More than 240 items of historical records containing climatic information were retrieved from official historical books, local chronicles, annals and regional meteorological disaster yearbooks. By using moisture index...More than 240 items of historical records containing climatic information were retrieved from official historical books, local chronicles, annals and regional meteorological disaster yearbooks. By using moisture index and flood/drought (F/D) index obtained from the above information, the historical climate change, namely wet-dry conditions in borderland of Shaanxi Province, Gansu Province and Ningxia Hui Autonomous Region (BSGN, mainly included Ningxialu, Hezhoulu, Gongchanglu, Fengyuanlu and Yan'anlu in the Yuan Dynasty) was studied. The results showed that the climate of the region was generally dry and the ratio between drought and flood disasters was 85/38 during the period of 1208-1369. According to the frequencies of drought-flood disasters, the whole period could be divided into three phases. (1) 1208-1240: drought dominated the phase with occasional flood disasters. (2) 1240-1320: long-time drought disasters and extreme drought events happened frequently. (3) 1320-1369: drought disasters were less severe when flood and drought disasters happened alternately. Besides, the reconstructed wet-dry change curve revealed obvious transition and periodicity in the MongoI-Yuan Period. The transitions occurred in 1230 and 1325. The wet-dry change revealed 10- and 23-year quasi-periods which were consistent with solar cycles, indicating that solar activity had affected the wet-dry conditions of the study region in the Mongol-Yuan Period. The reconstructed results were consistent with two other study results reconstructed from natural evidences, and were similar to another study results from historical documents. All the above results showed that the climate in BSGN was characterized by long-time dry condition with frequent severe drought disasters during 1258 to 1308. Thus, these aspects of climatic change, might have profound impacts on local vegetation and socio-economic system.展开更多
Reconstructing historical land use and land cover change(LUCC) at the regional scale is an important component of global environmental change studies and of improving global historical land use datasets. By analyzing ...Reconstructing historical land use and land cover change(LUCC) at the regional scale is an important component of global environmental change studies and of improving global historical land use datasets. By analyzing data in historical documents, including military-oriented cropland(hereafter M-cropland) area, the number of households engaged in M-cropland(hereafter M-household) reclamation, cropland area, and the number of households, we propose a conversion relationship between M-cropland area and cropland area reclaimed by each household. A provincial cropland area estimation method for the Yuan Dynasty is described and used to reconstruct the provincial cropland area for AD1290. Major findings are as follows.(1) Both the M-cropland and cropland areas of each household were high in the north and low in the south during the Yuan Dynasty, which resulted from different natural conditions and planting practices. Based on this observation, the government-allocated M-cropland reclamation area to each household was based on the cropland area reclaimed by each household.(2) The conversion relationship between M-cropland and cropland areas per household showed conversion coefficients of 1.23 and 0.65 for the south and north, respectively.(3) The cropland area in the entire study area in AD1290 was 535.4×106 mu(Chinese area unit, 1 mu=666.7 m^2), 57.8% in the north and 42.2% in the south. The fractional cropland areas for the entire study area, north, and south were 6.8%, 6.6%, and 7.1%, respectively and the per capita cropland areas for the whole study area, north, and south were 6.7, 15.6, and 4.1 mu, respectively.(4) Cropland was mainly distributed in the middle and lower reaches of the Yellow River(including the Fuli area), Huaihe River Basin(including Henan Province), and middle and lower reaches of the Yangtze River(including Jiangzhe, Jiangxi, and Huguang provinces).展开更多
基金National Natural Science Foundation of China, No.40471047 No.40871033The Knowledge Innovation Program of Chinese Academy of Sciences, No.KZCX2-YW-315
文摘More than 240 items of historical records containing climatic information were retrieved from official historical books, local chronicles, annals and regional meteorological disaster yearbooks. By using moisture index and flood/drought (F/D) index obtained from the above information, the historical climate change, namely wet-dry conditions in borderland of Shaanxi Province, Gansu Province and Ningxia Hui Autonomous Region (BSGN, mainly included Ningxialu, Hezhoulu, Gongchanglu, Fengyuanlu and Yan'anlu in the Yuan Dynasty) was studied. The results showed that the climate of the region was generally dry and the ratio between drought and flood disasters was 85/38 during the period of 1208-1369. According to the frequencies of drought-flood disasters, the whole period could be divided into three phases. (1) 1208-1240: drought dominated the phase with occasional flood disasters. (2) 1240-1320: long-time drought disasters and extreme drought events happened frequently. (3) 1320-1369: drought disasters were less severe when flood and drought disasters happened alternately. Besides, the reconstructed wet-dry change curve revealed obvious transition and periodicity in the MongoI-Yuan Period. The transitions occurred in 1230 and 1325. The wet-dry change revealed 10- and 23-year quasi-periods which were consistent with solar cycles, indicating that solar activity had affected the wet-dry conditions of the study region in the Mongol-Yuan Period. The reconstructed results were consistent with two other study results reconstructed from natural evidences, and were similar to another study results from historical documents. All the above results showed that the climate in BSGN was characterized by long-time dry condition with frequent severe drought disasters during 1258 to 1308. Thus, these aspects of climatic change, might have profound impacts on local vegetation and socio-economic system.
基金National Key R&D Program of China,No.2017YFA0603304National Natural Science Foundation of China,No.41671149The Special Program for Basic Work of the Ministry of Science and Technology,China,No.2014FY210900
文摘Reconstructing historical land use and land cover change(LUCC) at the regional scale is an important component of global environmental change studies and of improving global historical land use datasets. By analyzing data in historical documents, including military-oriented cropland(hereafter M-cropland) area, the number of households engaged in M-cropland(hereafter M-household) reclamation, cropland area, and the number of households, we propose a conversion relationship between M-cropland area and cropland area reclaimed by each household. A provincial cropland area estimation method for the Yuan Dynasty is described and used to reconstruct the provincial cropland area for AD1290. Major findings are as follows.(1) Both the M-cropland and cropland areas of each household were high in the north and low in the south during the Yuan Dynasty, which resulted from different natural conditions and planting practices. Based on this observation, the government-allocated M-cropland reclamation area to each household was based on the cropland area reclaimed by each household.(2) The conversion relationship between M-cropland and cropland areas per household showed conversion coefficients of 1.23 and 0.65 for the south and north, respectively.(3) The cropland area in the entire study area in AD1290 was 535.4×106 mu(Chinese area unit, 1 mu=666.7 m^2), 57.8% in the north and 42.2% in the south. The fractional cropland areas for the entire study area, north, and south were 6.8%, 6.6%, and 7.1%, respectively and the per capita cropland areas for the whole study area, north, and south were 6.7, 15.6, and 4.1 mu, respectively.(4) Cropland was mainly distributed in the middle and lower reaches of the Yellow River(including the Fuli area), Huaihe River Basin(including Henan Province), and middle and lower reaches of the Yangtze River(including Jiangzhe, Jiangxi, and Huguang provinces).