Nanocrystal of upconversion (UC) phosphor Ho^3+, Tm^3+ , and Yb^3+ co-doped NaYF4 was prepared by the hydrothermal method in the presence of the complexing agent EDTA. Under 980 nm diode laser excitation, the imp...Nanocrystal of upconversion (UC) phosphor Ho^3+, Tm^3+ , and Yb^3+ co-doped NaYF4 was prepared by the hydrothermal method in the presence of the complexing agent EDTA. Under 980 nm diode laser excitation, the impact of different concentrations of Ho^3+ ion on the UC luminescence intensity was discussed. The law of luminescence intensity versus pump power shows that the 474 nm blue emission, 538 nm green emission, and 642 nm red emission are all due to the two-photon process, while the 450 nm blue emission is a three-photon process. The UC mechanism and processes were also analyzed. The sample was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The result shows that Ho^3+ ,Tm^3+ , and Yb^3+ co-doped NaYF4 prepared by the hydrothermal method exhibits a hexagonal nanocrystal.展开更多
Yb^3+:Er^3+:Tm^3+co-doped borosilicate glasses are prepared. Their strong up-conversion photoluminescence spectra in a range from ultra-violet to near-infrared, which are excited by a 978-nm laser diode, are meas...Yb^3+:Er^3+:Tm^3+co-doped borosilicate glasses are prepared. Their strong up-conversion photoluminescence spectra in a range from ultra-violet to near-infrared, which are excited by a 978-nm laser diode, are measured, and the mechanisms of energy transfer among Yb^3+ Er^3+ and Tm^3+ ions are discussed. The results show that there is an unexpected wavelength at 900-nm emission from Yb^3+ Stark splitting levels to pump Tm^3+ ions and there exists an optimum pump power. The concentration of the Tm^3+ dopant gives rise to a prominent effect on the intensity of visible and near-infrared emissions for the yb^3+:Er^3+:Tm^3+ co-doped borosilicate glasses.展开更多
Oxy-fluoride glasses with composition of 25SiO2-65PbF2-9.4AlF3-0.1HoF3-0.5YbF3 were prepared. Their up-conversion fluorescence characteristics were investigated by 980 nm laser. Two emission peaks were observed at 540...Oxy-fluoride glasses with composition of 25SiO2-65PbF2-9.4AlF3-0.1HoF3-0.5YbF3 were prepared. Their up-conversion fluorescence characteristics were investigated by 980 nm laser. Two emission peaks were observed at 540 and 650 nm. The up-conversion mechanism and processes were analyzed. The relationship between pumping power and relative intensity of emissions was discussed. From the dependence, it is known that the emissions centered at 540 and 650 nm are both attributed to two-photon process.展开更多
Transparent Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals are prepared. Under excitation of a 980-nm laser diode (LD), compared with the glass before heat treatment, th...Transparent Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals are prepared. Under excitation of a 980-nm laser diode (LD), compared with the glass before heat treatment, the Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics can emit intense blue, green and red up-conversion luminescence and Stark- split peaks; X-ray diffraction (XRD) and transmission electron microscope (TEM) results show that BaF2 nanocrystals with an average diameter of 20 nm are precipitated from the glass matrix. Stark splitting of the up-conversion luminescence peaks in the glass ceramics indicates that Tm^3+, Er^3+ and (or) Yb^3+ ions are incorporated into the BaF2 nanocrystals. The up-conversion luminescence intensities of Tm^3+, Er^3+ and the splitting degree of luminescence peaks in the glass ceramics increase significantly with the increase of heat treat temperature and heat treat time extension. In addition, the possible energy transfer process between rare earth ions and the up-conversion luminescence mechanism are also proposed.展开更多
yb3+/Dy3+ co-doped A1203 nanopowders have been prepared by the non-aqueous sol-gel method and their up- conversion photoluminescence spectra are measured under excitation by a 980-nm semiconductor laser. The results...yb3+/Dy3+ co-doped A1203 nanopowders have been prepared by the non-aqueous sol-gel method and their up- conversion photoluminescence spectra are measured under excitation by a 980-nm semiconductor laser. The results show that there are comparatively abundant spectra of up-conversion emissions centered at 378, 408, 527 and 543, and 663 nm, corresponding to 4C9/2→ 6H13/2, 4C9/2→ 6Hll/2, 4115/2 → 6H13/2, and 4F9/2 →6Hll/2 transitions of Dy3+, respectively. Two-photon and three-photon processes are involved in ultraviolet, violet, green, and red up-conversion emissions. The energy transition between Yb3+ and Dy3+ is discussed.展开更多
The IR-to-visible upconversion fluorescent crystals, Yb:Ho:LiN-bO3, with a constant Ho^3+ concentration (0.1 mol%) and different doping concentrations of Yb^3+ (0.5, 1.5, 2.0, 2.5, 3.0 tool%) are synthesized b...The IR-to-visible upconversion fluorescent crystals, Yb:Ho:LiN-bO3, with a constant Ho^3+ concentration (0.1 mol%) and different doping concentrations of Yb^3+ (0.5, 1.5, 2.0, 2.5, 3.0 tool%) are synthesized by Czochralski method in air atmosphere. X-ray diffraction shows that the obtained crystal is a single phase of LiNbO3 and the rare-earth ions occupied the Li^+ or Nb^5+ sites instead of the interstitial sites. Under 980 nm excitation, green and red emission bands due to the Ho^3+ (^5S2, ^5F4)/^5I8 and Ho^3+ ^5F5/^5I8 energy transitions are observed in these samples, respectively. Power dependence studies on these samples with different Yb^3+ dopant concentrations indicate that the red and green emissions are based on a two-photon process. The intensities of the red and green upconversion fluorescence increase with Yb3+ ions of 0-2.0 mol% because of an increased Yb^3+ sensitization, but decrease at higher concentrations owing to the back-energy transfer between the Yb^3+ and Ho^3+ ions.展开更多
Oxyfluoride glasses were developed with composition 60GeO 2 ·10AlF 3 ·25BaF 2 ·(1.95-x)GdF 3 · 3YbF 3 ·0.05TmF 3 ·xErF 3 (x=0.02,0.05,0.08,0.11,0.14,0.17)in mole percent.Intense blue...Oxyfluoride glasses were developed with composition 60GeO 2 ·10AlF 3 ·25BaF 2 ·(1.95-x)GdF 3 · 3YbF 3 ·0.05TmF 3 ·xErF 3 (x=0.02,0.05,0.08,0.11,0.14,0.17)in mole percent.Intense blue(476 nm),green(524 and 546 nm)and red(658 nm)emissions which identified from the 1G 4 →3H 6 transition of Tm3+and the(2H 11/2 ,4S 3/2 )→4I 15/2 ,4F 9/2 →4I 15/2 transitions of Er3+,respectively,were simultaneously observed under 980 nm excitation at room temperature.The results show that multicolor luminescence including white light can be adjustably tuned by changing doping concentrations of Er3+ion or the excitation power.In addition,the energy transfer processes among Tm3+,Er3+and Yb3+ions,and up-conversion mechanisms are discussed.展开更多
基金Project supported bythe Key Laboratory of Rare Earth Chemistry and Physics ,ChangchunInstitute of Applied Chemistry ,Chinese Academy of Sciences (R020202K)
文摘Nanocrystal of upconversion (UC) phosphor Ho^3+, Tm^3+ , and Yb^3+ co-doped NaYF4 was prepared by the hydrothermal method in the presence of the complexing agent EDTA. Under 980 nm diode laser excitation, the impact of different concentrations of Ho^3+ ion on the UC luminescence intensity was discussed. The law of luminescence intensity versus pump power shows that the 474 nm blue emission, 538 nm green emission, and 642 nm red emission are all due to the two-photon process, while the 450 nm blue emission is a three-photon process. The UC mechanism and processes were also analyzed. The sample was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The result shows that Ho^3+ ,Tm^3+ , and Yb^3+ co-doped NaYF4 prepared by the hydrothermal method exhibits a hexagonal nanocrystal.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10804015)the Science Foundation of the Education Department of Liaoning Province of China (Grant No. 2009A417)
文摘Yb^3+:Er^3+:Tm^3+co-doped borosilicate glasses are prepared. Their strong up-conversion photoluminescence spectra in a range from ultra-violet to near-infrared, which are excited by a 978-nm laser diode, are measured, and the mechanisms of energy transfer among Yb^3+ Er^3+ and Tm^3+ ions are discussed. The results show that there is an unexpected wavelength at 900-nm emission from Yb^3+ Stark splitting levels to pump Tm^3+ ions and there exists an optimum pump power. The concentration of the Tm^3+ dopant gives rise to a prominent effect on the intensity of visible and near-infrared emissions for the yb^3+:Er^3+:Tm^3+ co-doped borosilicate glasses.
基金supported by Guizhou Provincial Science and Technology Foundation,China(No.[2019]1229)the National Natural Science Foundation of China(Nos.21361007,51776046)。
文摘通过高温固相技术合成Ho^(3+)和Yb^(3+)共掺杂La_(7)P_(3)O_(18)上转换荧光粉。XRD结果表明,合成样品是空间群为P21/n的单斜结构的La_(7)P_(3)O_(18)晶体和少量La PO4晶体的混合物。紫外可见漫反射光谱结果证实La_(7)P_(3)O_(18)晶体是一种光学带隙为4.10 e V的间接半导体。经980 nm激光激发,Ho^(3+)和Yb^(3+)共掺杂La_(7)P_(3)O_(18)荧光粉发射出Ho^(3+)离子特征的蓝色(486 nm)、绿色(550 nm)和红色(661 nm)特征峰,其中,661 nm处发射峰在样品上转换发光光谱中占主导地位。此外,随着Ho^(3+)和Yb^(3+)掺杂量的增加,样品上转换发光强度先增大后减小。当Ho^(3+)和Yb^(3+)的掺杂量分别达到1%和10%(摩尔分数)时,样品出现浓度猝灭现象,其机制为电四极-电四极相互作用。泵浦功率和发光强度关系表明,样品的绿光和红光发射均源于双光子吸收过程激发。Ho^(3+)和Yb^(3+)共掺杂La_(7)P_(3)O_(18)晶体上转换发光色坐标位于橙红色区域。
文摘Oxy-fluoride glasses with composition of 25SiO2-65PbF2-9.4AlF3-0.1HoF3-0.5YbF3 were prepared. Their up-conversion fluorescence characteristics were investigated by 980 nm laser. Two emission peaks were observed at 540 and 650 nm. The up-conversion mechanism and processes were analyzed. The relationship between pumping power and relative intensity of emissions was discussed. From the dependence, it is known that the emissions centered at 540 and 650 nm are both attributed to two-photon process.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61265004 and 51272097)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20125314120018)
文摘Transparent Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals are prepared. Under excitation of a 980-nm laser diode (LD), compared with the glass before heat treatment, the Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics can emit intense blue, green and red up-conversion luminescence and Stark- split peaks; X-ray diffraction (XRD) and transmission electron microscope (TEM) results show that BaF2 nanocrystals with an average diameter of 20 nm are precipitated from the glass matrix. Stark splitting of the up-conversion luminescence peaks in the glass ceramics indicates that Tm^3+, Er^3+ and (or) Yb^3+ ions are incorporated into the BaF2 nanocrystals. The up-conversion luminescence intensities of Tm^3+, Er^3+ and the splitting degree of luminescence peaks in the glass ceramics increase significantly with the increase of heat treat temperature and heat treat time extension. In addition, the possible energy transfer process between rare earth ions and the up-conversion luminescence mechanism are also proposed.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11004092) and the Scientific Research Fund of Education Department of Liaoning Province, China (Grant No. 2009A417).
文摘yb3+/Dy3+ co-doped A1203 nanopowders have been prepared by the non-aqueous sol-gel method and their up- conversion photoluminescence spectra are measured under excitation by a 980-nm semiconductor laser. The results show that there are comparatively abundant spectra of up-conversion emissions centered at 378, 408, 527 and 543, and 663 nm, corresponding to 4C9/2→ 6H13/2, 4C9/2→ 6Hll/2, 4115/2 → 6H13/2, and 4F9/2 →6Hll/2 transitions of Dy3+, respectively. Two-photon and three-photon processes are involved in ultraviolet, violet, green, and red up-conversion emissions. The energy transition between Yb3+ and Dy3+ is discussed.
基金Supported by the National Natural Science Foundation of China (10732100)the Natural Science Foundation of Heilongjiang Province (B200903)
文摘The IR-to-visible upconversion fluorescent crystals, Yb:Ho:LiN-bO3, with a constant Ho^3+ concentration (0.1 mol%) and different doping concentrations of Yb^3+ (0.5, 1.5, 2.0, 2.5, 3.0 tool%) are synthesized by Czochralski method in air atmosphere. X-ray diffraction shows that the obtained crystal is a single phase of LiNbO3 and the rare-earth ions occupied the Li^+ or Nb^5+ sites instead of the interstitial sites. Under 980 nm excitation, green and red emission bands due to the Ho^3+ (^5S2, ^5F4)/^5I8 and Ho^3+ ^5F5/^5I8 energy transitions are observed in these samples, respectively. Power dependence studies on these samples with different Yb^3+ dopant concentrations indicate that the red and green emissions are based on a two-photon process. The intensities of the red and green upconversion fluorescence increase with Yb3+ ions of 0-2.0 mol% because of an increased Yb^3+ sensitization, but decrease at higher concentrations owing to the back-energy transfer between the Yb^3+ and Ho^3+ ions.
基金Funded by the National Natural Science Foundation of China (No. 50772045)the Society Development Foundation of Yunnan Province (No. 2007E036M)
文摘Oxyfluoride glasses were developed with composition 60GeO 2 ·10AlF 3 ·25BaF 2 ·(1.95-x)GdF 3 · 3YbF 3 ·0.05TmF 3 ·xErF 3 (x=0.02,0.05,0.08,0.11,0.14,0.17)in mole percent.Intense blue(476 nm),green(524 and 546 nm)and red(658 nm)emissions which identified from the 1G 4 →3H 6 transition of Tm3+and the(2H 11/2 ,4S 3/2 )→4I 15/2 ,4F 9/2 →4I 15/2 transitions of Er3+,respectively,were simultaneously observed under 980 nm excitation at room temperature.The results show that multicolor luminescence including white light can be adjustably tuned by changing doping concentrations of Er3+ion or the excitation power.In addition,the energy transfer processes among Tm3+,Er3+and Yb3+ions,and up-conversion mechanisms are discussed.