For future micro-and nanotechnologies,the manufacturing of miniaturized,functionalized,and integrated devices is indispensable.In this paper,an assembly technique based on a bottom-up strategy that enables the manufac...For future micro-and nanotechnologies,the manufacturing of miniaturized,functionalized,and integrated devices is indispensable.In this paper,an assembly technique based on a bottom-up strategy that enables the manufacturing of complex microsystems using only optical methods is presented.A screw connection is transferred to the micrometer range and used to assemble screwand nut-shaped microcomponents.Micro-stereolithography is performed by means of two-photon polymerization,and microstructures are fabricated and subsequently trapped,moved,and screwed together using optical forces in a holographic optical tweezer set-up.The design and construction of interlocking microcomponents and the verification of a stable and releasable joint form the main focus of this paper.The assembly technique is also applied to a microfluidic system to enable the pumping or intermixing of fluids on a microfluidic chip.This strategy not only enables the assembly of microcomponents but also the combination of different materials and features to form complex hybrid microsystems.展开更多
基金We thank the German Research Foundation DFG(Deutsche Forschungsgesellschaft)for their generous support within the Reinhardt Koselleck project(OS 188/28-1).
文摘For future micro-and nanotechnologies,the manufacturing of miniaturized,functionalized,and integrated devices is indispensable.In this paper,an assembly technique based on a bottom-up strategy that enables the manufacturing of complex microsystems using only optical methods is presented.A screw connection is transferred to the micrometer range and used to assemble screwand nut-shaped microcomponents.Micro-stereolithography is performed by means of two-photon polymerization,and microstructures are fabricated and subsequently trapped,moved,and screwed together using optical forces in a holographic optical tweezer set-up.The design and construction of interlocking microcomponents and the verification of a stable and releasable joint form the main focus of this paper.The assembly technique is also applied to a microfluidic system to enable the pumping or intermixing of fluids on a microfluidic chip.This strategy not only enables the assembly of microcomponents but also the combination of different materials and features to form complex hybrid microsystems.