The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flamm...The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flammability and ignition.Motivated by this,this study proposed a machining process,named the ultraprecision diamond surface texturing process,to machine the micro/nanostructures on magnesium alloy surfaces.Experimental results showed the various microstructures and sawtooth-shaped nanostructures were successfully generated on the AZ31B magnesium alloy surfaces,demonstrating the effectiveness of this proposed machining process.Furthermore,sawtooth-shaped nanostructures had the function of inducing the optical effect and generating different colors on workpiece surfaces.The colorful letter and colorful flower image were clearly viewed on magnesium alloy surfaces.The corresponding cutting force,chip morphology,and tool wear were systematically investigated to understand the machining mechanism of micro/nanostructures on magnesium alloy surfaces.The proposed machining process can further improve the performances of the magnesium alloy and extend its functions to other fields,such as optics.展开更多
A strong interface coupling is of vital importance to develop metal oxide/carbon nanocomposite anodes for next-generation lithium ion batteries.Herein,a rational N-doped carb on riveting strategy is designed to boost ...A strong interface coupling is of vital importance to develop metal oxide/carbon nanocomposite anodes for next-generation lithium ion batteries.Herein,a rational N-doped carb on riveting strategy is designed to boost the lithium storage performance of Fe3O4/N-doped carbon tubular structures.Poly pyrrole(PPy)has been used as the precursor for N-doped carbon.N-doped carbon-riveted Fe3O4/N-doped carbon(N-C@Fe3O4@N-C)nanocomposites were obtained by pyrolysis of PPy-coated FeOOH@PPy nanotubes in Ar atmosphere.When tested as an anode for LIBs,the N-C@Fe3O4@N-C displays a high reversible discharge capacity of 675.8 mA h g-1 after 100 cycles at a current density of 100 mA g-1 and very good rate capability(470 mA h g_1 at 2 A g-1),which significantly surpasses the performance of Fe3O4@N-C.TEM analysis reveals that after battery cycling the FeOx particles detached from the carbon fibers for Fe3O4@N-C,while for N-C@Fe3O4@N-C the FeOx particles were still trapped in the carbon matrix,thus preserving good electrical contact.Consequently,the superior performance of N-C@Fe3C)4@N-C is attributed to the synergistic effect between Fe3O4 and N-doped carbon combined with the unique structure properties of the nanocomposites.The strategy reported in this work is expected to be applicable for designing other electrode materials for LIBs.展开更多
Micro/nanostructured components play an important role in micro-optics and optical engineering,tribology and surface engineering,and biological and biomedical engineering,among other fields.Precision glass molding tec...Micro/nanostructured components play an important role in micro-optics and optical engineering,tribology and surface engineering,and biological and biomedical engineering,among other fields.Precision glass molding technology is the most efficient method of manufacturing micro/nanostructured glass components,the premise of which is meld manufacturing with complementary micro/nanostructures.Numerous mold manufacturing methods have been developed to fabricate extremely small and high-quality micro/nanostructures to satisfy the demands of functional micro/nanostructured glass components for various applications.Moreover,the service performance of the mold should also be carefully considered.This paper reviews a variety of technologies for manufacturing micro/nanostructured molds.The authors begin with an introduction of the extreme requirements of mold materials.The following section provides a detailed survey of the existing micro/nanostructured mold manufacturing techniques and their corresponding mold materials,including nonmechanical and mechanical methods.This paper concludes with a detailed discussion of the authors recent research on nickel-phosphorus(Ni-P)mold manufacturing and its service performance.展开更多
PANI copolymer micro/nanostructures with different surface wettability were obtained from the chemical oxidation copolymerization of aniline(Ani)with 2-ethyl aniline(EA)at diverse[EA]/[Ani+EA]molar ratios,by employing...PANI copolymer micro/nanostructures with different surface wettability were obtained from the chemical oxidation copolymerization of aniline(Ani)with 2-ethyl aniline(EA)at diverse[EA]/[Ani+EA]molar ratios,by employing ammonium persulfate as an oxidant.The results revealed that the poly(aniline-co-2-ethyl aniline)(PANI-EA)copolymer micro/nanostructures exhibited satisfactory anticorrosion performance for carbon steel,and the corrosion protection efficiency increased with the increase of water repellent property.Poly(2-ethyl aniline)(PEA)showed the largest contact angle(CA=145°)and show the best corrosion protection for the carbon steel(h=87.29%).It is found that the superior anticorrosion property of PEA is attributed to its high hydrophobicity,low conductivity and low porosity.展开更多
Homogeneous hollow Cu20 octahedral nanostructures have been fabricated by a facile onepot reduction reaction at roomtemperature. The microscope analysis revealed that the edges of as-prepared hollow structures were ar...Homogeneous hollow Cu20 octahedral nanostructures have been fabricated by a facile onepot reduction reaction at roomtemperature. The microscope analysis revealed that the edges of as-prepared hollow structures were around 200 nm with a wall thickness of about 20 nm. To investigate the influence factors and formation mechanism of the hollow octahedral structure, samples subjected to different reaction conditions were studies. The results showed that the morphology and structures of Cu20 particles were greatly affected by the concentration of pH value of the reaction environment and the reaction time. Ostwald ripening process is orooosed to exolain the growth mechanism of the hollow octahedral nanostructures.展开更多
This paper presents a probe-based force-controlled nanoindentation method to fabricate ordered micro/nanostructures.Both the experimental and finite element simulation approaches are employed to investigate the influe...This paper presents a probe-based force-controlled nanoindentation method to fabricate ordered micro/nanostructures.Both the experimental and finite element simulation approaches are employed to investigate the influence of the interval between the adjacent indentations and the rotation angle of the probe on the formed micro/nanostructures.The non-contacting part between indenter and the sample material and the height of the material pile-up are two competing factors to determine the depth relationship between the adjacent indentations.For the one array indentations,nanostructures with good depth consistency and periodicity can be formed after the depth of the indentation becoming stable,and the variation of the rotation angle results in the large difference between the morphology of the formed nanostructures at the bottom of the one array indentation.In addition,for the indentation arrays,the nanostructures with good consistency and periodicity of the shape and depth can be generated with the spacing greater than 1μm.Finally,Raman tests are also carried out based on the obtained ordered micro/nanostructures with Rhodamine probe molecule.The indentation arrays with a smaller spacing lead to better the enhancement effect of the substrate,which has the potential applications in the fields of biological or chemical molecular detection.展开更多
Nanomaterials are known to exhibit a number of interesting physical and chemical properties for various applications,including energy conversion and storage,nanoscale electronics,sensors and actuators,photonics device...Nanomaterials are known to exhibit a number of interesting physical and chemical properties for various applications,including energy conversion and storage,nanoscale electronics,sensors and actuators,photonics devices and even for biomedical purposes.In the past decade,laser as a synthetic technique and laser as a microfabrication technique facilitated nanomaterial preparation and nanostructure construction,including the laser processing-induced carbon and non-carbon nanomaterials,hierarchical structure construction,patterning,heteroatom doping,sputtering etching,and so on.The laser-induced nanomaterials and nanostructures have extended broad applications in electronic devices,such as light–thermal conversion,batteries,supercapacitors,sensor devices,actuators and electrocatalytic electrodes.Here,the recent developments in the laser synthesis of carbon-based and non-carbon-based nanomaterials are comprehensively summarized.An extensive overview on laser-enabled electronic devices for various applications is depicted.With the rapid progress made in the research on nanomaterial preparation through laser synthesis and laser microfabrication technologies,laser synthesis and microfabrication toward energy conversion and storage will undergo fast development.展开更多
To improve the weak corrosion resistance of silicon steel to acid solution and alkaline solution with high temperature,a stable hierarchical micro/nanostructure superhydrophobic surface with myriad irregular micro-sca...To improve the weak corrosion resistance of silicon steel to acid solution and alkaline solution with high temperature,a stable hierarchical micro/nanostructure superhydrophobic surface with myriad irregular micro-scale hump and sheet-like nanostructure was successfully prepared on silicon steel by a simple,efficient and facile operation in large-area laser marking treatment.The morphology,composition,wettability of the as-prepared surface were studied.The superhydrophobic performance of the surface was investigated as well.Additionally,the corrosion resistance of the superhydrophobic surface to acidic solutions at room temperature and alkaline solutions at high temperature (80 ℃) was carefully explored.The corrosion resistance mechanism was clarified.Moreover,considering the practical application of the surface in the future,the hardness of the hierarchical micro/nanostructure superhydrophobic surface was studied.The experimental results indicate that the hierarchical micro/nanostructure surface with texture spacing of 100 μm treated at laser scanning speed of 100 mms/ presents superior superhydrophobicity after decreasing surface energy.The contact angle can be as high as 156.6°.Additionally,the superhydrophobic surface provide superior and stable anticorrosive protection for silicon steel in various corrosive environments.More importantly,the prepared structure of the surface shows high hardness,which ensures that the surface of the superhydrophobic surface cannot be destroyed easily.The surface is able to maintain great superhydrophobic performance when it suffers from slight impacting and abrasion.展开更多
In this work, a simple method was carried out to successfully fabricate superoleophilic and superhydrophobic N-dodecyltrimethoxysilane@tungsten trioxide coated copper mesh. The as-fabricated copper mesh displayed prom...In this work, a simple method was carried out to successfully fabricate superoleophilic and superhydrophobic N-dodecyltrimethoxysilane@tungsten trioxide coated copper mesh. The as-fabricated copper mesh displayed prominent superoleophilicity and superhydrophobicity with a huge water contact angle about 154.39° and oil contact angle near 0° Moreover, the coated copper mesh showed high separation efficiency approximately 99.3%, and huge water flux about 9962.3 L·h^-1·m-2, which could be used to separate various organic solvents/ water mixtures. Furthermore, the coated copper mesh showed favorable stability that the separation efficiency remained above 90% after 10 separation cycles. Benefiting from the excellent photocatalytic degradation ability of tungsten trioxide, the coated copper mesh possessed the self-cleaning capacity. Therefore, the mesh contaminated with lubricating oil could regain superhydrophobic property, and this property of self-cleaning permitted that the fabricated copper mesh could be repeatedly used for oil and water separation.展开更多
Commercial Cu and Al current collectors for lithium-ion batteries(LIBs)possess high electrical conductivity,suitable chemical and electrochemical stability.However,the relatively flat surface of traditional current co...Commercial Cu and Al current collectors for lithium-ion batteries(LIBs)possess high electrical conductivity,suitable chemical and electrochemical stability.However,the relatively flat surface of traditional current collectors causes weak bonding strength and poor electrochemical contact between current collectors and electrode materials,resulting in potential detachment of active materials and rapid capacity degradation during extended cycling.Here,we report an ultrafast femtosecond laser strategy to manufacture hierarchical micro/nanostructures on commercial Al and Cu foils as current collectors for high-performance LIBs.The hierarchically micro/nanostructured current collectors(HMNCCs)with high surface area and roughness offer strong adhesion to active materials,fast electronic delivery of entire electrodes,significantly improving reversible capacities and cyclic stability of HMNCCs based LIBs.Consequently,LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM523)cathode with Al HMNCC generated a high reversible capacity after 200 cycles(25%higher than that of cathode with Al CC).Besides,graphite anode with Cu HMNCC also maintained prominent reversible capacity even after 600 cycles.Moreover,the full cell assembled by graphite anode with Cu HMNCC and NCM523 cathode with Al HMNCC achieved high reversible capacity and remarkable cycling stability under industrial-grade mass loading.This study provides promising candidate for achieving high-performance LIBs current collectors.展开更多
manufacturing of biomimetic micro/nanostructures due to its specific advantages including high precision,simplicity,and compatibility for diverse materials in comparison with other methods(e.g.ion etching,sol-gel proc...manufacturing of biomimetic micro/nanostructures due to its specific advantages including high precision,simplicity,and compatibility for diverse materials in comparison with other methods(e.g.ion etching,sol-gel process,chemical vapor deposition,template method,and self-assembly).These biomimetic micro/nanostructured surfaces are of significant interest for academic and industrial research due to their wide range of potential applications,including self-cleaning surfaces,oil-water separation,and fog collection.This review presents the inherent relationship between natural organisms,fabrication methods,micro/nanostructures and their potential applications.Thereafter,we throw a list of current fabrication strategies so as to highlight the advantages of FLDW in manufacturing bioinspired microstructured surfaces.Subsequently,we summarize a variety of typical bioinspired designs(e.g.lotus leaf,pitcher plant,rice leaf,butterfly wings,etc)for diverse multifunctional micro/nanostructures through extreme femtosecond laser processing technology.Based on the principle of interfacial chemistry and geometrical optics,we discuss the potential applications of these functional micro/nanostructures and assess the underlying challenges and opportunities in the extreme fabrication of bioinspired micro/nanostructures by FLDW.This review concludes with a follow up and an outlook of femtosecond laser processing in biomimetic domains.展开更多
In this study,we demonstrate a technique termed underwater persistent bubble assisted femtosecond laser ablation in liquids(UPB-fs-LAL)that can greatly expand the boundaries of surface micro/nanostructuring through la...In this study,we demonstrate a technique termed underwater persistent bubble assisted femtosecond laser ablation in liquids(UPB-fs-LAL)that can greatly expand the boundaries of surface micro/nanostructuring through laser ablation because of its capability to create concentric circular macrostructures with millimeter-scale tails on silicon substrates.Long-tailed macrostructures are composed of layered fan-shaped(central angles of 45°–141°)hierarchical micro/nanostructures,which are produced by fan-shaped beams refracted at the mobile bubble interface(.50°light tilt,referred to as the vertical incident direction)during UPB-fs-LAL line-by-line scanning.Marangoni flow generated during UPB-fs-LAL induces bubble movements.Fast scanning(e.g.1mms−1)allows a long bubble movement(as long as 2mm),while slow scanning(e.g.0.1mms−1)prevents bubble movements.When persistent bubbles grow considerably(e.g.hundreds of microns in diameter)due to incubation effects,they become sticky and can cause both gas-phase and liquidphase laser ablation in the central and peripheral regions of the persistent bubbles.This generates low/high/ultrahigh spatial frequency laser-induced periodic surface structures(LSFLs/HSFLs/UHSFLs)with periods of 550–900,100–200,40–100 nm,which produce complex hierarchical surface structures.A period of 40 nm,less than 1/25th of the laser wavelength(1030 nm),is the finest laser-induced periodic surface structures(LIPSS)ever created on silicon.The NIR-MIR reflectance/transmittance of fan-shaped hierarchical structures obtained by UPB-fs-LAL at a small line interval(5μm versus 10μm)is extremely low,due to both their extremely high light trapping capacity and absorbance characteristics,which are results of the structures’additional layers and much finer HSFLs.In the absence of persistent bubbles,only grooves covered with HSFLs with periods larger than 100 nm are produced,illustrating the unique attenuation abilities of laser properties(e.g.repetition rate,energy,incident angle,etc)by persistent bubbles with different curvatures.This research represents a straightforward and cost-effective approach to diversifying the achievable hierarchical micro/nanostructures for a multitude of applications.展开更多
The research of superhydrophobic materials has attracted many researchers' attention due to its application value and prospects.In order to expand the serviceable range,people have investigated various superhydrophob...The research of superhydrophobic materials has attracted many researchers' attention due to its application value and prospects.In order to expand the serviceable range,people have investigated various superhydrophobic materials.The simple and easy preparation method has become the focus for superhydrophobic materials.In this paper,we present a program for preparing a rough surface on an aluminum foil,which possesses excellent hydrophobic properties after the treatment with low surface energy materials at high vacuum.The resulting contact angle is larger than 160° and the droplet cannot freeze on the surface above-10 ℃.Meanwhile,the modified aluminum foil with the thickness of less than 100 μm can be used as an ideal flexible applied material for superhydrophobicity/anti-icing.展开更多
The effects of parameters such as pressure,first anode radius,and the cavity diameter on the micro-hollow cathode sustained glow discharge are investigated by using a two-dimensional self-consistent fluid model in pur...The effects of parameters such as pressure,first anode radius,and the cavity diameter on the micro-hollow cathode sustained glow discharge are investigated by using a two-dimensional self-consistent fluid model in pure argon.The results indicate that the three parameters influence the discharge in the regions inside and outside of the cavity.Under a fixed voltage on each electrode,a larger volume of high density plasma can be produced in the region between the first and the second anodes by selecting the appropriate pressure,the higher first anode,and the appropriate cavity diameter.As the pressure increases,the electron density inside the hollow cathode,the high density plasma volume between the first anode and second anodes,and the radial electric field in the cathode cavity initially increase and subsequently decrease.As the cavity diameter increases,the high-density plasma volume between the first and second anodes initially increases and subsequently decreases;whereas the electron density inside the hollow cathode decreases.As the first anode radius increases,the electron density increases both inside and outside of the cavity.Moreover,the increase of the electron density is more obvious in the microcathode sustained region than in the micro cavity region.The results reveal that the discharge inside the cavity interacts with that outside the cavity.The strong hollow cathode effect and the high-density plasma inside the cavity favor the formation of a sustained discharge between the first anode and the second anodes.Results also show that the radial boundary conditions exert a considerably weaker influence on the discharge except for a little change in the region close to the radial boundary.展开更多
3D porous flower-like ZnO micro/nanostructure films grown on Ti substrates are synthesized via a very facile electrodeposition technique followed by heat treatment process. The ZnO architecture is assembled with ultra...3D porous flower-like ZnO micro/nanostructure films grown on Ti substrates are synthesized via a very facile electrodeposition technique followed by heat treatment process. The ZnO architecture is assembled with ultra thin sheets, which consist of numbers of nanoparticles and pores, and the size of the nanoparticles can be controlled by adjusting the electrodepo- sition time or calcination temperature. It is worth noting that this synthetic method can provide an effective route for other porous metal oxide nanostructure films. Moreover, the photocatalytic performance shows the porous ZnO is an ideal photocatalyst.展开更多
The extrusion of Al-Si alloy powders with different particle sizes allows manufacture of different products with unique microstructures and therefore with unique mechanical properties. The effects of powder size on th...The extrusion of Al-Si alloy powders with different particle sizes allows manufacture of different products with unique microstructures and therefore with unique mechanical properties. The effects of powder size on the extrusion behavior and process defect of Al-18%Si alloy were studied by means of microscopy (optical, scanning electron) and density determination. The main objective of the work is to demonstrate the influence of the powder material characteristics on final density and quality of bar. The results show that the bigger the powder particles, the better the performance of cold compacting. The surface of alloy bar extruded from big particles has good quality without cracking. While the smaller the powder particles, the higher the density and the better the microstructure and mechanical properties. For practice application, the mixed powders are better than single powder.展开更多
Fe–Fe2O3–MnO2–sucrose–epoxy resin and O2 as reaction system and feed gas,separately,were used to prepare micro-nano hollow multiphase ceramic microspheres containing MnFe2O4absorbent by self-reactive quenching met...Fe–Fe2O3–MnO2–sucrose–epoxy resin and O2 as reaction system and feed gas,separately,were used to prepare micro-nano hollow multiphase ceramic microspheres containing MnFe2O4absorbent by self-reactive quenching method which is integrated with flame jet,selfpropagating high-temperature synthesis(SHS),and rapidly solidification.The morphologies and phase compositions of hollow microspheres were studied by scanning electron microscope(SEM),transmission electron microscope(TEM),X-ray diffraction(XRD),and energy dispersive spectroscopy.The results show that the quenching products are regular spherical substantially with hollow structure,particle size is between few hundreds nanometers and 5 lm.Phase compositions are diphase of Fe3O4,Mn3O4,and MnFe2O4,and the spinel soft magnetic ferrite MnFe2O4 with microwave magnetic properties is in majority.Collisions with each other,burst as well as‘‘refinement’’of agglomerate powders in flame field may be the main reasons for the formation of micro-nano hollow multiphase ceramic microspheres containing MnFeOabsorbent.展开更多
The mechanism of micro-hollow cathode discharge at atmospheric pressure is investigated through simulations using two-dimensional fluid model combined with a transport model for metastable atoms.In the simulations,ele...The mechanism of micro-hollow cathode discharge at atmospheric pressure is investigated through simulations using two-dimensional fluid model combined with a transport model for metastable atoms.In the simulations,electric potential,electric field,particle density,and mean electron energy of the discharge are calculated.The results show that the two characteristic regions of the discharge,i.e.cathode drop and negative glow can be distinguished in the simulation.The cathode drop is characterized by strong electric field and high mean electron energy,while quasi-neutral plasma of high density and exists in the negative glow.The peak value of electron density can reach the order of 1017cm-3.The electron temperature varies from several eV to tens of eV.The influence of cathode dimension on the discharge characteristics is also investigated.展开更多
Aqueous zinc ion batteries(ZIBs) are attracting considerable attentions for practical energy storage because of their low cost and high safety.Nevertheless,the traditional manganese oxide cathode materials suffer from...Aqueous zinc ion batteries(ZIBs) are attracting considerable attentions for practical energy storage because of their low cost and high safety.Nevertheless,the traditional manganese oxide cathode materials suffer from the low intrinsic electronic conductivity,sluggish ions diffusion kinetics,and structural collapse,hindering their large-scale application.Herein,we successfully developed a latent amorphous Mn_(1.8)Fe_(1.2)O_(4) hollow nanocube(a-H-MnFeO) cathode material derived from Prussian blue analogue precursor.The amorphous nature endows the cathode with lower diffusion barrier and narrower band gap compared with crystalline counterpart,resulting in the superior Zn^(2+) ions and electrons transport kinetics.Hollow structure can furnish abundant surface sites and suppress the structural collapse during the repeated charge/discharge processes.By virtue of the multiple advantageous features,the a-H-MnFeO cathode exhibits exceptional electrochemical performance,in terms of high capacity,excellent rate capability,and prolonged cycle life.This strategy will pave the way for the structural design of emerging cathode materials.展开更多
基金supported by the Special Actions for Developing High-performance Manufacturing of Ministry of Industry and Information Technology(Grant No.:TC200H02J)the Research Grants Council of the Hong Kong Special Ad-ministrative Region,China(Project No.:PolyU 152125/18E)+1 种基金the National Natural Science Foundation of China(Project No.:U19A20104)the Research Committee of The Hong Kong Polytechnic University(Project Code G-RK2V).
文摘The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flammability and ignition.Motivated by this,this study proposed a machining process,named the ultraprecision diamond surface texturing process,to machine the micro/nanostructures on magnesium alloy surfaces.Experimental results showed the various microstructures and sawtooth-shaped nanostructures were successfully generated on the AZ31B magnesium alloy surfaces,demonstrating the effectiveness of this proposed machining process.Furthermore,sawtooth-shaped nanostructures had the function of inducing the optical effect and generating different colors on workpiece surfaces.The colorful letter and colorful flower image were clearly viewed on magnesium alloy surfaces.The corresponding cutting force,chip morphology,and tool wear were systematically investigated to understand the machining mechanism of micro/nanostructures on magnesium alloy surfaces.The proposed machining process can further improve the performances of the magnesium alloy and extend its functions to other fields,such as optics.
基金financially supported by the National Natural Science Foundation of China (Nos. 21601098 and 51602167)Shandong Provincial Science Foundation (ZR2016EMB07 and ZR2017JL021)+1 种基金Key Research and Development Program (2018GGX102033)Qingdao Applied Fundamental Research Project (16-5-1-92-jch and 17-1-1-81-jch)
文摘A strong interface coupling is of vital importance to develop metal oxide/carbon nanocomposite anodes for next-generation lithium ion batteries.Herein,a rational N-doped carb on riveting strategy is designed to boost the lithium storage performance of Fe3O4/N-doped carbon tubular structures.Poly pyrrole(PPy)has been used as the precursor for N-doped carbon.N-doped carbon-riveted Fe3O4/N-doped carbon(N-C@Fe3O4@N-C)nanocomposites were obtained by pyrolysis of PPy-coated FeOOH@PPy nanotubes in Ar atmosphere.When tested as an anode for LIBs,the N-C@Fe3O4@N-C displays a high reversible discharge capacity of 675.8 mA h g-1 after 100 cycles at a current density of 100 mA g-1 and very good rate capability(470 mA h g_1 at 2 A g-1),which significantly surpasses the performance of Fe3O4@N-C.TEM analysis reveals that after battery cycling the FeOx particles detached from the carbon fibers for Fe3O4@N-C,while for N-C@Fe3O4@N-C the FeOx particles were still trapped in the carbon matrix,thus preserving good electrical contact.Consequently,the superior performance of N-C@Fe3C)4@N-C is attributed to the synergistic effect between Fe3O4 and N-doped carbon combined with the unique structure properties of the nanocomposites.The strategy reported in this work is expected to be applicable for designing other electrode materials for LIBs.
基金This work was financially supported by National Natural Science Foundation of China(Nos.51775046&51875043&52005040)the China Postdoctoral Science Foundation(No.2019M660480)+1 种基金the Beijing Municipal Natural Sci-ence Foundation(JQ20014)The authors would also like to acknowledge support from the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Insti-tutions of China(No.151052).
文摘Micro/nanostructured components play an important role in micro-optics and optical engineering,tribology and surface engineering,and biological and biomedical engineering,among other fields.Precision glass molding technology is the most efficient method of manufacturing micro/nanostructured glass components,the premise of which is meld manufacturing with complementary micro/nanostructures.Numerous mold manufacturing methods have been developed to fabricate extremely small and high-quality micro/nanostructures to satisfy the demands of functional micro/nanostructured glass components for various applications.Moreover,the service performance of the mold should also be carefully considered.This paper reviews a variety of technologies for manufacturing micro/nanostructured molds.The authors begin with an introduction of the extreme requirements of mold materials.The following section provides a detailed survey of the existing micro/nanostructured mold manufacturing techniques and their corresponding mold materials,including nonmechanical and mechanical methods.This paper concludes with a detailed discussion of the authors recent research on nickel-phosphorus(Ni-P)mold manufacturing and its service performance.
基金financial supports of the National Natural Science Foundation of China (No. 41476059)the Natural Science Foundation of Hebei Province (No. E2018108011)
文摘PANI copolymer micro/nanostructures with different surface wettability were obtained from the chemical oxidation copolymerization of aniline(Ani)with 2-ethyl aniline(EA)at diverse[EA]/[Ani+EA]molar ratios,by employing ammonium persulfate as an oxidant.The results revealed that the poly(aniline-co-2-ethyl aniline)(PANI-EA)copolymer micro/nanostructures exhibited satisfactory anticorrosion performance for carbon steel,and the corrosion protection efficiency increased with the increase of water repellent property.Poly(2-ethyl aniline)(PEA)showed the largest contact angle(CA=145°)and show the best corrosion protection for the carbon steel(h=87.29%).It is found that the superior anticorrosion property of PEA is attributed to its high hydrophobicity,low conductivity and low porosity.
基金Funded by the Fundamental Research Funds for the Central Universities (No.123201003)
文摘Homogeneous hollow Cu20 octahedral nanostructures have been fabricated by a facile onepot reduction reaction at roomtemperature. The microscope analysis revealed that the edges of as-prepared hollow structures were around 200 nm with a wall thickness of about 20 nm. To investigate the influence factors and formation mechanism of the hollow octahedral structure, samples subjected to different reaction conditions were studies. The results showed that the morphology and structures of Cu20 particles were greatly affected by the concentration of pH value of the reaction environment and the reaction time. Ostwald ripening process is orooosed to exolain the growth mechanism of the hollow octahedral nanostructures.
基金National Natural Science Foundation of China(Grant Nos.52035004,51911530206,51905047)Heilongjiang Provincial Natural Science Foundation of China(Grant No.YQ2020E015)+1 种基金Self-Planned Task of State Key Laboratory of Robotics and System(HIT)(Grant No.SKLRS202001C)Young Elite Scientist Sponsorship Program by CAST(Grant No.YESS20200155).
文摘This paper presents a probe-based force-controlled nanoindentation method to fabricate ordered micro/nanostructures.Both the experimental and finite element simulation approaches are employed to investigate the influence of the interval between the adjacent indentations and the rotation angle of the probe on the formed micro/nanostructures.The non-contacting part between indenter and the sample material and the height of the material pile-up are two competing factors to determine the depth relationship between the adjacent indentations.For the one array indentations,nanostructures with good depth consistency and periodicity can be formed after the depth of the indentation becoming stable,and the variation of the rotation angle results in the large difference between the morphology of the formed nanostructures at the bottom of the one array indentation.In addition,for the indentation arrays,the nanostructures with good consistency and periodicity of the shape and depth can be generated with the spacing greater than 1μm.Finally,Raman tests are also carried out based on the obtained ordered micro/nanostructures with Rhodamine probe molecule.The indentation arrays with a smaller spacing lead to better the enhancement effect of the substrate,which has the potential applications in the fields of biological or chemical molecular detection.
基金This work was supported by Taishan Scholars Project Special Funds(tsqn201812083)Natural Science Foundation of Shandong Province(ZR2019YQ20,2019JMRH0410,ZR2019BB001)the National Natural Science Foundation of China(51972147,51902132,52022037).
文摘Nanomaterials are known to exhibit a number of interesting physical and chemical properties for various applications,including energy conversion and storage,nanoscale electronics,sensors and actuators,photonics devices and even for biomedical purposes.In the past decade,laser as a synthetic technique and laser as a microfabrication technique facilitated nanomaterial preparation and nanostructure construction,including the laser processing-induced carbon and non-carbon nanomaterials,hierarchical structure construction,patterning,heteroatom doping,sputtering etching,and so on.The laser-induced nanomaterials and nanostructures have extended broad applications in electronic devices,such as light–thermal conversion,batteries,supercapacitors,sensor devices,actuators and electrocatalytic electrodes.Here,the recent developments in the laser synthesis of carbon-based and non-carbon-based nanomaterials are comprehensively summarized.An extensive overview on laser-enabled electronic devices for various applications is depicted.With the rapid progress made in the research on nanomaterial preparation through laser synthesis and laser microfabrication technologies,laser synthesis and microfabrication toward energy conversion and storage will undergo fast development.
基金the National Natural Science Foundation of China(No.51875425)。
文摘To improve the weak corrosion resistance of silicon steel to acid solution and alkaline solution with high temperature,a stable hierarchical micro/nanostructure superhydrophobic surface with myriad irregular micro-scale hump and sheet-like nanostructure was successfully prepared on silicon steel by a simple,efficient and facile operation in large-area laser marking treatment.The morphology,composition,wettability of the as-prepared surface were studied.The superhydrophobic performance of the surface was investigated as well.Additionally,the corrosion resistance of the superhydrophobic surface to acidic solutions at room temperature and alkaline solutions at high temperature (80 ℃) was carefully explored.The corrosion resistance mechanism was clarified.Moreover,considering the practical application of the surface in the future,the hardness of the hierarchical micro/nanostructure superhydrophobic surface was studied.The experimental results indicate that the hierarchical micro/nanostructure surface with texture spacing of 100 μm treated at laser scanning speed of 100 mms/ presents superior superhydrophobicity after decreasing surface energy.The contact angle can be as high as 156.6°.Additionally,the superhydrophobic surface provide superior and stable anticorrosive protection for silicon steel in various corrosive environments.More importantly,the prepared structure of the surface shows high hardness,which ensures that the surface of the superhydrophobic surface cannot be destroyed easily.The surface is able to maintain great superhydrophobic performance when it suffers from slight impacting and abrasion.
基金the National Natural Science Foundation of China(No.21776319 and No.21476269).
文摘In this work, a simple method was carried out to successfully fabricate superoleophilic and superhydrophobic N-dodecyltrimethoxysilane@tungsten trioxide coated copper mesh. The as-fabricated copper mesh displayed prominent superoleophilicity and superhydrophobicity with a huge water contact angle about 154.39° and oil contact angle near 0° Moreover, the coated copper mesh showed high separation efficiency approximately 99.3%, and huge water flux about 9962.3 L·h^-1·m-2, which could be used to separate various organic solvents/ water mixtures. Furthermore, the coated copper mesh showed favorable stability that the separation efficiency remained above 90% after 10 separation cycles. Benefiting from the excellent photocatalytic degradation ability of tungsten trioxide, the coated copper mesh possessed the self-cleaning capacity. Therefore, the mesh contaminated with lubricating oil could regain superhydrophobic property, and this property of self-cleaning permitted that the fabricated copper mesh could be repeatedly used for oil and water separation.
基金financially supported by National Natural Science Foundation of China(No.52074113 and No.22005091)the Fundamental Research Funds of the Central Universities(No.531107051048)support from the Hunan Key Laboratory of Two-Dimensional Materials(No.2018TP1010)。
文摘Commercial Cu and Al current collectors for lithium-ion batteries(LIBs)possess high electrical conductivity,suitable chemical and electrochemical stability.However,the relatively flat surface of traditional current collectors causes weak bonding strength and poor electrochemical contact between current collectors and electrode materials,resulting in potential detachment of active materials and rapid capacity degradation during extended cycling.Here,we report an ultrafast femtosecond laser strategy to manufacture hierarchical micro/nanostructures on commercial Al and Cu foils as current collectors for high-performance LIBs.The hierarchically micro/nanostructured current collectors(HMNCCs)with high surface area and roughness offer strong adhesion to active materials,fast electronic delivery of entire electrodes,significantly improving reversible capacities and cyclic stability of HMNCCs based LIBs.Consequently,LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM523)cathode with Al HMNCC generated a high reversible capacity after 200 cycles(25%higher than that of cathode with Al CC).Besides,graphite anode with Cu HMNCC also maintained prominent reversible capacity even after 600 cycles.Moreover,the full cell assembled by graphite anode with Cu HMNCC and NCM523 cathode with Al HMNCC achieved high reversible capacity and remarkable cycling stability under industrial-grade mass loading.This study provides promising candidate for achieving high-performance LIBs current collectors.
基金The present work was supported by the National Natural Science Foundation of China(51805508)the Key Project of Equipment Pre-Research Field Fund of China(61409230310)and the Fundamental Research Funds for the Central Universities(WK2090090025).
文摘manufacturing of biomimetic micro/nanostructures due to its specific advantages including high precision,simplicity,and compatibility for diverse materials in comparison with other methods(e.g.ion etching,sol-gel process,chemical vapor deposition,template method,and self-assembly).These biomimetic micro/nanostructured surfaces are of significant interest for academic and industrial research due to their wide range of potential applications,including self-cleaning surfaces,oil-water separation,and fog collection.This review presents the inherent relationship between natural organisms,fabrication methods,micro/nanostructures and their potential applications.Thereafter,we throw a list of current fabrication strategies so as to highlight the advantages of FLDW in manufacturing bioinspired microstructured surfaces.Subsequently,we summarize a variety of typical bioinspired designs(e.g.lotus leaf,pitcher plant,rice leaf,butterfly wings,etc)for diverse multifunctional micro/nanostructures through extreme femtosecond laser processing technology.Based on the principle of interfacial chemistry and geometrical optics,we discuss the potential applications of these functional micro/nanostructures and assess the underlying challenges and opportunities in the extreme fabrication of bioinspired micro/nanostructures by FLDW.This review concludes with a follow up and an outlook of femtosecond laser processing in biomimetic domains.
文摘In this study,we demonstrate a technique termed underwater persistent bubble assisted femtosecond laser ablation in liquids(UPB-fs-LAL)that can greatly expand the boundaries of surface micro/nanostructuring through laser ablation because of its capability to create concentric circular macrostructures with millimeter-scale tails on silicon substrates.Long-tailed macrostructures are composed of layered fan-shaped(central angles of 45°–141°)hierarchical micro/nanostructures,which are produced by fan-shaped beams refracted at the mobile bubble interface(.50°light tilt,referred to as the vertical incident direction)during UPB-fs-LAL line-by-line scanning.Marangoni flow generated during UPB-fs-LAL induces bubble movements.Fast scanning(e.g.1mms−1)allows a long bubble movement(as long as 2mm),while slow scanning(e.g.0.1mms−1)prevents bubble movements.When persistent bubbles grow considerably(e.g.hundreds of microns in diameter)due to incubation effects,they become sticky and can cause both gas-phase and liquidphase laser ablation in the central and peripheral regions of the persistent bubbles.This generates low/high/ultrahigh spatial frequency laser-induced periodic surface structures(LSFLs/HSFLs/UHSFLs)with periods of 550–900,100–200,40–100 nm,which produce complex hierarchical surface structures.A period of 40 nm,less than 1/25th of the laser wavelength(1030 nm),is the finest laser-induced periodic surface structures(LIPSS)ever created on silicon.The NIR-MIR reflectance/transmittance of fan-shaped hierarchical structures obtained by UPB-fs-LAL at a small line interval(5μm versus 10μm)is extremely low,due to both their extremely high light trapping capacity and absorbance characteristics,which are results of the structures’additional layers and much finer HSFLs.In the absence of persistent bubbles,only grooves covered with HSFLs with periods larger than 100 nm are produced,illustrating the unique attenuation abilities of laser properties(e.g.repetition rate,energy,incident angle,etc)by persistent bubbles with different curvatures.This research represents a straightforward and cost-effective approach to diversifying the achievable hierarchical micro/nanostructures for a multitude of applications.
基金Project supported by China Postdoctoral Science Foundation(Grant No.2016M590137)the National Natural Science Foundation of China(Grant No.21476246)+2 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2016047)the KIST Institutional Program(Grant No.2E26291)Research Grants of NRF funded by the National Research Foundation under the Ministry of Science,ICT & Future,Korea(Grant No.NRF-2015H1D3A1036078)
文摘The research of superhydrophobic materials has attracted many researchers' attention due to its application value and prospects.In order to expand the serviceable range,people have investigated various superhydrophobic materials.The simple and easy preparation method has become the focus for superhydrophobic materials.In this paper,we present a program for preparing a rough surface on an aluminum foil,which possesses excellent hydrophobic properties after the treatment with low surface energy materials at high vacuum.The resulting contact angle is larger than 160° and the droplet cannot freeze on the surface above-10 ℃.Meanwhile,the modified aluminum foil with the thickness of less than 100 μm can be used as an ideal flexible applied material for superhydrophobicity/anti-icing.
基金supported by National Natural Science Foundation of China(Grant Nos.11205046 and 51777051)the Science Foundation of in Hebei province(Grant No.A2016201025)+1 种基金the Post-Graduate’s Innovation Fund Project of Hebei University(Grant No.X201733)the Science Foundation of Hebei University(Grant Nos.2011YY01 and 2012-237)
文摘The effects of parameters such as pressure,first anode radius,and the cavity diameter on the micro-hollow cathode sustained glow discharge are investigated by using a two-dimensional self-consistent fluid model in pure argon.The results indicate that the three parameters influence the discharge in the regions inside and outside of the cavity.Under a fixed voltage on each electrode,a larger volume of high density plasma can be produced in the region between the first and the second anodes by selecting the appropriate pressure,the higher first anode,and the appropriate cavity diameter.As the pressure increases,the electron density inside the hollow cathode,the high density plasma volume between the first anode and second anodes,and the radial electric field in the cathode cavity initially increase and subsequently decrease.As the cavity diameter increases,the high-density plasma volume between the first and second anodes initially increases and subsequently decreases;whereas the electron density inside the hollow cathode decreases.As the first anode radius increases,the electron density increases both inside and outside of the cavity.Moreover,the increase of the electron density is more obvious in the microcathode sustained region than in the micro cavity region.The results reveal that the discharge inside the cavity interacts with that outside the cavity.The strong hollow cathode effect and the high-density plasma inside the cavity favor the formation of a sustained discharge between the first anode and the second anodes.Results also show that the radial boundary conditions exert a considerably weaker influence on the discharge except for a little change in the region close to the radial boundary.
文摘3D porous flower-like ZnO micro/nanostructure films grown on Ti substrates are synthesized via a very facile electrodeposition technique followed by heat treatment process. The ZnO architecture is assembled with ultra thin sheets, which consist of numbers of nanoparticles and pores, and the size of the nanoparticles can be controlled by adjusting the electrodepo- sition time or calcination temperature. It is worth noting that this synthetic method can provide an effective route for other porous metal oxide nanostructure films. Moreover, the photocatalytic performance shows the porous ZnO is an ideal photocatalyst.
基金Project(514120203) supported by the Advanced Investigation Foundation of Weapon Equipment
文摘The extrusion of Al-Si alloy powders with different particle sizes allows manufacture of different products with unique microstructures and therefore with unique mechanical properties. The effects of powder size on the extrusion behavior and process defect of Al-18%Si alloy were studied by means of microscopy (optical, scanning electron) and density determination. The main objective of the work is to demonstrate the influence of the powder material characteristics on final density and quality of bar. The results show that the bigger the powder particles, the better the performance of cold compacting. The surface of alloy bar extruded from big particles has good quality without cracking. While the smaller the powder particles, the higher the density and the better the microstructure and mechanical properties. For practice application, the mixed powders are better than single powder.
基金supported by the ational Natural Science Foundation of China (No. 51172282)
文摘Fe–Fe2O3–MnO2–sucrose–epoxy resin and O2 as reaction system and feed gas,separately,were used to prepare micro-nano hollow multiphase ceramic microspheres containing MnFe2O4absorbent by self-reactive quenching method which is integrated with flame jet,selfpropagating high-temperature synthesis(SHS),and rapidly solidification.The morphologies and phase compositions of hollow microspheres were studied by scanning electron microscope(SEM),transmission electron microscope(TEM),X-ray diffraction(XRD),and energy dispersive spectroscopy.The results show that the quenching products are regular spherical substantially with hollow structure,particle size is between few hundreds nanometers and 5 lm.Phase compositions are diphase of Fe3O4,Mn3O4,and MnFe2O4,and the spinel soft magnetic ferrite MnFe2O4 with microwave magnetic properties is in majority.Collisions with each other,burst as well as‘‘refinement’’of agglomerate powders in flame field may be the main reasons for the formation of micro-nano hollow multiphase ceramic microspheres containing MnFeOabsorbent.
基金Project supported by National Science Foundation of China (11205046, 51077035), Science Foundation of Hebei Province(A2012201037), China Postdoctoral Science Foundation(2013M541195), Science Foundation of Hebei University (2011YYO 1, 2012-237).
文摘The mechanism of micro-hollow cathode discharge at atmospheric pressure is investigated through simulations using two-dimensional fluid model combined with a transport model for metastable atoms.In the simulations,electric potential,electric field,particle density,and mean electron energy of the discharge are calculated.The results show that the two characteristic regions of the discharge,i.e.cathode drop and negative glow can be distinguished in the simulation.The cathode drop is characterized by strong electric field and high mean electron energy,while quasi-neutral plasma of high density and exists in the negative glow.The peak value of electron density can reach the order of 1017cm-3.The electron temperature varies from several eV to tens of eV.The influence of cathode dimension on the discharge characteristics is also investigated.
基金funding supported by the National Natural Science Foundation of China (52101246)the Fundamental Research Funds for the Central Universities+1 种基金the Natural Science Foundation of Heilongjiang Province, China (YQ2022B006)the funding supported by the Natural Science Foundation of Anhui Province (2208085MB21)。
文摘Aqueous zinc ion batteries(ZIBs) are attracting considerable attentions for practical energy storage because of their low cost and high safety.Nevertheless,the traditional manganese oxide cathode materials suffer from the low intrinsic electronic conductivity,sluggish ions diffusion kinetics,and structural collapse,hindering their large-scale application.Herein,we successfully developed a latent amorphous Mn_(1.8)Fe_(1.2)O_(4) hollow nanocube(a-H-MnFeO) cathode material derived from Prussian blue analogue precursor.The amorphous nature endows the cathode with lower diffusion barrier and narrower band gap compared with crystalline counterpart,resulting in the superior Zn^(2+) ions and electrons transport kinetics.Hollow structure can furnish abundant surface sites and suppress the structural collapse during the repeated charge/discharge processes.By virtue of the multiple advantageous features,the a-H-MnFeO cathode exhibits exceptional electrochemical performance,in terms of high capacity,excellent rate capability,and prolonged cycle life.This strategy will pave the way for the structural design of emerging cathode materials.