The Eu^3+ activated Lu2MoO6 phosphors were synthesized by high-temperature solid-state reaction method. The X-ray diffraction (XRD), excitation spectra, emission spectra and decay lifetime of the phosphors were me...The Eu^3+ activated Lu2MoO6 phosphors were synthesized by high-temperature solid-state reaction method. The X-ray diffraction (XRD), excitation spectra, emission spectra and decay lifetime of the phosphors were measured to characterize the structure and luminescent properties. The XRD results show that all the prepared phosphors can be assigned to the monoclinic structure. The experimental results indicate efficient absorption of near ultraviolet light from the Mo^6+O^2- group followed by intensive emission in the visible spectral range. The optimal content of Eu3+ is 10% (mole fraction). The critical distance Rc and energy transfer mechanism were also discussed in detail. This red emitting material may be applied as a promising red phosphor for the near ultraviolet excited white light emitting diodes.展开更多
A Eu^3+-doped CaCO3 phosphor with red emission was prepared by microwave synthesis. The scanning electron microscopy (SEM) image and laser particle size analysis show that the CaCO3:Eu^3+ particles are needle-lik...A Eu^3+-doped CaCO3 phosphor with red emission was prepared by microwave synthesis. The scanning electron microscopy (SEM) image and laser particle size analysis show that the CaCO3:Eu^3+ particles are needle-like in the length range of 5.0-10.0 μm. The results of X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), and Raman spectroscopy indicate that pure aragonite CaCO3:Eu^3+ is prepared using microwave irradiation and the Eu^3+ ion as a luminescence center inhabits the site of Ca^2+. The photoluminescence excitation (PLE) spectrum shows that the strong broad band at around 270 nm and weak sharp lines in 300-550 nm are assigned to the charge transfer band of Eu^3+-O^2- and intra-configurational 4f-4f transitions of Eu^3+, respectively. The photoluminescence (PL) spectrum implies that the red luminescence can be attributed to the transitions from the ^5D0 excited level to the ^7FJ (J = 0, 1, 2, 3, 4) levels of Eu^3+ ions with the mainly electric dipole transition ^5D0 → ^7F2 (614 and 620 nm), and the Eu^3+ ions prefer to occupy the low symmetric site in the crystal lattice.展开更多
The new phosphor calcium magnesium chlorosilicate, codoped with Eu^2+ and Dy^3+, was synthesized with the help of the high temperature solid state reaction in reducing atmosphere. The excitation and emission spectra...The new phosphor calcium magnesium chlorosilicate, codoped with Eu^2+ and Dy^3+, was synthesized with the help of the high temperature solid state reaction in reducing atmosphere. The excitation and emission spectra were very similar to that of Ca8Mg(SiO4)4Cl2 :Eu^2+, and the Dy^3+ concentration influenced the emission intensity of this phosphor. The intensity of Eu^2+ and Dy^3+ codoped CMSC was stronger than that of Eu^2+ singly doped CMSC. The emission spectrum of the Dy^3+ ion overlapped the absorption band of the Eu^2+ ion, indicating that an energy transfer from Dy^3+ to Eu^2+ took place in CMSC:Eu^2+, Dy^3+ phosphor. The mechanism of the energy transfer from Dy^3+ tO Eu^2+, in this phosphor, might be resonant energy transfer.展开更多
SrZnO2 : Eu^3 + , Li^+ phosphor powder by long wavelength UV excitation was synthesized by conventional solid-state reaction method. XRD and PL were employed to characterize their properties. The resuits show that ...SrZnO2 : Eu^3 + , Li^+ phosphor powder by long wavelength UV excitation was synthesized by conventional solid-state reaction method. XRD and PL were employed to characterize their properties. The resuits show that Eu^3+ ions preferentially occupy Sr^2+ asymmetry cationic sites, thus emitting 612 nm red light originated from ^5D0 to ^7F2 transition. The luminescent intensity can be greatly enhanced with incorporation of Li^+ ions. The excitation efficiency in range of 350 - 400 nm also increases greatly due to incorporating Li ^+ ions. SrZnO2 : Eu^3 + , Li^+ is a promising redemitting phosphor by long wavelength UV excitation.展开更多
Sr2Al2SiO7:Ce^3+, Tb^3+ white emitting phosphors were fabricated using the sol-gel method. X-Ray Powder Diffraction (XRD) analysis confirmed the formation of Sr2Al2SiO7:Ce^3+, Tb^3+. Scanning Electron Microsco...Sr2Al2SiO7:Ce^3+, Tb^3+ white emitting phosphors were fabricated using the sol-gel method. X-Ray Powder Diffraction (XRD) analysis confirmed the formation of Sr2Al2SiO7:Ce^3+, Tb^3+. Scanning Electron Microscopy (SEM) observation indicated that the microstructure of the phosphor consisted of regular fine grains with an average size of about 0.5-1 μm. Luminescence properties were analyzed by measuring the photoluminescence spectra. The Ce^3+, Tb^3+-codoped Sr2Al2SiO7 phosphors showed four main emission peaks: one at 414 nm for Ce^3+ and three at 482, 543, and 588 nm for Tb^3+. The emission spectra of the samples with different doping concentrations showed that the Tb^3+ emission was dominant because of the persistent energy transfer from Ce^3+. The decay characteristic was better than that prepared by the solid-state process in the comparable condition. The codoped phosphor displayed long persistent white phosphorescence.展开更多
Eu^3+-doped Gd2Mo3O9 was prepared by solid-state reaction method using Na2CO3 as flux and characterized by powder X-ray diffractometry. According to X-ray diffraction, this material belonged to a tetragonal system wi...Eu^3+-doped Gd2Mo3O9 was prepared by solid-state reaction method using Na2CO3 as flux and characterized by powder X-ray diffractometry. According to X-ray diffraction, this material belonged to a tetragonal system with space group I41/α. The effects of flux content and sintering temperature on the luminescent properties were investigated with the emission and excitation spectra. The results showed that flux content and sintering temperature had effects on the luminescent properties, the optimized flux content and the best temperature was 3 % and 800 ℃ respectively. The excitation and emission spectra also showed that this phosphor could be effectively excited by C-T band (280 nm), ultraviolet light 395 nm and blue light 465 nm. The wavelengths at 395 and 465 nm were nicely fitting in with the widely applied output wavelengths of ultraviolet or blue LED chips. Integrated emission intensity of Gd2Mo3O9 : Eu was twice higher than that of Y2O2S : Eu^3 + under 395 nm excitation. The Eu^3+ doped Gd2Mo309 phosphor may be a better candidate in solid-state lighting applications.展开更多
The luminescent properties of Eu^3+doped Ca2SiO4 red phosphors synthesized by the flux fusion reaction method were investigated. It was found that the excitation spectrum included two regions: the weak excitation ba...The luminescent properties of Eu^3+doped Ca2SiO4 red phosphors synthesized by the flux fusion reaction method were investigated. It was found that the excitation spectrum included two regions: the weak excitation band below 325 nm and strong narrow peaks above 325 nm. The main peak of the excitation band was located at 400 nm. The peaks located at 290 nm were assigned to the combination of the charge transfer transition of O-Eu, peaks above 325 nm (325, 385, 400, 470, 511, and 539 nm) were assigned to the f-f transitions of Eu^3+. The emission spectrum was dominated by the red peak located at 612 nm due to the electric dipole transition of ^5D0-^7F2. In addition, the effects of the Eu^3+ content and charge compensators of Li^+, Na^+, K^+, and Cl^- ions on the emission intensity were investigated. The experiment results suggested that the strongest emission was obtained when the concentration of the Eu^3+ ions was 0.3 mol^-1, and Li^+ ions gave the best improvement to enhance the emission intensity. Ca2SiO4:Eu^3+, Li^+ was thus suitable for low-cost trichromatic white light emitting diodes (WLED) based on UV InGaN chip.展开更多
YAG: Ce^3 + phosphor particles were prepared using polyacrylamide gel method. The structure evolution of powders during annealing process was followed by X-ray diffraction determination. It is found that some interm...YAG: Ce^3 + phosphor particles were prepared using polyacrylamide gel method. The structure evolution of powders during annealing process was followed by X-ray diffraction determination. It is found that some intermediate phases, including θ-Al2O3, YAM and YAP, are formed when calcining polyacrylamide gel, however, the pure YAG phase can be formed directly when calcining polyacrylamide gel with α-Al2O3 as seed crystal. These facts show that the existence of α- Al2O3 seed crystal can block the formation of θ-Al2O3, YAM and YAP, and accelerate its reaction with Y2O3 to form YAG phase directly at lower temperature. The emission peak of prepared YAG : Ce^3 + phosphor is wide with maximum at 550 nm and the exitation band has two peaks, the major one is around at 460 nm, which matches the blue emission of GaN LED and is suitable for the assemble of white LED. Some fluxes can enhance the photoluminescence intensity of phosphor particles, that can be attributed both to the improvement of crystallization processes of YAG and to the stabilization of trivalence cerium ion in YAG:Ce^3 +.展开更多
基金Project(11404047)supported by the National Natural Science Foundation of ChinaProjects(CSTC2015jcyj A50005,CSTC2014JCYJA50034)supported by the Natural Science Foundation Project of Chongqing,ChinaProject(KJ1500412,KJ1500409)supported by Scientific and Technological Research Program of Chongqing Municipal Education Commission,China
文摘The Eu^3+ activated Lu2MoO6 phosphors were synthesized by high-temperature solid-state reaction method. The X-ray diffraction (XRD), excitation spectra, emission spectra and decay lifetime of the phosphors were measured to characterize the structure and luminescent properties. The XRD results show that all the prepared phosphors can be assigned to the monoclinic structure. The experimental results indicate efficient absorption of near ultraviolet light from the Mo^6+O^2- group followed by intensive emission in the visible spectral range. The optimal content of Eu3+ is 10% (mole fraction). The critical distance Rc and energy transfer mechanism were also discussed in detail. This red emitting material may be applied as a promising red phosphor for the near ultraviolet excited white light emitting diodes.
基金supported by Guizhou Provincial Science and Technology Foundation,China(No.[2019]1229)the National Natural Science Foundation of China(Nos.21361007,51776046)。
文摘通过高温固相技术合成Ho^(3+)和Yb^(3+)共掺杂La_(7)P_(3)O_(18)上转换荧光粉。XRD结果表明,合成样品是空间群为P21/n的单斜结构的La_(7)P_(3)O_(18)晶体和少量La PO4晶体的混合物。紫外可见漫反射光谱结果证实La_(7)P_(3)O_(18)晶体是一种光学带隙为4.10 e V的间接半导体。经980 nm激光激发,Ho^(3+)和Yb^(3+)共掺杂La_(7)P_(3)O_(18)荧光粉发射出Ho^(3+)离子特征的蓝色(486 nm)、绿色(550 nm)和红色(661 nm)特征峰,其中,661 nm处发射峰在样品上转换发光光谱中占主导地位。此外,随着Ho^(3+)和Yb^(3+)掺杂量的增加,样品上转换发光强度先增大后减小。当Ho^(3+)和Yb^(3+)的掺杂量分别达到1%和10%(摩尔分数)时,样品出现浓度猝灭现象,其机制为电四极-电四极相互作用。泵浦功率和发光强度关系表明,样品的绿光和红光发射均源于双光子吸收过程激发。Ho^(3+)和Yb^(3+)共掺杂La_(7)P_(3)O_(18)晶体上转换发光色坐标位于橙红色区域。
基金supported by the National Natural Science Foundation of China (No. 10476024) the Science and Technology Bureau of Sichuan Province, China (No. 2006J13-059)
文摘A Eu^3+-doped CaCO3 phosphor with red emission was prepared by microwave synthesis. The scanning electron microscopy (SEM) image and laser particle size analysis show that the CaCO3:Eu^3+ particles are needle-like in the length range of 5.0-10.0 μm. The results of X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), and Raman spectroscopy indicate that pure aragonite CaCO3:Eu^3+ is prepared using microwave irradiation and the Eu^3+ ion as a luminescence center inhabits the site of Ca^2+. The photoluminescence excitation (PLE) spectrum shows that the strong broad band at around 270 nm and weak sharp lines in 300-550 nm are assigned to the charge transfer band of Eu^3+-O^2- and intra-configurational 4f-4f transitions of Eu^3+, respectively. The photoluminescence (PL) spectrum implies that the red luminescence can be attributed to the transitions from the ^5D0 excited level to the ^7FJ (J = 0, 1, 2, 3, 4) levels of Eu^3+ ions with the mainly electric dipole transition ^5D0 → ^7F2 (614 and 620 nm), and the Eu^3+ ions prefer to occupy the low symmetric site in the crystal lattice.
基金Project supported by the National Natural Science Foundation of China (50372086)MOST of China (2006CB601104)
文摘The new phosphor calcium magnesium chlorosilicate, codoped with Eu^2+ and Dy^3+, was synthesized with the help of the high temperature solid state reaction in reducing atmosphere. The excitation and emission spectra were very similar to that of Ca8Mg(SiO4)4Cl2 :Eu^2+, and the Dy^3+ concentration influenced the emission intensity of this phosphor. The intensity of Eu^2+ and Dy^3+ codoped CMSC was stronger than that of Eu^2+ singly doped CMSC. The emission spectrum of the Dy^3+ ion overlapped the absorption band of the Eu^2+ ion, indicating that an energy transfer from Dy^3+ to Eu^2+ took place in CMSC:Eu^2+, Dy^3+ phosphor. The mechanism of the energy transfer from Dy^3+ tO Eu^2+, in this phosphor, might be resonant energy transfer.
文摘SrZnO2 : Eu^3 + , Li^+ phosphor powder by long wavelength UV excitation was synthesized by conventional solid-state reaction method. XRD and PL were employed to characterize their properties. The resuits show that Eu^3+ ions preferentially occupy Sr^2+ asymmetry cationic sites, thus emitting 612 nm red light originated from ^5D0 to ^7F2 transition. The luminescent intensity can be greatly enhanced with incorporation of Li^+ ions. The excitation efficiency in range of 350 - 400 nm also increases greatly due to incorporating Li ^+ ions. SrZnO2 : Eu^3 + , Li^+ is a promising redemitting phosphor by long wavelength UV excitation.
基金the National Natural Science Foundation of China (20376009)the Liaoning Natural Science Foundation (20032129) of China
文摘Sr2Al2SiO7:Ce^3+, Tb^3+ white emitting phosphors were fabricated using the sol-gel method. X-Ray Powder Diffraction (XRD) analysis confirmed the formation of Sr2Al2SiO7:Ce^3+, Tb^3+. Scanning Electron Microscopy (SEM) observation indicated that the microstructure of the phosphor consisted of regular fine grains with an average size of about 0.5-1 μm. Luminescence properties were analyzed by measuring the photoluminescence spectra. The Ce^3+, Tb^3+-codoped Sr2Al2SiO7 phosphors showed four main emission peaks: one at 414 nm for Ce^3+ and three at 482, 543, and 588 nm for Tb^3+. The emission spectra of the samples with different doping concentrations showed that the Tb^3+ emission was dominant because of the persistent energy transfer from Ce^3+. The decay characteristic was better than that prepared by the solid-state process in the comparable condition. The codoped phosphor displayed long persistent white phosphorescence.
基金Project supported by the National Natural Science Foundation of China (50572102, 50502031) Natural Science Foundation of Jilin Province (1999514, 2003051422) Outstanding Young People Foundation of Jilin Province (20040113)
文摘Eu^3+-doped Gd2Mo3O9 was prepared by solid-state reaction method using Na2CO3 as flux and characterized by powder X-ray diffractometry. According to X-ray diffraction, this material belonged to a tetragonal system with space group I41/α. The effects of flux content and sintering temperature on the luminescent properties were investigated with the emission and excitation spectra. The results showed that flux content and sintering temperature had effects on the luminescent properties, the optimized flux content and the best temperature was 3 % and 800 ℃ respectively. The excitation and emission spectra also showed that this phosphor could be effectively excited by C-T band (280 nm), ultraviolet light 395 nm and blue light 465 nm. The wavelengths at 395 and 465 nm were nicely fitting in with the widely applied output wavelengths of ultraviolet or blue LED chips. Integrated emission intensity of Gd2Mo3O9 : Eu was twice higher than that of Y2O2S : Eu^3 + under 395 nm excitation. The Eu^3+ doped Gd2Mo309 phosphor may be a better candidate in solid-state lighting applications.
基金supported by Jiangxi Provincial Department of Education (GJJ08344)
文摘The luminescent properties of Eu^3+doped Ca2SiO4 red phosphors synthesized by the flux fusion reaction method were investigated. It was found that the excitation spectrum included two regions: the weak excitation band below 325 nm and strong narrow peaks above 325 nm. The main peak of the excitation band was located at 400 nm. The peaks located at 290 nm were assigned to the combination of the charge transfer transition of O-Eu, peaks above 325 nm (325, 385, 400, 470, 511, and 539 nm) were assigned to the f-f transitions of Eu^3+. The emission spectrum was dominated by the red peak located at 612 nm due to the electric dipole transition of ^5D0-^7F2. In addition, the effects of the Eu^3+ content and charge compensators of Li^+, Na^+, K^+, and Cl^- ions on the emission intensity were investigated. The experiment results suggested that the strongest emission was obtained when the concentration of the Eu^3+ ions was 0.3 mol^-1, and Li^+ ions gave the best improvement to enhance the emission intensity. Ca2SiO4:Eu^3+, Li^+ was thus suitable for low-cost trichromatic white light emitting diodes (WLED) based on UV InGaN chip.
文摘YAG: Ce^3 + phosphor particles were prepared using polyacrylamide gel method. The structure evolution of powders during annealing process was followed by X-ray diffraction determination. It is found that some intermediate phases, including θ-Al2O3, YAM and YAP, are formed when calcining polyacrylamide gel, however, the pure YAG phase can be formed directly when calcining polyacrylamide gel with α-Al2O3 as seed crystal. These facts show that the existence of α- Al2O3 seed crystal can block the formation of θ-Al2O3, YAM and YAP, and accelerate its reaction with Y2O3 to form YAG phase directly at lower temperature. The emission peak of prepared YAG : Ce^3 + phosphor is wide with maximum at 550 nm and the exitation band has two peaks, the major one is around at 460 nm, which matches the blue emission of GaN LED and is suitable for the assemble of white LED. Some fluxes can enhance the photoluminescence intensity of phosphor particles, that can be attributed both to the improvement of crystallization processes of YAG and to the stabilization of trivalence cerium ion in YAG:Ce^3 +.