Ancient China recorded a wealth of astronomical observations,notably distinguished by the inclusion of empirical measurements of stellar observations.However,determining the precise observational epochs for these data...Ancient China recorded a wealth of astronomical observations,notably distinguished by the inclusion of empirical measurements of stellar observations.However,determining the precise observational epochs for these datasets poses a formidable challenge.This study employs the generalized Hough transform methodology to analyze two distinct sets of observational data originating from the Song and Yuan dynasties,allowing accurate estimation of the epochs of these stellar observations.This research introduces a novel and systematic approach,offering a scholarly perspective for the analysis of additional datasets within the domain of ancient astronomical catalogs in future investigations.展开更多
The "guest star" of AD185, recorded in the ancient Chinese history the Houhanshu, has been widely regarded as a supernova. However, some authors have suggested that the guest star might have been a comet. It has als...The "guest star" of AD185, recorded in the ancient Chinese history the Houhanshu, has been widely regarded as a supernova. However, some authors have suggested that the guest star might have been a comet. It has also been proposed that the record is the concatenation of a nova with a comet made by an early compiler. We have checked the record of the guest star, comparing it with records of comets in the same history. We find that most descriptions of comets clearly indicate motion, whereas the record of the guest star does not. We further argue that the term "yan" used to describe the star's "size" might be short for yanchuang (seat bed), and "half a yan" would be simply as an imaginary figuration of the ancient observer. Moreover, we show that the term "hou -year" (hou-nian) most probably means the year after next. We argue that the asterism Southern Gate consisted of the stars α andβ Cen. We conclude that the record describing the guest star of AD 185 is completely different from any comet record in the same history, and that it almost certainly was a supernova.展开更多
Stimulated by the recent discovery of PSR J1833-1034 in SNR G21.5-0.9 and its age parameters presented by two groups of discovery, we demonstrate that the PSR J1833- 1034 was born 2053 years ago from a supernova explo...Stimulated by the recent discovery of PSR J1833-1034 in SNR G21.5-0.9 and its age parameters presented by two groups of discovery, we demonstrate that the PSR J1833- 1034 was born 2053 years ago from a supernova explosion, the BC 48 guest star observed in the Western Han (Early Han) Dynasty by ancient Chinese. Based on a detailed analysis of the Chinese ancient record of the BC 48 guest star and the new detected physical parameters of PSR J1833-1034, agreements on the visual position, age and distance between PSR J1833- 1034 and the BC 48 guest star are obtained. The initial period/90 of PSR J1833-1034 is now derived from its historical and current observed data without any other extra assumption on P0 itself, except that the factor PP is a constant in its evolution until now.展开更多
The Daye Calendar was compiled in AD 597 in the Sui Dynasty. We investigate the records of sunrise and sunset times on the 24 solar-term days in the calendar. By converting the ancient Chinese time units, Chen, Ke and...The Daye Calendar was compiled in AD 597 in the Sui Dynasty. We investigate the records of sunrise and sunset times on the 24 solar-term days in the calendar. By converting the ancient Chinese time units, Chen, Ke and Fen to hour, minute and second, and carrying out a comparison between the ancient records and values computed with modem astronomical theory, we find that the accuracy of solar measurements in the Sui period is remarkably high: for sunrise times, the average absolute deviation is 3.63 min (this value can be further reduced to 3.03 min when erroneous data are excluded), and for sunset times it is 3.48 min. We also find that the observed sunrise and sunset times are strictly symmetrically distributed with respect to both the Winter Solstice and the Summer Solstice, with their deviations showing a similar symmetrical distribution as well. We give a discussion on the date of observation, the feature of the data, and possible reasons of the deviation.展开更多
We study interval constants that are related to motions of the Sun and Moon, i.e., the Qi, Intercalation, Revolution and Crossing interval, in calendars affiliated with the Shoushi calendar (Shoushili), such as Dato...We study interval constants that are related to motions of the Sun and Moon, i.e., the Qi, Intercalation, Revolution and Crossing interval, in calendars affiliated with the Shoushi calendar (Shoushili), such as Datongli and Chiljeongsannaepyeon. It is known that these interval constants were newly introduced in the Shoushili calendar and revised afterward, except for the Qi interval constant, and the revised values were adopted in later calendars affiliated with the Shoushili. We first investigate the accu- racy of these interval constants and then the accuracy of calendars affiliated with the Shoushili in terms of these constants by comparing times for the new moon and the maximum solar eclipse calculated by each calendar with modem methods of calcula- tion. During our study, we found that the Qi and Intercalation interval constants used in the early Shoushili were well determined, whereas the Revolution and Crossing interval constants were relatively poorly measured. We also found that the interval constants used by the early Shoushili were better than those of the later one, and hence better than those of Datongli and Chiljeongsannaepyeon. On the other hand, we found that the early Shoushili is, in general, a worse calendar than Datongli for use in China but a better one than Chiljeongsannaepyeon for use in Korea in terms of times for the new moon and when a solar eclipse occurs, at least for the period 1281 - 1644. Finally, we verified that the times for sunrise and sunset in the Shoushili-Li-Cheng and Mingshi are those at Beijing and Nanjing, respectively.展开更多
The ancient record "Tian-da-yi" (the sky darkened greatly) is identified with the solar eclipse on May 31, 976BC. This identification is demonstrated in this paper through a palaeographic, astronomical and c...The ancient record "Tian-da-yi" (the sky darkened greatly) is identified with the solar eclipse on May 31, 976BC. This identification is demonstrated in this paper through a palaeographic, astronomical and chronological analysis. It is probably the earliest solar eclipse in Chinese history that can be so identified.展开更多
The Zhoubi Suanjing, one of the most important ancient Chinese books on mathematical astronomy, was compiled about 100 BC in the Western Han dynasty (BC 206 - AD 23). We study the gnomon shadow lengths for the 24 so...The Zhoubi Suanjing, one of the most important ancient Chinese books on mathematical astronomy, was compiled about 100 BC in the Western Han dynasty (BC 206 - AD 23). We study the gnomon shadow lengths for the 24 solar terms as recorded in the book. Special attention is paid to the so-called law of ‘cun qian li’, which says the shadow length of a gnomon of 8 chi (about 1.96 m) high will increase (or decrease) 1 cun (1/10chi) for every 10001i (roughly 400kin) the gnomon moves northward (or south- ward). From these data, one can derive the time and location of the observations. The resuits, however, do not fit historical facts. We suggest that compilers of the Zhoubi Suanjing must have modified the original data according to the law of ‘cun qian li’. Through reversing the situation, we recovered the original data, our analysis of which reveals the best possible observation time as 564 BC and the location of observation as 35.78° N latitude. We conclude that this must be the earliest records of solar meridian observations in China. In the meantime, we give the errors of solar altitudes for the 24 solar terms. The average deviation is 5.22°, and the mean absolute deviation is 5.52°, signifying the accuracy of astronomical calculations from that time.展开更多
The Chinese first reported the Crab Nebula supernova on 1054 July 5. Ecclesiastical documents from the near east reported it in April and May of 1054. More than 33 petroglyphs made by Native Americans in the US and Me...The Chinese first reported the Crab Nebula supernova on 1054 July 5. Ecclesiastical documents from the near east reported it in April and May of 1054. More than 33 petroglyphs made by Native Americans in the US and Mexico are consistent with sightings both before and after conjunction with the Sun on 1054 May 27. We found a petroglyph showing the new star close to Venus and the Moon, which occurred on 1054 April 12 and April 13, respectively. Collins et al., using the four historical dates, derived a light curve that is like that of a Type Ia supernova. The only remaining problem with this identification is that this supernova was near maximum light for 85 d, which is unlike the behavior of any known supernova.展开更多
All related astronomical records of King Wu's Conquest have been searched and analysed comprehensively. Constrained by the newest conclusions of archeology, philology and history in the Xia-Shang-Zhou Chronology P...All related astronomical records of King Wu's Conquest have been searched and analysed comprehensively. Constrained by the newest conclusions of archeology, philology and history in the Xia-Shang-Zhou Chronology Project and based mainly on dates in Wucheng, Jupiter's position in Guoyu and information on the season, our first choice of the date of King Wu's Conquest is Jun. 20, BC1046. This conclusion explains properly most relevant literature.展开更多
文摘Ancient China recorded a wealth of astronomical observations,notably distinguished by the inclusion of empirical measurements of stellar observations.However,determining the precise observational epochs for these datasets poses a formidable challenge.This study employs the generalized Hough transform methodology to analyze two distinct sets of observational data originating from the Song and Yuan dynasties,allowing accurate estimation of the epochs of these stellar observations.This research introduces a novel and systematic approach,offering a scholarly perspective for the analysis of additional datasets within the domain of ancient astronomical catalogs in future investigations.
基金Supported by the National Natural Science Foundation of China.
文摘The "guest star" of AD185, recorded in the ancient Chinese history the Houhanshu, has been widely regarded as a supernova. However, some authors have suggested that the guest star might have been a comet. It has also been proposed that the record is the concatenation of a nova with a comet made by an early compiler. We have checked the record of the guest star, comparing it with records of comets in the same history. We find that most descriptions of comets clearly indicate motion, whereas the record of the guest star does not. We further argue that the term "yan" used to describe the star's "size" might be short for yanchuang (seat bed), and "half a yan" would be simply as an imaginary figuration of the ancient observer. Moreover, we show that the term "hou -year" (hou-nian) most probably means the year after next. We argue that the asterism Southern Gate consisted of the stars α andβ Cen. We conclude that the record describing the guest star of AD 185 is completely different from any comet record in the same history, and that it almost certainly was a supernova.
基金Supported by the National Natural Science Foundation of China.
文摘Stimulated by the recent discovery of PSR J1833-1034 in SNR G21.5-0.9 and its age parameters presented by two groups of discovery, we demonstrate that the PSR J1833- 1034 was born 2053 years ago from a supernova explosion, the BC 48 guest star observed in the Western Han (Early Han) Dynasty by ancient Chinese. Based on a detailed analysis of the Chinese ancient record of the BC 48 guest star and the new detected physical parameters of PSR J1833-1034, agreements on the visual position, age and distance between PSR J1833- 1034 and the BC 48 guest star are obtained. The initial period/90 of PSR J1833-1034 is now derived from its historical and current observed data without any other extra assumption on P0 itself, except that the factor PP is a constant in its evolution until now.
文摘The Daye Calendar was compiled in AD 597 in the Sui Dynasty. We investigate the records of sunrise and sunset times on the 24 solar-term days in the calendar. By converting the ancient Chinese time units, Chen, Ke and Fen to hour, minute and second, and carrying out a comparison between the ancient records and values computed with modem astronomical theory, we find that the accuracy of solar measurements in the Sui period is remarkably high: for sunrise times, the average absolute deviation is 3.63 min (this value can be further reduced to 3.03 min when erroneous data are excluded), and for sunset times it is 3.48 min. We also find that the observed sunrise and sunset times are strictly symmetrically distributed with respect to both the Winter Solstice and the Summer Solstice, with their deviations showing a similar symmetrical distribution as well. We give a discussion on the date of observation, the feature of the data, and possible reasons of the deviation.
基金Ki-Won Lee is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2013R1A1A2013747)
文摘We study interval constants that are related to motions of the Sun and Moon, i.e., the Qi, Intercalation, Revolution and Crossing interval, in calendars affiliated with the Shoushi calendar (Shoushili), such as Datongli and Chiljeongsannaepyeon. It is known that these interval constants were newly introduced in the Shoushili calendar and revised afterward, except for the Qi interval constant, and the revised values were adopted in later calendars affiliated with the Shoushili. We first investigate the accu- racy of these interval constants and then the accuracy of calendars affiliated with the Shoushili in terms of these constants by comparing times for the new moon and the maximum solar eclipse calculated by each calendar with modem methods of calcula- tion. During our study, we found that the Qi and Intercalation interval constants used in the early Shoushili were well determined, whereas the Revolution and Crossing interval constants were relatively poorly measured. We also found that the interval constants used by the early Shoushili were better than those of the later one, and hence better than those of Datongli and Chiljeongsannaepyeon. On the other hand, we found that the early Shoushili is, in general, a worse calendar than Datongli for use in China but a better one than Chiljeongsannaepyeon for use in Korea in terms of times for the new moon and when a solar eclipse occurs, at least for the period 1281 - 1644. Finally, we verified that the times for sunrise and sunset in the Shoushili-Li-Cheng and Mingshi are those at Beijing and Nanjing, respectively.
基金Project supported by the National Natural Science Foundation of China(Grant No.19973012).
文摘The ancient record "Tian-da-yi" (the sky darkened greatly) is identified with the solar eclipse on May 31, 976BC. This identification is demonstrated in this paper through a palaeographic, astronomical and chronological analysis. It is probably the earliest solar eclipse in Chinese history that can be so identified.
基金supported by the National Natural Science Foundation of China(Grant Nos.10973022 and 10873039)
文摘The Zhoubi Suanjing, one of the most important ancient Chinese books on mathematical astronomy, was compiled about 100 BC in the Western Han dynasty (BC 206 - AD 23). We study the gnomon shadow lengths for the 24 solar terms as recorded in the book. Special attention is paid to the so-called law of ‘cun qian li’, which says the shadow length of a gnomon of 8 chi (about 1.96 m) high will increase (or decrease) 1 cun (1/10chi) for every 10001i (roughly 400kin) the gnomon moves northward (or south- ward). From these data, one can derive the time and location of the observations. The resuits, however, do not fit historical facts. We suggest that compilers of the Zhoubi Suanjing must have modified the original data according to the law of ‘cun qian li’. Through reversing the situation, we recovered the original data, our analysis of which reveals the best possible observation time as 564 BC and the location of observation as 35.78° N latitude. We conclude that this must be the earliest records of solar meridian observations in China. In the meantime, we give the errors of solar altitudes for the 24 solar terms. The average deviation is 5.22°, and the mean absolute deviation is 5.52°, signifying the accuracy of astronomical calculations from that time.
文摘The Chinese first reported the Crab Nebula supernova on 1054 July 5. Ecclesiastical documents from the near east reported it in April and May of 1054. More than 33 petroglyphs made by Native Americans in the US and Mexico are consistent with sightings both before and after conjunction with the Sun on 1054 May 27. We found a petroglyph showing the new star close to Venus and the Moon, which occurred on 1054 April 12 and April 13, respectively. Collins et al., using the four historical dates, derived a light curve that is like that of a Type Ia supernova. The only remaining problem with this identification is that this supernova was near maximum light for 85 d, which is unlike the behavior of any known supernova.
基金the Xia-Shang-Zhou Chronology Project and Director Foundation of the Chinese Academy of Sciences.
文摘All related astronomical records of King Wu's Conquest have been searched and analysed comprehensively. Constrained by the newest conclusions of archeology, philology and history in the Xia-Shang-Zhou Chronology Project and based mainly on dates in Wucheng, Jupiter's position in Guoyu and information on the season, our first choice of the date of King Wu's Conquest is Jun. 20, BC1046. This conclusion explains properly most relevant literature.