosis at a threshold of 11.85%(Area under the receiver operating characteristic curve[AUC]=0.991,DOR=376),followed by post-nCRT kurtosis=0.78×10^(-3)mm^(2)/s(AUC=0.985,DOR=375.3),Δskewness=0.16(AUC=0.885,DOR=192.2)and post-nCRT skewness=1.59×10^(-3)mm^(2)/s(AUC=0.815,DOR=168.6).Finally,intraclass correlation coefficient analysis showed excellent intraobserver and interobserver agreement,ensuring the implementation of histogram analysis into routine clinical practice.CONCLUSION Whole-tumor ADC histogram parameters,particularly kurtosis and skewness,are relevant biomarkers for predicting the nCRT response in LARC.Both parameters appear to be more reliable than ADCmean from one-slice ROI.
基金supported by the Mid-career Researcher Program(No.2017R1A2B3004946)through National Research Foundationfunded by Ministry of Science and ICT of Korea.
文摘Free energy calculations may provide vital information for studying various chemical and biological processes.Quantum mechanical methods are required to accurately describe interaction energies,but their computations are often too demanding for conformational sampling.As a remedy,level correction schemes that allow calculating high level free energies based on conformations from lower level simulations have been developed.Here,we present a variation of a Monte Carlo(MC)resampling approach in relation to the weighted histogram analysis method(WHAM).We show that our scheme can generate free energy surfaces that can practically converge to the exact one with sufficient sampling,and that it treats cases with insufficient sampling in a more stable manner than the conventional WHAM-based level correction scheme.It can also provide a guide for checking the uncertainty of the levelcorrected surface and a well-defined criterion for deciding the extent of smoothing on the free energy surface for its visual improvement.We demonstrate these aspects by obtaining the free energy maps associated with the alanine dipeptide and proton transfer network of the KillerRed protein in explicit water,and exemplify that the MC resampled WHAM scheme can be a practical tool for producing free energy surfaces of realistic systems.
文摘Holoscopic 3D imaging is a true 3D imaging system mimics fly’s eye technique to acquire a true 3D optical model of a real scene. To reconstruct the 3D image computationally, an efficient implementation of an Auto-Feature-Edge (AFE) descriptor algorithm is required that provides an individual feature detector for integration of 3D information to locate objects in the scene. The AFE descriptor plays a key role in simplifying the detection of both edge-based and region-based objects. The detector is based on a Multi-Quantize Adaptive Local Histogram Analysis (MQALHA) algorithm. This is distinctive for each Feature-Edge (FE) block i.e. the large contrast changes (gradients) in FE are easier to localise. The novelty of this work lies in generating a free-noise 3D-Map (3DM) according to a correlation analysis of region contours. This automatically combines the exploitation of the available depth estimation technique with edge-based feature shape recognition technique. The application area consists of two varied domains, which prove the efficiency and robustness of the approach: a) extracting a set of setting feature-edges, for both tracking and mapping process for 3D depthmap estimation, and b) separation and recognition of focus objects in the scene. Experimental results show that the proposed 3DM technique is performed efficiently compared to the state-of-the-art algorithms.
基金supported by the Brain Korea 21 Project in 2010,the MKE(The Ministry of Knowledge Economy,Korea)the ITRC(Information Technology Research Center)support program(NIPA-2010-(C1090-1021-0010))
文摘This paper propoes the water level measuring method based on the image, while the ruler used to indicate the water level is stained. The contamination of the ruler weakens or eliminates many features which are required for the image processing. However, the feature of the color difference between the ruler and the water surface are firmer on the environmental change compare to the other features. As the color differeaces are embossed, only the region of the ruler is limited to eliminate the noise, and the average image is produced by using several continuous frames. A histogram is then produced on the height axis of the produced intensity average image. Local peaks and local valleys are detected, and the section between the peak and valley which have the greatest change is looked for. The valley point at this very moment is used to detect the water level. The detected water level is then converted to the actual water level by using the mapping table. The proposed method is compared to the ultrasonic based method to evaluate its accuracy and efficiency on the various contaminated environments.