Based on the X-13-ARIMA-SEATS model, aiming at the problem of mobile holidays in China’s economic data, this paper introduces a new method of seasonal adjustment based on the AICC criterion to objectively select the ...Based on the X-13-ARIMA-SEATS model, aiming at the problem of mobile holidays in China’s economic data, this paper introduces a new method of seasonal adjustment based on the AICC criterion to objectively select the parameters of dummy variables of mobile holidays. Taking the current total value of China’s import and export as an example, we expound</span><span style="font-family:""> </span><span style="font-family:Verdana;">a new method for seasonal adjustment of mobile holidays such as Spring Festival, Dragon Boat Festival and Mid-Autumn Festival. Finally, the model is used to predict the total value of China’s import and export in and out of the sample. The prediction results show that the relative error of the out of sample data is less than 5%. The new method has advantages in the processing of macroeconomic data.展开更多
Organic aerosol(OA)is a major component of atmospheric particulate matter(PM)with complex composition and formation processes influenced by various factors.Emission reduction can alter both precursors and oxidants whi...Organic aerosol(OA)is a major component of atmospheric particulate matter(PM)with complex composition and formation processes influenced by various factors.Emission reduction can alter both precursors and oxidants which further affects secondary OA formation.Here we provide an observational analysis of secondary OA(SOA)variation properties in Yangtze River Delta(YRD)of eastern China in response to large scale of emission reduction during Chinese New Year(CNY)holidays from 2015 to 2020,and the COVID-19 pandemic period from January to March,2020.We found a 17%increase of SOA proportion during the COVID lockdown.The relative enrichment of SOA is also found during multi-year CNY holidays with dramatic reduction of anthropogenic emissions.Two types of oxygenated OA(OOA)influenced by mixed emissions and SOA formation were found to be the dominant components during the lockdown in YRD region.Our results highlight that these emission-reduction-induced changes in organic aerosol need to be considered in the future to optimize air pollution control measures.展开更多
文摘Based on the X-13-ARIMA-SEATS model, aiming at the problem of mobile holidays in China’s economic data, this paper introduces a new method of seasonal adjustment based on the AICC criterion to objectively select the parameters of dummy variables of mobile holidays. Taking the current total value of China’s import and export as an example, we expound</span><span style="font-family:""> </span><span style="font-family:Verdana;">a new method for seasonal adjustment of mobile holidays such as Spring Festival, Dragon Boat Festival and Mid-Autumn Festival. Finally, the model is used to predict the total value of China’s import and export in and out of the sample. The prediction results show that the relative error of the out of sample data is less than 5%. The new method has advantages in the processing of macroeconomic data.
基金supported by National Natural Science Foundation of China(No.42005082).
文摘Organic aerosol(OA)is a major component of atmospheric particulate matter(PM)with complex composition and formation processes influenced by various factors.Emission reduction can alter both precursors and oxidants which further affects secondary OA formation.Here we provide an observational analysis of secondary OA(SOA)variation properties in Yangtze River Delta(YRD)of eastern China in response to large scale of emission reduction during Chinese New Year(CNY)holidays from 2015 to 2020,and the COVID-19 pandemic period from January to March,2020.We found a 17%increase of SOA proportion during the COVID lockdown.The relative enrichment of SOA is also found during multi-year CNY holidays with dramatic reduction of anthropogenic emissions.Two types of oxygenated OA(OOA)influenced by mixed emissions and SOA formation were found to be the dominant components during the lockdown in YRD region.Our results highlight that these emission-reduction-induced changes in organic aerosol need to be considered in the future to optimize air pollution control measures.