An iterative algorithm for modeling of non-linear joint by the displacement discontinuity method (DDM) was described, and the effect of the non-linear joint on the in-situ stress field was investigated in this paper. ...An iterative algorithm for modeling of non-linear joint by the displacement discontinuity method (DDM) was described, and the effect of the non-linear joint on the in-situ stress field was investigated in this paper. The Barton-Bandis (BB) non-linear joint model and failure criterion were adopted in the new DDM program. Using this program, the stress field around the non-linear joint was obtained, the parameters analysis of the joint was carried out, and the deformation and stress distribution of the joint were studied. The simulation results show that: (1)the in-situ stress is significantly affected by the joint; (2)the increase of stiffness, friction angle, and thickness of the joint affect the stress concentration in different ways; (3)the influence distance of the joint changes with the angle of the joint; (4)the deformation and stress of the joint change with the point position.展开更多
基金Western Transport Construction Science and Technology Project of the Ministry of Transport of China ( No. 2009318000046)
文摘An iterative algorithm for modeling of non-linear joint by the displacement discontinuity method (DDM) was described, and the effect of the non-linear joint on the in-situ stress field was investigated in this paper. The Barton-Bandis (BB) non-linear joint model and failure criterion were adopted in the new DDM program. Using this program, the stress field around the non-linear joint was obtained, the parameters analysis of the joint was carried out, and the deformation and stress distribution of the joint were studied. The simulation results show that: (1)the in-situ stress is significantly affected by the joint; (2)the increase of stiffness, friction angle, and thickness of the joint affect the stress concentration in different ways; (3)the influence distance of the joint changes with the angle of the joint; (4)the deformation and stress of the joint change with the point position.