This paper analyzes the characteristics of the output gradient histogram and shortages of several traditional automatic threshold methods in order to segment the gradient image better. Then an improved double-threshol...This paper analyzes the characteristics of the output gradient histogram and shortages of several traditional automatic threshold methods in order to segment the gradient image better. Then an improved double-threshold method is proposed, which is combined with the method of maximum classes variance, estimating-area method and double-threshold method. This method can automatically select two different thresholds to segment gradient images. The computer simulation is performed on the traditional methods and this algorithm and proves that this method can get satisfying result. Key words gradient histogram image - threshold selection - double-threshold method - maximum classes variance method CLC number TP 391. 41 Foundation item: Supported by the National Nature Science Foundation of China (50099620) and the Project of Chenguang Plan in Wuhan (985003062)Biography: YANG Shen (1977-), female, Ph. D. candidate, research direction: multimedia information processing and network technology.展开更多
为了实现对焊缝表面缺陷的自动检测与分类,研究一种有效识别焊缝表面缺陷的激光视觉检测方法.通过激光视觉传感器采集焊缝图像并进行预处理,包括图像分割,灰度化,平滑去噪以及焊缝轮廓提取.采用方向梯度直方图(Histogram of Oriented Gr...为了实现对焊缝表面缺陷的自动检测与分类,研究一种有效识别焊缝表面缺陷的激光视觉检测方法.通过激光视觉传感器采集焊缝图像并进行预处理,包括图像分割,灰度化,平滑去噪以及焊缝轮廓提取.采用方向梯度直方图(Histogram of Oriented Gradient,HOG)提取焊缝激光条纹轮廓图像的特征向量.其次,基于5折-交叉验证网格搜索方法进行模型参数寻优,最终建立了支持向量机(Support Vector Machine,SVM)智能模型识别与分类焊缝表面缺陷.通过调整焊缝轮廓提取算法、HOG特征维度得到不同特征数据并进行对比、分析焊缝缺陷的识别效果.在相同试验条件下,发现支持向量机比随机森林分类器、K最近邻分类器以及朴素贝叶斯分类器的识别率更高,达到97.86%.基于HOG-SVM的焊缝表面缺陷智能识别方法可有效提高焊缝缺陷(气孔、凹陷、咬边)及无缺陷的分类精度.展开更多
行人检测在机器人、驾驶辅助系统和视频监控等领域有广泛的应用,该文提出一种基于显著性检测与方向梯度直方图-非负矩阵分解(Histogram of Oriented Gradient-Non-negative Matrix Factorization,HOG-NMF)特征的快速行人检测方法。采用...行人检测在机器人、驾驶辅助系统和视频监控等领域有广泛的应用,该文提出一种基于显著性检测与方向梯度直方图-非负矩阵分解(Histogram of Oriented Gradient-Non-negative Matrix Factorization,HOG-NMF)特征的快速行人检测方法。采用频谱调谐显著性检测提取显著图,并基于熵值门限进行感兴趣区域的提取;组合非负矩阵分解和方向梯度直方图生成HOG-NMF特征;采用加性交叉核支持向量机方法(Intersection Kernel Support Vector Machine,IKSVM)。该算法显著降低了特征维数,在相同的计算复杂度下明显改善了线性支持向量机的检测率。在INRIA数据库的实验结果表明,该方法对比HOG/线性SVM和HOG/RBF-SVM显著减少了检测时间,并达到了满意的检测率。展开更多
文摘This paper analyzes the characteristics of the output gradient histogram and shortages of several traditional automatic threshold methods in order to segment the gradient image better. Then an improved double-threshold method is proposed, which is combined with the method of maximum classes variance, estimating-area method and double-threshold method. This method can automatically select two different thresholds to segment gradient images. The computer simulation is performed on the traditional methods and this algorithm and proves that this method can get satisfying result. Key words gradient histogram image - threshold selection - double-threshold method - maximum classes variance method CLC number TP 391. 41 Foundation item: Supported by the National Nature Science Foundation of China (50099620) and the Project of Chenguang Plan in Wuhan (985003062)Biography: YANG Shen (1977-), female, Ph. D. candidate, research direction: multimedia information processing and network technology.
文摘行人检测在机器人、驾驶辅助系统和视频监控等领域有广泛的应用,该文提出一种基于显著性检测与方向梯度直方图-非负矩阵分解(Histogram of Oriented Gradient-Non-negative Matrix Factorization,HOG-NMF)特征的快速行人检测方法。采用频谱调谐显著性检测提取显著图,并基于熵值门限进行感兴趣区域的提取;组合非负矩阵分解和方向梯度直方图生成HOG-NMF特征;采用加性交叉核支持向量机方法(Intersection Kernel Support Vector Machine,IKSVM)。该算法显著降低了特征维数,在相同的计算复杂度下明显改善了线性支持向量机的检测率。在INRIA数据库的实验结果表明,该方法对比HOG/线性SVM和HOG/RBF-SVM显著减少了检测时间,并达到了满意的检测率。