Histone H3 lysine 27 trimethylation(H3K27me3) is a histone modification associated with transcriptional repression. However, insights into the genome-wide pattern of H3K27me3 in grapevines are limited. Here, anti-H3K2...Histone H3 lysine 27 trimethylation(H3K27me3) is a histone modification associated with transcriptional repression. However, insights into the genome-wide pattern of H3K27me3 in grapevines are limited. Here, anti-H3K27 chromatin immunoprecipitation(ChIP), high-throughput sequencing, and transcriptome analysis were performed using leaves of Vitis amurensis. The leaves were treated at 4°C for 2 h and 24 h and used to investigate changes in H3K27me3 under chilling treatment. The results show that H3K27me3 is well-distributed both in gene regions(-50%) and in the intergenic region(-50%) in the grapevine genome(Vitis vinifera ‘Pinot Noir PN40024'). H3K27me3 was found to be localized in8 368 annotated gene regions in all detected samples(leaves at normal temperature and under chilling treatments) and mainly enriched in gene bodies with the adjacent promoter and downstream areas. The short-term chilling treatments(4°C for 2 h) induced 2 793 gains and 305losses in H3K27me3 modification. Subsequently, 97.3% of the alterations were restored to original levels after 24 h treatment. The ChIP-qPCR for five differential peaks showed similar results to the data for ChIP-seq, indicating that the chilling-induced H3K27me3 modification is reliable.Integrative analysis of transcriptome and ChIP-seq results showed that the expression of H3K27me3 target genes was significantly lower than those of non-target genes, indicating transcriptional repression of H3K27me3 in grapevine leaves. Furthermore, histone methylation alterations were detected in 82 genes and were related to either repression or activation of their expression during chilling stress. The findings provide the genome-wide H3K27me3 patterns in grapevines and shed light on uncovering its regulation in chilling stress responses.展开更多
Non-alcoholic fatty liver disease(NAFLD)poses a significant health challenge in modern societies due to shifts in lifestyle and dietary habits.Its complexity stems from genetic predisposition,environmental influences,...Non-alcoholic fatty liver disease(NAFLD)poses a significant health challenge in modern societies due to shifts in lifestyle and dietary habits.Its complexity stems from genetic predisposition,environmental influences,and metabolic factors.Epigenetic processes govern various cellular functions such as transcription,chromatin structure,and cell division.In NAFLD,these epigenetic tendencies,especially the process of histone methylation,are intricately intertwined with fat accumulation in the liver.Histone methylation is regulated by different enzymes like methyltransferases and demethylases and influences the expression of genes related to adipogenesis.While early-stage NAFLD is reversible,its progression to severe stages becomes almost irreversible.Therefore,early detection and intervention in NAFLD are crucial,and understanding the precise role of histone methylation in the early stages of NAFLD could be vital in halting or potentially reversing the progression of this disease.展开更多
Formation of malignant tumor originating from normal healthy cell is a multistep process including genetic and epigenetic lesions. Previous studies of cell line model systems displayed that early important epigenetic ...Formation of malignant tumor originating from normal healthy cell is a multistep process including genetic and epigenetic lesions. Previous studies of cell line model systems displayed that early important epigenetic events happened in stepwise fashion prior to cell immortalization. Once these epigenetic alterations are integrated into chromatin, they will perform vertical propagation through cell subculture. Hence, status of epigenetics is dramatically important in maintaining of cell identity. Histone modification is another factor of epigenetic alterations during human oncogenesis. Histones, one of main components of chromatin, can be modified post-translationally. Histone tail modifications are regulated by corresponding modification enzymes. This review focuses on the description of relationship between the main sites of histone modification and oncogenesis.展开更多
Alcoholism is a major health problem in the United States and worldwide,and alcohol remains the single most significant cause of liver-related diseases and deaths.Alcohol is known to influence nutritional status at ma...Alcoholism is a major health problem in the United States and worldwide,and alcohol remains the single most significant cause of liver-related diseases and deaths.Alcohol is known to influence nutritional status at many levels including nutrient intake,absorption,utilization,and excretion,and can lead to many nutritional disturbances and deficiencies.Nutrients can dramatically affect gene expression and alcohol-induced nutrient imbalance may be a major contributor to pathogenic gene expression in alcohol-induced liver disease(ALD).There is growing interest regarding epigenetic changes,including histone modifications that regulate gene expression during disease pathogenesis.Notably,modifications of core histones in the nucleosome regulate chromatin structure and DNA methylation,and control gene transcription.This review highlights the role of nutrient disturbances brought about during alcohol metabolism and their impact on epigenetic histone modifications that may contribute to ALD.The review is focused on four critical metabolites,namely,acetate,S-adenosylmethionine,nicotinamide adenine dinucleotide and zinc that are particularly relevant to alcohol metabolism and ALD.展开更多
The role of histone modifications in the development and progression of cancer remains unclear. Here,we gave an investigation of the relationship between the various histone modifications and the risk prediction of th...The role of histone modifications in the development and progression of cancer remains unclear. Here,we gave an investigation of the relationship between the various histone modifications and the risk prediction of the biochemical recurrence after radical prostatectomy (RP). Histone 3 lysine 4 dimethylation (H3K4diMe),trimethylation (H3K4triMe),lysine 36 trimethylation (H3K36triMe),histone 4 lysine 20 trimethylation (H4K20triMe)and acetylation of histome 3 lysine 9 (H3K9Ac) were evaluated using immnuohistochemistry coupled with the tissue microarray technique in 169 primary prostatectomy tissue samples. Recursive partitioning analysis (RPA) was used to analyze the data. Through global histone modification analysis in patients who underwent radical prostatectomy,we found that H3K4triMe can predict the risk of the biochemical recurrence for the low grade prostate cancer (Gleason score≤6) after RP. In the case of high grade prostate cancer (Gleason score≥7),H4K20triMe and H3K9Ac accompanying with the pre-operation prostate-specific antigen (PSA) level could also predict the risk of the biochemical recurrence after RP. In combination with the Gieason score and pre-operation PSA level,the acetylation and methylation of histones H3 and H4 can predict the biochemical recurrence of the prostate cancer following RP.展开更多
Histone methylation is one of the most widely studied post-transcriptional modifications. It is thought to be an important epigenetic event that is closely associated with cell fate determination and differentiation. ...Histone methylation is one of the most widely studied post-transcriptional modifications. It is thought to be an important epigenetic event that is closely associated with cell fate determination and differentiation. To explore the spatiotemporal expression of histone H3 lysine 4trimethylation(H3K4me3) and histone H3 lysine 27 trimethylation(H3K27me3) epigenetic marks and methylation or demethylation transferases in tooth organ development, we measured the expression of SET7, EZH2, KDM5 B and JMJD3 via immunohistochemistry and quantitative polymerase chain reaction(qP CR) analysis in the first molar of BALB/c mice embryos at E13.5, E15.5, E17.5, P0 and P3, respectively. We also measured the expression of H3K4me3 and H3K27me3 with immunofluorescence staining. During murine tooth germ development, methylation or demethylation transferases were expressed in a spatial–temporal manner. The bivalent modification characterized by H3K4me3 and H3K27me3 can be found during the tooth germ development, as shown by immunofluorescence. The expression of SET7, EZH2 as methylation transferases and KDM5 B and JMJD3 as demethylation transferases indicated accordingly with the expression of H3K4me3 and H3K27me3 respectively to some extent. The bivalent histone may play a critical role in tooth organ development via the regulation of cell differentiation.展开更多
Mechanisms regulating neurogenesis involve broad and complex processes that represent intriguing therapeutic targets in the field of regenerative medicine.One influential factor guiding neural stem cell proliferation ...Mechanisms regulating neurogenesis involve broad and complex processes that represent intriguing therapeutic targets in the field of regenerative medicine.One influential factor guiding neural stem cell proliferation and cellular differentiation during neurogenesis are epigenetic mechanisms.We present an overview of epigenetic mechanisms including chromatin structure and histone modifications;and discuss novel roles of two histone modifiers,Ezh2 and Suv4-20h1/Suv4-20h2(collectively referred to as Suv4-20h),in neurodevelopment and neurogenesis.This review will focus on broadly reviewing epigenetic regulatory components,the roles of epigenetic components during neurogenesis,and potential applications in regenerative medicine.展开更多
Epigenetics focuses on DNA methylation,histone modification,chromatin remodeling,noncoding RNAs,and other gene regulation mechanisms beyond the DNA sequence.In the past decade,epigenetic modifications have drawn more ...Epigenetics focuses on DNA methylation,histone modification,chromatin remodeling,noncoding RNAs,and other gene regulation mechanisms beyond the DNA sequence.In the past decade,epigenetic modifications have drawn more attention as they participate in the development and progression of diabetic retinopathy despite tight control of glucose levels.The underlying mechanisms of epigenetic modifications in diabetic retinopathy still urgently need to be elucidated.The diabetic condition facilitates epigenetic changes and influences target gene expression.In this review,we summarize the involvement of epigenetic modifications and metabolic memory in the development and progression of diabetic retinopathy and propose novel insights into the treatment of diabetic retinopathy.展开更多
In addition to DNA sequence information, site-specific histone modifications are another important determinant of gene expression in a eukaryotic organism. We selected four modification sites in common histones that a...In addition to DNA sequence information, site-specific histone modifications are another important determinant of gene expression in a eukaryotic organism. We selected four modification sites in common histones that are known to significantly impact chromatin function and generated monoclonal or polyclonal antibodies that recognize each of those site-specific modifications. We used these antibodies to demonstrate that the site-specific histone modification levels remain relatively constant in different organs of the same organism. We also compared the levels of selected histone modifications among several representative organisms and found that site-specific modifications are highly variable among different organisms, providing new insight into the evolutionary divergence of specific histone modifications.展开更多
Patients with brain tumors,specifically,malignant forms such as glioblastoma,medulloblastoma and ependymoma,exhibit dismal survival rates despite advances in treatment strategies.Chemotherapeutics,the primary adjuvant...Patients with brain tumors,specifically,malignant forms such as glioblastoma,medulloblastoma and ependymoma,exhibit dismal survival rates despite advances in treatment strategies.Chemotherapeutics,the primary adjuvant treatment for human brain tumors following surgery,commonly lack efficacy due to either intrinsic or acquired drug resistance.New treatments targeting epigenetic factors are being explored.Post-translational histone modification provides a critical regulatory platform for processes such as chromosome condensation and segregation,apoptosis,gene transcription,and DNA replication and repair.This work reviews how aberrant histone modifications and alterations in histone-modifying enzymes can drive the acquisition of drug resistance in brain tumors.Elucidating these mechanisms should lead to new treatments for overcoming drug resistance.展开更多
Mechanical stimulation is the key physical factor in cell environment.Mechanotransduction acts as a fundamental regulator of cell behavior,regulating cell proliferation,differentiation,apoptosis,and exhibiting specifi...Mechanical stimulation is the key physical factor in cell environment.Mechanotransduction acts as a fundamental regulator of cell behavior,regulating cell proliferation,differentiation,apoptosis,and exhibiting specific signature alterations during the pathological process.As research continues,the role of epigenetic science in mechanotransduction is attracting attention.However,the molecular mechanism of the synergistic effect between mechanotransduction and epigenetics in physiological and pathological processes has not been clarified.We focus on how histone modifications,as important components of epigenetics,are coordinated with multiple signaling pathways to control cell fate and disease progression.Specifically,we propose that histone modifications can form regulatory feedback loops with signaling pathways,that is,histone modifications can not only serve as downstream regulators of signaling pathways for target gene transcription but also provide feedback to regulate signaling pathways.Mechanotransduction and epigenetic changes could be potential markers and therapeutic targets in clinical practice.展开更多
基金supported by the National Key Research and Development Program of China (Grant No. 2018YFD1000300)the National Natural Science Foundation of China (Grant No. 32025032)+1 种基金the Grape Breeding Project of Ningxia (Grant No. NXNYYZ202101-04)Major Program of Technological Innovation in Hubei Province (Grant No. 2019ABA093).
文摘Histone H3 lysine 27 trimethylation(H3K27me3) is a histone modification associated with transcriptional repression. However, insights into the genome-wide pattern of H3K27me3 in grapevines are limited. Here, anti-H3K27 chromatin immunoprecipitation(ChIP), high-throughput sequencing, and transcriptome analysis were performed using leaves of Vitis amurensis. The leaves were treated at 4°C for 2 h and 24 h and used to investigate changes in H3K27me3 under chilling treatment. The results show that H3K27me3 is well-distributed both in gene regions(-50%) and in the intergenic region(-50%) in the grapevine genome(Vitis vinifera ‘Pinot Noir PN40024'). H3K27me3 was found to be localized in8 368 annotated gene regions in all detected samples(leaves at normal temperature and under chilling treatments) and mainly enriched in gene bodies with the adjacent promoter and downstream areas. The short-term chilling treatments(4°C for 2 h) induced 2 793 gains and 305losses in H3K27me3 modification. Subsequently, 97.3% of the alterations were restored to original levels after 24 h treatment. The ChIP-qPCR for five differential peaks showed similar results to the data for ChIP-seq, indicating that the chilling-induced H3K27me3 modification is reliable.Integrative analysis of transcriptome and ChIP-seq results showed that the expression of H3K27me3 target genes was significantly lower than those of non-target genes, indicating transcriptional repression of H3K27me3 in grapevine leaves. Furthermore, histone methylation alterations were detected in 82 genes and were related to either repression or activation of their expression during chilling stress. The findings provide the genome-wide H3K27me3 patterns in grapevines and shed light on uncovering its regulation in chilling stress responses.
文摘Non-alcoholic fatty liver disease(NAFLD)poses a significant health challenge in modern societies due to shifts in lifestyle and dietary habits.Its complexity stems from genetic predisposition,environmental influences,and metabolic factors.Epigenetic processes govern various cellular functions such as transcription,chromatin structure,and cell division.In NAFLD,these epigenetic tendencies,especially the process of histone methylation,are intricately intertwined with fat accumulation in the liver.Histone methylation is regulated by different enzymes like methyltransferases and demethylases and influences the expression of genes related to adipogenesis.While early-stage NAFLD is reversible,its progression to severe stages becomes almost irreversible.Therefore,early detection and intervention in NAFLD are crucial,and understanding the precise role of histone methylation in the early stages of NAFLD could be vital in halting or potentially reversing the progression of this disease.
基金Supported by the Natural Science Foundation of China(81173257)
文摘Formation of malignant tumor originating from normal healthy cell is a multistep process including genetic and epigenetic lesions. Previous studies of cell line model systems displayed that early important epigenetic events happened in stepwise fashion prior to cell immortalization. Once these epigenetic alterations are integrated into chromatin, they will perform vertical propagation through cell subculture. Hence, status of epigenetics is dramatically important in maintaining of cell identity. Histone modification is another factor of epigenetic alterations during human oncogenesis. Histones, one of main components of chromatin, can be modified post-translationally. Histone tail modifications are regulated by corresponding modification enzymes. This review focuses on the description of relationship between the main sites of histone modification and oncogenesis.
基金Supported by The National Institute of Alcohol Abuse and Alcoholism grants AA014371 (to Joshi-Barve S),AA015970 (to McClain CJ), and Office of Dietary Supplements, NIH
文摘Alcoholism is a major health problem in the United States and worldwide,and alcohol remains the single most significant cause of liver-related diseases and deaths.Alcohol is known to influence nutritional status at many levels including nutrient intake,absorption,utilization,and excretion,and can lead to many nutritional disturbances and deficiencies.Nutrients can dramatically affect gene expression and alcohol-induced nutrient imbalance may be a major contributor to pathogenic gene expression in alcohol-induced liver disease(ALD).There is growing interest regarding epigenetic changes,including histone modifications that regulate gene expression during disease pathogenesis.Notably,modifications of core histones in the nucleosome regulate chromatin structure and DNA methylation,and control gene transcription.This review highlights the role of nutrient disturbances brought about during alcohol metabolism and their impact on epigenetic histone modifications that may contribute to ALD.The review is focused on four critical metabolites,namely,acetate,S-adenosylmethionine,nicotinamide adenine dinucleotide and zinc that are particularly relevant to alcohol metabolism and ALD.
文摘The role of histone modifications in the development and progression of cancer remains unclear. Here,we gave an investigation of the relationship between the various histone modifications and the risk prediction of the biochemical recurrence after radical prostatectomy (RP). Histone 3 lysine 4 dimethylation (H3K4diMe),trimethylation (H3K4triMe),lysine 36 trimethylation (H3K36triMe),histone 4 lysine 20 trimethylation (H4K20triMe)and acetylation of histome 3 lysine 9 (H3K9Ac) were evaluated using immnuohistochemistry coupled with the tissue microarray technique in 169 primary prostatectomy tissue samples. Recursive partitioning analysis (RPA) was used to analyze the data. Through global histone modification analysis in patients who underwent radical prostatectomy,we found that H3K4triMe can predict the risk of the biochemical recurrence for the low grade prostate cancer (Gleason score≤6) after RP. In the case of high grade prostate cancer (Gleason score≥7),H4K20triMe and H3K9Ac accompanying with the pre-operation prostate-specific antigen (PSA) level could also predict the risk of the biochemical recurrence after RP. In combination with the Gieason score and pre-operation PSA level,the acetylation and methylation of histones H3 and H4 can predict the biochemical recurrence of the prostate cancer following RP.
基金supported by National Science Foundation of China (Grant No. 81371136) to Xue-Dong ZhouNational Science Foundation of China (Grant No. 81200760 and 81470711) to Li-Wei Zheng
文摘Histone methylation is one of the most widely studied post-transcriptional modifications. It is thought to be an important epigenetic event that is closely associated with cell fate determination and differentiation. To explore the spatiotemporal expression of histone H3 lysine 4trimethylation(H3K4me3) and histone H3 lysine 27 trimethylation(H3K27me3) epigenetic marks and methylation or demethylation transferases in tooth organ development, we measured the expression of SET7, EZH2, KDM5 B and JMJD3 via immunohistochemistry and quantitative polymerase chain reaction(qP CR) analysis in the first molar of BALB/c mice embryos at E13.5, E15.5, E17.5, P0 and P3, respectively. We also measured the expression of H3K4me3 and H3K27me3 with immunofluorescence staining. During murine tooth germ development, methylation or demethylation transferases were expressed in a spatial–temporal manner. The bivalent modification characterized by H3K4me3 and H3K27me3 can be found during the tooth germ development, as shown by immunofluorescence. The expression of SET7, EZH2 as methylation transferases and KDM5 B and JMJD3 as demethylation transferases indicated accordingly with the expression of H3K4me3 and H3K27me3 respectively to some extent. The bivalent histone may play a critical role in tooth organ development via the regulation of cell differentiation.
文摘Mechanisms regulating neurogenesis involve broad and complex processes that represent intriguing therapeutic targets in the field of regenerative medicine.One influential factor guiding neural stem cell proliferation and cellular differentiation during neurogenesis are epigenetic mechanisms.We present an overview of epigenetic mechanisms including chromatin structure and histone modifications;and discuss novel roles of two histone modifiers,Ezh2 and Suv4-20h1/Suv4-20h2(collectively referred to as Suv4-20h),in neurodevelopment and neurogenesis.This review will focus on broadly reviewing epigenetic regulatory components,the roles of epigenetic components during neurogenesis,and potential applications in regenerative medicine.
基金supported by the National Natural Science Foundation of China,No.82171062(to JFZ)Aier Eye Hospital Group Scientific Research Fund,No.AF2101D8(to LMG).
文摘Epigenetics focuses on DNA methylation,histone modification,chromatin remodeling,noncoding RNAs,and other gene regulation mechanisms beyond the DNA sequence.In the past decade,epigenetic modifications have drawn more attention as they participate in the development and progression of diabetic retinopathy despite tight control of glucose levels.The underlying mechanisms of epigenetic modifications in diabetic retinopathy still urgently need to be elucidated.The diabetic condition facilitates epigenetic changes and influences target gene expression.In this review,we summarize the involvement of epigenetic modifications and metabolic memory in the development and progression of diabetic retinopathy and propose novel insights into the treatment of diabetic retinopathy.
文摘In addition to DNA sequence information, site-specific histone modifications are another important determinant of gene expression in a eukaryotic organism. We selected four modification sites in common histones that are known to significantly impact chromatin function and generated monoclonal or polyclonal antibodies that recognize each of those site-specific modifications. We used these antibodies to demonstrate that the site-specific histone modification levels remain relatively constant in different organs of the same organism. We also compared the levels of selected histone modifications among several representative organisms and found that site-specific modifications are highly variable among different organisms, providing new insight into the evolutionary divergence of specific histone modifications.
基金Supported by the Rory David Deutsch Foundationthe Surgical Neuro-oncology Research Fund of Ann&Robert H Lurie Children’s Hospital(A&RLCH) of Chicagothe Dr.Ralph and Marian C.Falk Medical Research Trust
文摘Patients with brain tumors,specifically,malignant forms such as glioblastoma,medulloblastoma and ependymoma,exhibit dismal survival rates despite advances in treatment strategies.Chemotherapeutics,the primary adjuvant treatment for human brain tumors following surgery,commonly lack efficacy due to either intrinsic or acquired drug resistance.New treatments targeting epigenetic factors are being explored.Post-translational histone modification provides a critical regulatory platform for processes such as chromosome condensation and segregation,apoptosis,gene transcription,and DNA replication and repair.This work reviews how aberrant histone modifications and alterations in histone-modifying enzymes can drive the acquisition of drug resistance in brain tumors.Elucidating these mechanisms should lead to new treatments for overcoming drug resistance.
基金the Department of Science and Technology of Jilin Province,China(No.20230101163JC and No.20210509003RQ)。
文摘Mechanical stimulation is the key physical factor in cell environment.Mechanotransduction acts as a fundamental regulator of cell behavior,regulating cell proliferation,differentiation,apoptosis,and exhibiting specific signature alterations during the pathological process.As research continues,the role of epigenetic science in mechanotransduction is attracting attention.However,the molecular mechanism of the synergistic effect between mechanotransduction and epigenetics in physiological and pathological processes has not been clarified.We focus on how histone modifications,as important components of epigenetics,are coordinated with multiple signaling pathways to control cell fate and disease progression.Specifically,we propose that histone modifications can form regulatory feedback loops with signaling pathways,that is,histone modifications can not only serve as downstream regulators of signaling pathways for target gene transcription but also provide feedback to regulate signaling pathways.Mechanotransduction and epigenetic changes could be potential markers and therapeutic targets in clinical practice.