Li1.5Ga0.5Ti1.5(PO4)3(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explore the effects...Li1.5Ga0.5Ti1.5(PO4)3(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explore the effects of sintering temperature and holding time on relative density,phase composition,microstructure,bulk conductivity,and total conductivity.In the impedance test under frequency of 1-10~6 Hz,the bulk conductivity of the samples increased with increasing sintering temperature,and the total conductivity first increased and then decreased.SEM results showed that the average grain size in the ceramics was controlled by the sintering temperature,which increased from(0.54±0.01)μm to(1.21±0.01)μm when the temperature changed from 750 to 950°C.The relative density of the ceramics increased and then decreased with increasing temperature as the porosity increased.The holding time had little effect on the grain size growth or sample density,but an extended holding time resulted in crack generation that served to reduce the conductivity of the solid electrolyte.展开更多
The Journal of Magnesium and Alloys(JMA)is actively dedicated to addressing crucial issues related to energy con-servation,emission reduction,energy crises,and sustainable development[1].Magnesium,recognized as the li...The Journal of Magnesium and Alloys(JMA)is actively dedicated to addressing crucial issues related to energy con-servation,emission reduction,energy crises,and sustainable development[1].Magnesium,recognized as the lightest com-mercial structural metal and a promising energy storage ma-terial,holds immense potential in contributing to strategic objectives such as achieving“carbon neutrality”and the“emission peak”,thus mitigating the ongoing energy cri-sis[2].JMA diligently reports on various research fronts,including magnesium-based structural materials,magnesium batteries,magnesium-based hydrogen storage materials,and magnesium-based superconducting super magnets[3].展开更多
Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_...Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_(3) content,and have not been widely utilized in the synthesis of HA.This study aims to synthesize and analyze HA derived from crab shells using the hydrothermal method with different durations of holding time.This study utilized precipitated calcium carbonate(PCC)derived from crab shells.With a hydrothermal reactor set at 160℃ and varying holding times of 14(HA_14),16(HA_16),and 18(HA_18)h,a PCC and(NH4)2HPO4 mixture was used to synthesize HA.The synthesis results were analyzed using scanning electron microscopy(SEM),fourier transform infrared spectroscopy(FTIR),and X-ray diffraction(XRD)tests.This study has accomplished the synthesis of HA from crab shells.Nonetheless,the final product of synthesis still contained CaCO_(3) as an impurity.The prolonged hydrothermal holding time of 14 to 18 h resulted in a reduction of impurities while increasing the percentage of crystal weight and crystallite size of HA.Specimen CH_18 is the best-quality product generated in this study.This specimen produced HA with the highest percentage of crystal weight and crystallite size compared to the other specimens.Furthermore,specimen CH_18 exhibited the lowest concentration of impurities.The Ca/P ratio in this specimen was also the closest to 1.67.The Ca/P ratio,crystallite size,and crystal weight percentage of this specimen are 1.54,19.06 nm,and 99.1%,respectively.展开更多
LIKE the theme in other films she has directed Huang Shuqin’s, "I Have A Father," is filled with humanitarianism.With a fresh and lively tone, the story reveals the scroll of relationships in a modern Chine...LIKE the theme in other films she has directed Huang Shuqin’s, "I Have A Father," is filled with humanitarianism.With a fresh and lively tone, the story reveals the scroll of relationships in a modern Chinese city. The film has been declared excellent by some government departments, indicating it has a positive social effect. "I Have A Father,"is a modem film of comprehension. A tragic story packaged as comedy,it reveals itself on two levels, It is at once a children’s film and a film of ethics. The film tells of an展开更多
To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mat...To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mathematics models of aluminum holding furnace in the premixed combustion processing were established based on mass conservation,moment conservation,momentum conservation,energy conservation and chemistry species conservation.Computational results agree well with the test data of the typical condition.The maximum combustion temperature is 1 850 K.The average temperature of the molten aluminum is 1 158 K,and the maximum temperature difference is about 240 K.The average temperature increases 0.3 ℃ while the temperature of combustion air increases 1 ℃.The optimal excess air ratio is 1.25-1.30.展开更多
The high-quality seersucker series products, produced by the Jiangsu Dyed-Yarn Weaving Group Holdings Co. Ltd. are selling well on the international textiles market. The predecessor of the company was the Tongzhou Cit...The high-quality seersucker series products, produced by the Jiangsu Dyed-Yarn Weaving Group Holdings Co. Ltd. are selling well on the international textiles market. The predecessor of the company was the Tongzhou City Shuangmeng Cloth Weaving Mill, a small factory run by the township. Its Flying Wing brand yarn-dyed seersucker enjoys a展开更多
The Inner Mongolia Baotou Double Ring Chemicals (Group) Holdings Co. Ltd is a key enterprise producing calcium carbide assigned by the Ministry of Chemical Industry. Its products include calcium carbide, dissolved ace...The Inner Mongolia Baotou Double Ring Chemicals (Group) Holdings Co. Ltd is a key enterprise producing calcium carbide assigned by the Ministry of Chemical Industry. Its products include calcium carbide, dissolved acetylene and electrode paste. Since 1980 it has exported calcium carbide products to Japan, Australia, the Republic of Korea, Pakistan, India, southeast Asia and other countries and regions, with annual exports of 15,000-20,000 tons. It has become the largest enterprise in China exporting calcium carbide. The Double Ring brand calcium carbide won a gold prize from展开更多
An announcement was made on November 4, 1994, on making the China National Nonferrous Industry Corporation one of the three State holding corporations for experiment at a national conference on experimenting on modern...An announcement was made on November 4, 1994, on making the China National Nonferrous Industry Corporation one of the three State holding corporations for experiment at a national conference on experimenting on modern enterprises sponsored by the State Council. The appearance of State holding corporations is the result of China’s deepening economic restructuring and an important and integral part of deepening enterprise reform.展开更多
After series of reforms including the introduction of the shareholding system, re-organization of capital, expansion of business fields and scale through cooperation or merge with other enterprises,Zhongda Group has n...After series of reforms including the introduction of the shareholding system, re-organization of capital, expansion of business fields and scale through cooperation or merge with other enterprises,Zhongda Group has now become a comprehensive enterprise group integrating import and export, foreign and domestic trade, ?and industry and serviceS.In the past five years stan-展开更多
“Welcome to the heart of power,I the heart of energy,the source of energy.Thank you,the days and nights I worked here have kept my heart in my thoughts…”Shangwaya Reuben,an employee of Power Construction Corporatio...“Welcome to the heart of power,I the heart of energy,the source of energy.Thank you,the days and nights I worked here have kept my heart in my thoughts…”Shangwaya Reuben,an employee of Power Construction Corporation of China(POWERCHINA)Zambian Branch,sang.Reuben has been working for the company for nearly 10 yeai s.Although he is not very eloquent,he has put his respect for Chinese people and love for POWERCHINA into the song,which not only expresses the feeling of gratitude of millions of Zambian people,but also vividly highlights the valuable friendship between the two peoples.展开更多
Screw connection is a type most commonly applied to timber structures.As important commercial tree species in China,Masson pine and Chinese fir have the potential to prepare wood structures.In this study,the effects o...Screw connection is a type most commonly applied to timber structures.As important commercial tree species in China,Masson pine and Chinese fir have the potential to prepare wood structures.In this study,the effects of the diameter of the self-tapping screw and the guiding bores on the nail holding performance on different sections of Masson pine and Chinese fir dimension lumbers were mainly explored.The results showed that:(1)The nail holding strength of the tangential section was the maximum,followed by that of the radial section,and that of the cross section was the minimum.(2)The nail holding strength of Masson pine was higher than that of Chinese fir.(3)The nail holding strength grew with the increase in the diameter of self-tapping screws,but a large diameter would lead to plastic cracking of the timber,thus further affecting the nail holding strength.Masson pine and Chinese fir reached the maximum nail holding strength when the diameter of self-tapping screws was 3.5 mm.(4)Under a large diameter of screws,prefabricated guiding bores could mitigate timber cracking and improve its nail holding strength.(5)Prefabricated guiding bores were more necessary for the screw connection of Masson pine.The results obtained could provide a scientific basis for the screw connection design of Masson pine and Chinese fir timber structures.展开更多
The inauguration of the secretariat of ISO/TC 341,Heat supply net work,was held in Beijing on April 11.China Urban Construction Design&Research Institute,a subordinate enterprise of China Construction Technology C...The inauguration of the secretariat of ISO/TC 341,Heat supply net work,was held in Beijing on April 11.China Urban Construction Design&Research Institute,a subordinate enterprise of China Construction Technology Consulting Co.,Ltd.(CCTC),holds the secret ariat,which is China’s first ISO secretariat for standardization in the field of housing and urban-rural development.展开更多
Development of therapeutics for brain diseases has remained challenging,in particular due to the difficulty of passing the blood-brain barrier.As a result,the current arsenal of therapeutics targeting the brain is lim...Development of therapeutics for brain diseases has remained challenging,in particular due to the difficulty of passing the blood-brain barrier.As a result,the current arsenal of therapeutics targeting the brain is limited to small,lipid-soluble drugs and there is a lack of options for treating neuroblastomas,Alzheimer’s disease,and many other devastating pathologies.Despite the advances in strategies for crossing the blood-brain barrier such as the use of nanoparticles(Hersh et al.,2022;Duan et al.,2023),such delivery systems have not yet reached clinical practice.Therefore,novel platforms for the transport of therapeutics across the blood-brain barrier remain highly desired.This specifically holds for large molecules such as monoclonal antibodies and recombinant proteins,as well as nucleotide-based therapeutics and cell therapies.Research efforts in this field are increasing exponentially,with thousands of publications in the last few years.展开更多
Understanding the doping evolution from a Mott insulator to a superconductor probably holds the key to resolve the mystery of unconventional superconductivity in copper oxides. To elucidate the evolution of the electr...Understanding the doping evolution from a Mott insulator to a superconductor probably holds the key to resolve the mystery of unconventional superconductivity in copper oxides. To elucidate the evolution of the electronic state starting from the Mott insulator, we dose the surface of the parent phase Ca_(2)CuO_(2)Cl_(2) by depositing Rb atoms, which are supposed to donate electrons to the CuO_(2) planes underneath. We successfully achieved the Rb sub-monolayer thin films in forming the square lattice. The scanning tunneling microscopy or spectroscopy measurements on the surface show that the Fermi energy is pinned within the Mott gap but close to the edge of the charge transfer band. In addition, an in-gap state appears at the bottom of the upper Hubbard band(UHB), and the Mott gap will be significantly diminished. Combined with the Cl defect and the Rb adatom/cluster results, the electron doping is likely to increase the spectra weight of the UHB for the double occupancy. Our results provide information to understand the electron doping to the parent compound of cuprates.展开更多
The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization...The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.展开更多
Quantum gates are crucial for quantum computation and quantum information processing. However, their effectiveness is often hindered by systematic errors and decoherence. Therefore, achieving resilient quantum gates t...Quantum gates are crucial for quantum computation and quantum information processing. However, their effectiveness is often hindered by systematic errors and decoherence. Therefore, achieving resilient quantum gates to these factors is of great significance. We present a method to construct nonadiabatic holonomic single-and two-qubit gates in a Rydberg ground-state-blockade regime. Our approach utilizes a far-off-resonant technique for the single-qubit gate and a modified Rydberg antiblockade for the two-qubit gate. The reduction of the population of single-and two-excitation Rydberg states and the nonadiabatic holonomic process during the construction of the gates ensure robustness to decoherence and systematic errors, respectively. Numerical results demonstrate the fidelity and robustness of our scheme. The proposed scheme holds promise for future applications in quantum computation and quantum information processing tasks.展开更多
Exploration of exotic phenomena in magnetic topological systems is at the frontier of condensed matter physics,holding a significant promise for applications in topological spintronics.However,complex magnetic structu...Exploration of exotic phenomena in magnetic topological systems is at the frontier of condensed matter physics,holding a significant promise for applications in topological spintronics.However,complex magnetic structures carrying nontrivial topological properties hinder its progresses.Here,we investigate the pressure effect on the novel topological kagome magnets GdV_(6)Sn_(6) and TbV_(6)Sn_(6) to dig out the interplay between magnetic Gd/Tb layers and nonmagnetic V-based kagome sublattice.The pressure-tuned magnetic transition temperature Tm in both the compounds exhibit a turning point at the critical pressure P_(c),accompanied with a sign reversal in anomalous Hall effect(AHE).The separation of intrinsic and extrinsic contributions using the Tian-Ye-Jin scaling model suggests that the intrinsic mechanism originating from the electronic Berry curvature holds the priority in the competition with extrinsic mechanism in AHE.The above-mentioned findings can be attributed to the combined effect of pressure-tuned band topology and magnetic interaction in segregated layers.Our results provide a practical route to design and manipulate the intrinsic AHE in magnetic topological materials.展开更多
Rare-earth-free Mn-based binary alloy L1_(0)-MnAl with bulk perpendicular magnetic anisotropy(PMA) holds promise for high-performance magnetic random access memory(MRAM) devices driven by spin-orbit torque(SOT). Howev...Rare-earth-free Mn-based binary alloy L1_(0)-MnAl with bulk perpendicular magnetic anisotropy(PMA) holds promise for high-performance magnetic random access memory(MRAM) devices driven by spin-orbit torque(SOT). However, the lattice-mismatch issue makes it challenging to place conventional spin current sources, such as heavy metals, between L1_(0)-MnAl layers and substrates. In this work, we propose a solution by using the B2-CoGa alloy as the spin current source. The lattice-matching enables high-quality epitaxial growth of 2-nm-thick L1_(0)-MnAl on B2-CoGa, and the L1_(0)-MnAl exhibits a large PMA constant of 1.04 × 10^(6)J/m^(3). Subsequently, the considerable spin Hall effect in B2-CoGa enables the achievement of SOT-induced deterministic magnetization switching. Moreover, we quantitatively determine the SOT efficiency in the bilayer. Furthermore, we design an L1_(0)-MnAl/B2-CoGa/Co_(2)MnGa structure to achieve field-free magnetic switching. Our results provide valuable insights for achieving high-performance SOT-MRAM devices based on L1_(0)-MnAl alloy.展开更多
基金funded by the National Natural Science Foundation of China(Nos.51672310,51272288,51972344)。
文摘Li1.5Ga0.5Ti1.5(PO4)3(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explore the effects of sintering temperature and holding time on relative density,phase composition,microstructure,bulk conductivity,and total conductivity.In the impedance test under frequency of 1-10~6 Hz,the bulk conductivity of the samples increased with increasing sintering temperature,and the total conductivity first increased and then decreased.SEM results showed that the average grain size in the ceramics was controlled by the sintering temperature,which increased from(0.54±0.01)μm to(1.21±0.01)μm when the temperature changed from 750 to 950°C.The relative density of the ceramics increased and then decreased with increasing temperature as the porosity increased.The holding time had little effect on the grain size growth or sample density,but an extended holding time resulted in crack generation that served to reduce the conductivity of the solid electrolyte.
文摘The Journal of Magnesium and Alloys(JMA)is actively dedicated to addressing crucial issues related to energy con-servation,emission reduction,energy crises,and sustainable development[1].Magnesium,recognized as the lightest com-mercial structural metal and a promising energy storage ma-terial,holds immense potential in contributing to strategic objectives such as achieving“carbon neutrality”and the“emission peak”,thus mitigating the ongoing energy cri-sis[2].JMA diligently reports on various research fronts,including magnesium-based structural materials,magnesium batteries,magnesium-based hydrogen storage materials,and magnesium-based superconducting super magnets[3].
基金funded the World Class Research(WCR)Grant of Universitas Diponegoro with Contract Number 357-36/UN7.D2/PP/IV/2024.
文摘Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_(3) content,and have not been widely utilized in the synthesis of HA.This study aims to synthesize and analyze HA derived from crab shells using the hydrothermal method with different durations of holding time.This study utilized precipitated calcium carbonate(PCC)derived from crab shells.With a hydrothermal reactor set at 160℃ and varying holding times of 14(HA_14),16(HA_16),and 18(HA_18)h,a PCC and(NH4)2HPO4 mixture was used to synthesize HA.The synthesis results were analyzed using scanning electron microscopy(SEM),fourier transform infrared spectroscopy(FTIR),and X-ray diffraction(XRD)tests.This study has accomplished the synthesis of HA from crab shells.Nonetheless,the final product of synthesis still contained CaCO_(3) as an impurity.The prolonged hydrothermal holding time of 14 to 18 h resulted in a reduction of impurities while increasing the percentage of crystal weight and crystallite size of HA.Specimen CH_18 is the best-quality product generated in this study.This specimen produced HA with the highest percentage of crystal weight and crystallite size compared to the other specimens.Furthermore,specimen CH_18 exhibited the lowest concentration of impurities.The Ca/P ratio in this specimen was also the closest to 1.67.The Ca/P ratio,crystallite size,and crystal weight percentage of this specimen are 1.54,19.06 nm,and 99.1%,respectively.
文摘LIKE the theme in other films she has directed Huang Shuqin’s, "I Have A Father," is filled with humanitarianism.With a fresh and lively tone, the story reveals the scroll of relationships in a modern Chinese city. The film has been declared excellent by some government departments, indicating it has a positive social effect. "I Have A Father,"is a modem film of comprehension. A tragic story packaged as comedy,it reveals itself on two levels, It is at once a children’s film and a film of ethics. The film tells of an
基金Project(2006AA03Z523) supported by the National High-Tech Research and Development Program of ChinaProject(08C26224302178) supported by the Innovation Foundation of Central South University,China
文摘To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mathematics models of aluminum holding furnace in the premixed combustion processing were established based on mass conservation,moment conservation,momentum conservation,energy conservation and chemistry species conservation.Computational results agree well with the test data of the typical condition.The maximum combustion temperature is 1 850 K.The average temperature of the molten aluminum is 1 158 K,and the maximum temperature difference is about 240 K.The average temperature increases 0.3 ℃ while the temperature of combustion air increases 1 ℃.The optimal excess air ratio is 1.25-1.30.
文摘The high-quality seersucker series products, produced by the Jiangsu Dyed-Yarn Weaving Group Holdings Co. Ltd. are selling well on the international textiles market. The predecessor of the company was the Tongzhou City Shuangmeng Cloth Weaving Mill, a small factory run by the township. Its Flying Wing brand yarn-dyed seersucker enjoys a
文摘The Inner Mongolia Baotou Double Ring Chemicals (Group) Holdings Co. Ltd is a key enterprise producing calcium carbide assigned by the Ministry of Chemical Industry. Its products include calcium carbide, dissolved acetylene and electrode paste. Since 1980 it has exported calcium carbide products to Japan, Australia, the Republic of Korea, Pakistan, India, southeast Asia and other countries and regions, with annual exports of 15,000-20,000 tons. It has become the largest enterprise in China exporting calcium carbide. The Double Ring brand calcium carbide won a gold prize from
文摘An announcement was made on November 4, 1994, on making the China National Nonferrous Industry Corporation one of the three State holding corporations for experiment at a national conference on experimenting on modern enterprises sponsored by the State Council. The appearance of State holding corporations is the result of China’s deepening economic restructuring and an important and integral part of deepening enterprise reform.
文摘After series of reforms including the introduction of the shareholding system, re-organization of capital, expansion of business fields and scale through cooperation or merge with other enterprises,Zhongda Group has now become a comprehensive enterprise group integrating import and export, foreign and domestic trade, ?and industry and serviceS.In the past five years stan-
文摘“Welcome to the heart of power,I the heart of energy,the source of energy.Thank you,the days and nights I worked here have kept my heart in my thoughts…”Shangwaya Reuben,an employee of Power Construction Corporation of China(POWERCHINA)Zambian Branch,sang.Reuben has been working for the company for nearly 10 yeai s.Although he is not very eloquent,he has put his respect for Chinese people and love for POWERCHINA into the song,which not only expresses the feeling of gratitude of millions of Zambian people,but also vividly highlights the valuable friendship between the two peoples.
基金funded by the National Natural Science Foundation of China (32160348)Forestry Science and Technology Research Project of Guizhou Forestry Bureau (J[2022]21 and[2020]C14)+1 种基金Department Program of Guizhou Province ([2020]1Y128)the Cultivation Project of Guizhou University of China ([2019]37).
文摘Screw connection is a type most commonly applied to timber structures.As important commercial tree species in China,Masson pine and Chinese fir have the potential to prepare wood structures.In this study,the effects of the diameter of the self-tapping screw and the guiding bores on the nail holding performance on different sections of Masson pine and Chinese fir dimension lumbers were mainly explored.The results showed that:(1)The nail holding strength of the tangential section was the maximum,followed by that of the radial section,and that of the cross section was the minimum.(2)The nail holding strength of Masson pine was higher than that of Chinese fir.(3)The nail holding strength grew with the increase in the diameter of self-tapping screws,but a large diameter would lead to plastic cracking of the timber,thus further affecting the nail holding strength.Masson pine and Chinese fir reached the maximum nail holding strength when the diameter of self-tapping screws was 3.5 mm.(4)Under a large diameter of screws,prefabricated guiding bores could mitigate timber cracking and improve its nail holding strength.(5)Prefabricated guiding bores were more necessary for the screw connection of Masson pine.The results obtained could provide a scientific basis for the screw connection design of Masson pine and Chinese fir timber structures.
文摘The inauguration of the secretariat of ISO/TC 341,Heat supply net work,was held in Beijing on April 11.China Urban Construction Design&Research Institute,a subordinate enterprise of China Construction Technology Consulting Co.,Ltd.(CCTC),holds the secret ariat,which is China’s first ISO secretariat for standardization in the field of housing and urban-rural development.
基金supported by Amsterdam Neuroscience(project number NDIS-2019-03,to AEW and EVB).
文摘Development of therapeutics for brain diseases has remained challenging,in particular due to the difficulty of passing the blood-brain barrier.As a result,the current arsenal of therapeutics targeting the brain is limited to small,lipid-soluble drugs and there is a lack of options for treating neuroblastomas,Alzheimer’s disease,and many other devastating pathologies.Despite the advances in strategies for crossing the blood-brain barrier such as the use of nanoparticles(Hersh et al.,2022;Duan et al.,2023),such delivery systems have not yet reached clinical practice.Therefore,novel platforms for the transport of therapeutics across the blood-brain barrier remain highly desired.This specifically holds for large molecules such as monoclonal antibodies and recombinant proteins,as well as nucleotide-based therapeutics and cell therapies.Research efforts in this field are increasing exponentially,with thousands of publications in the last few years.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11974171, 12061131001, and 11927809)the National Key R&D Program of China (Grant No. 2022YFA1403201)。
文摘Understanding the doping evolution from a Mott insulator to a superconductor probably holds the key to resolve the mystery of unconventional superconductivity in copper oxides. To elucidate the evolution of the electronic state starting from the Mott insulator, we dose the surface of the parent phase Ca_(2)CuO_(2)Cl_(2) by depositing Rb atoms, which are supposed to donate electrons to the CuO_(2) planes underneath. We successfully achieved the Rb sub-monolayer thin films in forming the square lattice. The scanning tunneling microscopy or spectroscopy measurements on the surface show that the Fermi energy is pinned within the Mott gap but close to the edge of the charge transfer band. In addition, an in-gap state appears at the bottom of the upper Hubbard band(UHB), and the Mott gap will be significantly diminished. Combined with the Cl defect and the Rb adatom/cluster results, the electron doping is likely to increase the spectra weight of the UHB for the double occupancy. Our results provide information to understand the electron doping to the parent compound of cuprates.
基金supported by the National Natural Science Foundation of China(32070120,81991500,81991501)the Natural Science Foundation of Sichuan Province(2023NSFSC0558).
文摘The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
基金supported by the National Natural Science Foundation of China (Grant No. 12274376)。
文摘Quantum gates are crucial for quantum computation and quantum information processing. However, their effectiveness is often hindered by systematic errors and decoherence. Therefore, achieving resilient quantum gates to these factors is of great significance. We present a method to construct nonadiabatic holonomic single-and two-qubit gates in a Rydberg ground-state-blockade regime. Our approach utilizes a far-off-resonant technique for the single-qubit gate and a modified Rydberg antiblockade for the two-qubit gate. The reduction of the population of single-and two-excitation Rydberg states and the nonadiabatic holonomic process during the construction of the gates ensure robustness to decoherence and systematic errors, respectively. Numerical results demonstrate the fidelity and robustness of our scheme. The proposed scheme holds promise for future applications in quantum computation and quantum information processing tasks.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1402203)the Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)+5 种基金supported by the National Key R&D Program of China(Grants No.2023YFA1406100)the Double First-Class Initiative Fund of ShanghaiTech Universitysupported by the National Natural Science Foundation of China(Grant No.52272265)supported by the National Science Basic Research Plan in the Shaanxi Province of China(Grant No.2024JC-YBQN-0390)supported by the open project from State Key Laboratory of Surface Physics and Department of Physics,Fudan University(Grant No.KF2022-13)supported by the National Natural Science Foundation of China(Grant No.52302010)。
文摘Exploration of exotic phenomena in magnetic topological systems is at the frontier of condensed matter physics,holding a significant promise for applications in topological spintronics.However,complex magnetic structures carrying nontrivial topological properties hinder its progresses.Here,we investigate the pressure effect on the novel topological kagome magnets GdV_(6)Sn_(6) and TbV_(6)Sn_(6) to dig out the interplay between magnetic Gd/Tb layers and nonmagnetic V-based kagome sublattice.The pressure-tuned magnetic transition temperature Tm in both the compounds exhibit a turning point at the critical pressure P_(c),accompanied with a sign reversal in anomalous Hall effect(AHE).The separation of intrinsic and extrinsic contributions using the Tian-Ye-Jin scaling model suggests that the intrinsic mechanism originating from the electronic Berry curvature holds the priority in the competition with extrinsic mechanism in AHE.The above-mentioned findings can be attributed to the combined effect of pressure-tuned band topology and magnetic interaction in segregated layers.Our results provide a practical route to design and manipulate the intrinsic AHE in magnetic topological materials.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB44000000)。
文摘Rare-earth-free Mn-based binary alloy L1_(0)-MnAl with bulk perpendicular magnetic anisotropy(PMA) holds promise for high-performance magnetic random access memory(MRAM) devices driven by spin-orbit torque(SOT). However, the lattice-mismatch issue makes it challenging to place conventional spin current sources, such as heavy metals, between L1_(0)-MnAl layers and substrates. In this work, we propose a solution by using the B2-CoGa alloy as the spin current source. The lattice-matching enables high-quality epitaxial growth of 2-nm-thick L1_(0)-MnAl on B2-CoGa, and the L1_(0)-MnAl exhibits a large PMA constant of 1.04 × 10^(6)J/m^(3). Subsequently, the considerable spin Hall effect in B2-CoGa enables the achievement of SOT-induced deterministic magnetization switching. Moreover, we quantitatively determine the SOT efficiency in the bilayer. Furthermore, we design an L1_(0)-MnAl/B2-CoGa/Co_(2)MnGa structure to achieve field-free magnetic switching. Our results provide valuable insights for achieving high-performance SOT-MRAM devices based on L1_(0)-MnAl alloy.