Model of hole-pairs in electrical transport along ab plane in cuprate superconductors has already been proposed. It has been found to be in the shape of 3dx2–y2 orbital of an electron in an atom. This time, model of ...Model of hole-pairs in electrical transport along ab plane in cuprate superconductors has already been proposed. It has been found to be in the shape of 3dx2–y2 orbital of an electron in an atom. This time, model of hole-pairs in transport along c-axis in cuprate superconductors is proposed. In ab-plane, hole-pairs are formed along CuO2 plane;one hole-pair covering 9 - 10 two dimensional CuO2 unit cells in 3dx2–y2 configuration. In the investigation of c-axis hole-pairs, cuprate superconductors have been sub-divided into three categories depending on the number of CuO2 planes/formula unit. There is a little different treatment for finding out the order parameter in each category. Coherence lengths along ab-planes are of the order of a few tens of Angstroms, whereas along c-axis, they are less than even their a-, b-lattice constants. In cuprates with 2 or 3 CuO2 planes, the order parameter is of 3dz2–x2 type in zx-plane with lobes along both the axes much constrained. For cuprates with a single CuO2 layer, the order parameter is of 3dx2–y2 type, but its dimensions are less than a-, b-lattice constants.展开更多
A model of preformed hole-pairs in cuprate superconductors has been proposed based on some experimental results i.e., 1) electron paramagnetic resonance spectra of quenched superconductors which show very frequently t...A model of preformed hole-pairs in cuprate superconductors has been proposed based on some experimental results i.e., 1) electron paramagnetic resonance spectra of quenched superconductors which show very frequently the fragment (CuO)4 broken off from the CuO2 layer in the structure, 2) 41 meV peak observed in neutron diffraction and nuclear magnetic resonance spectra of superconductors, 3) Heisenberg exchange interaction leading to ferromagnetism observed in CuO which is an essential ingredient of all superconductors and some generally accepted conclusions i.e., a) that the order parameter in superconductors has dx2–y2 symmetr and b) coherence length is of the order of 15 - 20 Angstrom. Heisenberg exchange interaction between two (CuO4) plaquettes each containing a lattice hole binds the two holes which are the charge carriers in the cuprate superconductors. It is not very clear whether the hole-pair is in the triplet or singlet state, but the triplet state is supported by the experimental observation of ferromagnetism in the parent material CuO. The proposed hole-pair singlet is different from Zhang-Rice singlet.展开更多
We have earlier proposed models of preformed hole pairs based on the results of our electron paramagnetic resonance experiments. A hole doped in a cuprate superconductor causes ferromagnetic alignment of the spins of ...We have earlier proposed models of preformed hole pairs based on the results of our electron paramagnetic resonance experiments. A hole doped in a cuprate superconductor causes ferromagnetic alignment of the spins of the holes of 4 Cu2+ ions of the plaquette (CuO)4 in which it enters. Spin alignments undergo oscillations from vertically upward to vertically downward of the CuO2 plane. Vertical projections of spins go on changing when they pass through different plaquettes going to zero when they pass through the CuO2 plane. Ferromagnetic alignments of spins produce magnetic fields on the plane proportional to their vertical projections. When two holes travelling in CuO2 plane come across each other at a certain distance between them, they are attracted towards each other by Heisenberg exchange interaction and their path is decided by the magnetic field produced due to spin alignments. Their path is similar to 3dx2 - y2 atomic orbital. Y-123 has been chosen as an example. Due to plethora of evidence of antiferromagnetic fluctuations in cuprates, hole-pair formation has been tried in Y-123 assuming antiferromagnetic fluctuations in it. It has been found that hole-pair formation in spite of AFM fluctuations can be explained on the same lines as done earlier. Hole-pair formation was tried in Tl-2201 to test whether the same rules apply in cuprates with very high coherence lengths. Coherence length in Tl-2201 = 52 Å, whereas in Y-123 = 15 20 Å in CuO2 plane. It has been reported that in Tl-2201 the CuO2 plane is very flat and smooth. From this it was concluded that high coherence length is the result of the smoothness of the plane. Further it was concluded that the smoothness of the CuO2 plane depends upon the nature of the near neighbors of the CuO2 plane. Near neighbors of Y-123 and Tl-2201 have been compared.展开更多
文摘Model of hole-pairs in electrical transport along ab plane in cuprate superconductors has already been proposed. It has been found to be in the shape of 3dx2–y2 orbital of an electron in an atom. This time, model of hole-pairs in transport along c-axis in cuprate superconductors is proposed. In ab-plane, hole-pairs are formed along CuO2 plane;one hole-pair covering 9 - 10 two dimensional CuO2 unit cells in 3dx2–y2 configuration. In the investigation of c-axis hole-pairs, cuprate superconductors have been sub-divided into three categories depending on the number of CuO2 planes/formula unit. There is a little different treatment for finding out the order parameter in each category. Coherence lengths along ab-planes are of the order of a few tens of Angstroms, whereas along c-axis, they are less than even their a-, b-lattice constants. In cuprates with 2 or 3 CuO2 planes, the order parameter is of 3dz2–x2 type in zx-plane with lobes along both the axes much constrained. For cuprates with a single CuO2 layer, the order parameter is of 3dx2–y2 type, but its dimensions are less than a-, b-lattice constants.
文摘A model of preformed hole-pairs in cuprate superconductors has been proposed based on some experimental results i.e., 1) electron paramagnetic resonance spectra of quenched superconductors which show very frequently the fragment (CuO)4 broken off from the CuO2 layer in the structure, 2) 41 meV peak observed in neutron diffraction and nuclear magnetic resonance spectra of superconductors, 3) Heisenberg exchange interaction leading to ferromagnetism observed in CuO which is an essential ingredient of all superconductors and some generally accepted conclusions i.e., a) that the order parameter in superconductors has dx2–y2 symmetr and b) coherence length is of the order of 15 - 20 Angstrom. Heisenberg exchange interaction between two (CuO4) plaquettes each containing a lattice hole binds the two holes which are the charge carriers in the cuprate superconductors. It is not very clear whether the hole-pair is in the triplet or singlet state, but the triplet state is supported by the experimental observation of ferromagnetism in the parent material CuO. The proposed hole-pair singlet is different from Zhang-Rice singlet.
文摘We have earlier proposed models of preformed hole pairs based on the results of our electron paramagnetic resonance experiments. A hole doped in a cuprate superconductor causes ferromagnetic alignment of the spins of the holes of 4 Cu2+ ions of the plaquette (CuO)4 in which it enters. Spin alignments undergo oscillations from vertically upward to vertically downward of the CuO2 plane. Vertical projections of spins go on changing when they pass through different plaquettes going to zero when they pass through the CuO2 plane. Ferromagnetic alignments of spins produce magnetic fields on the plane proportional to their vertical projections. When two holes travelling in CuO2 plane come across each other at a certain distance between them, they are attracted towards each other by Heisenberg exchange interaction and their path is decided by the magnetic field produced due to spin alignments. Their path is similar to 3dx2 - y2 atomic orbital. Y-123 has been chosen as an example. Due to plethora of evidence of antiferromagnetic fluctuations in cuprates, hole-pair formation has been tried in Y-123 assuming antiferromagnetic fluctuations in it. It has been found that hole-pair formation in spite of AFM fluctuations can be explained on the same lines as done earlier. Hole-pair formation was tried in Tl-2201 to test whether the same rules apply in cuprates with very high coherence lengths. Coherence length in Tl-2201 = 52 Å, whereas in Y-123 = 15 20 Å in CuO2 plane. It has been reported that in Tl-2201 the CuO2 plane is very flat and smooth. From this it was concluded that high coherence length is the result of the smoothness of the plane. Further it was concluded that the smoothness of the CuO2 plane depends upon the nature of the near neighbors of the CuO2 plane. Near neighbors of Y-123 and Tl-2201 have been compared.