The holographic storage properties of Fe (0.03% (mass fraction) Fe2O3):LiNbO3 doped with Sc at different levels (0, 1%, 2%, 3%) were investigated. The Sc threshold concentration in Fe:LiNbO3 was implied to be ...The holographic storage properties of Fe (0.03% (mass fraction) Fe2O3):LiNbO3 doped with Sc at different levels (0, 1%, 2%, 3%) were investigated. The Sc threshold concentration in Fe:LiNbO3 was implied to be about 3% (mole fraction) because O-H vibration absorption peak of Sc (3%):Fe:LiNbO3 was at 3508 cm^-1, compared with 3484 cm^-1 of crystals with lower Sc doping level. Sc(3%):Fe:LiNbO3 exhibited higher optical damage resistance ability. The threshold intensity (wavelength 488 nm) of Sc (3%):Fe:LiNbO3 was 2.2 ×10^2 W ·cm^-2, two orders of masnitude higher than that of Fe:LiNbO3. Holographic storage properties of the crystals were determined in an extraordinary polarized laser of wavelength 632.8 nm by a two-wave coupling method. It was found that in terms of holographic storage properties, the optimal doping concentration of Sc was 2% (mole fraction) among this crystal series.展开更多
In:Fe:Mn:LiNbO3(LN) crystals were grown in air atmosphere by Czochralski method with different concentration of In (0, 1, 2, 3 mol%) in the melts, while the contents of Fe2O3 and MnO were 0.1 and 0.5 mol%, resp...In:Fe:Mn:LiNbO3(LN) crystals were grown in air atmosphere by Czochralski method with different concentration of In (0, 1, 2, 3 mol%) in the melts, while the contents of Fe2O3 and MnO were 0.1 and 0.5 mol%, respectively. The location of doping ions was analyzed by Ultravioletvisible absorption spectra and differential thermal analysis. The diffraction efficiency (η), writing time (τw) and erasure time (τe) of the crystals were measured by two-beam coupling experiment. The dynamic range and photorefractive sensitivity have also been calculated. The results showed that with the increase of In ions in the melt, the absorption edge of In:Fe:Mn:LN crystal shifts to the violet firstly and then makes the Einstein shift, the Curie temperature of crystal increases firstly and then decreases, the storage ratio speeds up, diffraction efficiency decreases, and dynamic range and photorefractive sensitivity increase. The mechanism of holographic storage properties of In:Fe: Mn:LN crystal with different doping concentration of In^3+ was investigated, suggesting the In: Fe:Mn:LN crystals are excellent holographic storage materiel with better synthetical properties than Fe:Mn:LN crystals.展开更多
Using Si Mo bar as heater and doping Fe 2O 3 in LiTaO 3, Fe∶LiTaO 3 crystal was grown by Czochralski method. The curie temperature of the crystal was measured by thermal analyze method. The lattice constants of the c...Using Si Mo bar as heater and doping Fe 2O 3 in LiTaO 3, Fe∶LiTaO 3 crystal was grown by Czochralski method. The curie temperature of the crystal was measured by thermal analyze method. The lattice constants of the crystal were calculated by measuring of X ray spectra. The response time, exponential gain coefficient and diffraction efficiency of Fe∶LiTaO 3 were obtained by two wave coupled technique. Compared with Fe∶LiNbO 3, the response time of Fe∶LiTaO 3 is six times shorter, the storage time of Fe∶LiTaO 3 is ten times longer and the photo scattering resistance ability of Fe∶LiTaO 3 is four times higher. Fe∶LiTaO 3 is an excellent holographic storage material.展开更多
We present holographic storage of three-dimensional(3D) images and data in a photopolymer film without any applied electric field.Its absorption and diffraction efficiency are measured,and reflective analog hologram...We present holographic storage of three-dimensional(3D) images and data in a photopolymer film without any applied electric field.Its absorption and diffraction efficiency are measured,and reflective analog hologram of real object and image of digital information are recorded in the films.The photopolymer is compared with polymer dispersed liquid crystals as holographic materials.Besides holographic diffraction efficiency of the former is little lower than that of the latter,this work demonstrates that the photopolymer is more suitable for analog hologram and big data permanent storage because of its high definition and no need of high voltage electric field.Therefore,our study proposes a potential holographic storage material to apply in large size static 3D holographic displays,including analog hologram displays,digital hologram prints,and holographic disks.展开更多
To increase the storage capacity in holographic data storage(HDS),the information to be stored is encoded into a complex amplitude.Fast and accurate retrieval of amplitude and phase from the reconstructed beam is nece...To increase the storage capacity in holographic data storage(HDS),the information to be stored is encoded into a complex amplitude.Fast and accurate retrieval of amplitude and phase from the reconstructed beam is necessary during data readout in HDS.In this study,we proposed a complex amplitude demodulation method based on deep learning from a single-shot diffraction intensity image and verified it by a non-interferometric lensless experiment demodulating four-level amplitude and four-level phase.By analyzing the correlation between the diffraction intensity features and the amplitude and phase encoding data pages,the inverse problem was decomposed into two backward operators denoted by two convolutional neural networks(CNNs)to demodulate amplitude and phase respectively.The experimental system is simple,stable,and robust,and it only needs a single diffraction image to realize the direct demodulation of both amplitude and phase.To our investigation,this is the first time in HDS that multilevel complex amplitude demodulation is achieved experimentally from one diffraction intensity image without iterations.展开更多
In this paper, a holographic storage scheme for multimedia data storage and retrieval based on the digital signal processing (DSP) is designed. A communication model for holographic storage system is obtained on the a...In this paper, a holographic storage scheme for multimedia data storage and retrieval based on the digital signal processing (DSP) is designed. A communication model for holographic storage system is obtained on the analogy of traditional communication system. Many characteristics of holographic storage are embodied in the communication model. Then some new methods of DSP including two-dimensional (2-D) shifting interleaving, encoding and decoding of modulation-array (MA) code and method of soft-decision, etc. are proposed and employed in the system. From the results of experiments it can be seen that those measures can effectively reduce the influence of noise. A segment of multimedia data, including video and audio data, is retrieved successfully after holographic storage by using those techniques.展开更多
A new polyvinylalcohol-based photopolymeric holographic recording material has been developed. The recording is obtained by the copolymerization of acrylamide and N-hydroxymethyl acrylamide. Diffraction efficiencies n...A new polyvinylalcohol-based photopolymeric holographic recording material has been developed. The recording is obtained by the copolymerization of acrylamide and N-hydroxymethyl acrylamide. Diffraction efficiencies near 50% are obtained with energetic exposure of 80mJ/cm^2. N-hydroxymethyl acrylamide can improve the optical quality of the film. With the increase of the concentration of N-hydroxymethyl acrylamide, the flatness of the film increases, scattering reduces and the straight image is clearer with a small distortion. The postexposure effect on the grating is also studied. The diffraction efficiency of grating increases further during postexposure, gradient of monomer exists after exposure.展开更多
The fundamental optical storage mechanism of the laser light eddressable azobenzene moiety is briefly introduced.A modular and flexible synthesis design furnishes polyester matrices covalently integrating cyanoazobenz...The fundamental optical storage mechanism of the laser light eddressable azobenzene moiety is briefly introduced.A modular and flexible synthesis design furnishes polyester matrices covalently integrating cyanoazobenzene in regularlyspaced side chains. Thin films of these materials are particularly well suited for holographic storape. Notable figures of meritsof liquid crystalline polyesters are response time to blue-green laser light of the order of nanoseconds, storage capacityexpressed as 5000 lines/mm, and high, permanent (almost nine years) diffraction efficiency of the order of 50% or greater,and erasability, The implications of the main chain nature for polyester morphology and for the permanency of the inducedanisotropy are discussed, The design and methods of preparation of other significantly different polymer scaffolds supportingcyanoazobenzene are elaborated. Oligopeptides always result in amorphous materials, whereas copolymethacrylates anddendritic or hyperbranched polyesters provide some materials that exhibit liquid crystallinity. However, none of these scaffolds affords materials that result in permanent anisotropy when exposed to interfering laser light.展开更多
In this paper,the Fe:LiNbO 3,Ce:Fe:LiNbO 3 and Ce:Mn:LiNbO 3 crystals with n o defect,were grown from melt by Czochraski technique.The two doped LiNbO 3 cry stals were treated by heating reduction in Li 2O 3 powder,an...In this paper,the Fe:LiNbO 3,Ce:Fe:LiNbO 3 and Ce:Mn:LiNbO 3 crystals with n o defect,were grown from melt by Czochraski technique.The two doped LiNbO 3 cry stals were treated by heating reduction in Li 2O 3 powder,and Fe:LiNbO 3 crys tals were oxidized in air. The measurments on lattic constants and the absorption spectrum show that the doped crystals’ structure are regular and the optical pr operties are good.The absorption spectra,diffractive efficency,response time,sen sitivity,and photoconduction were measured.The properties of Ce:Fe:LiNbO 3 crys tals are η sat =0.25, Sη -1 =16.2mJ/mm 2, τ E/ τ W=6 .5, σ =2.99×10 -17 ;and the properties of Ce:Fe:LiNbO 3 crystals are η sat =0.70, Sη -1 =4.6mJ/mm 2, τ E/ τ W=7.2, σ =5. 42×10 -17 . The response speed of two doped LiNbO 3 crystals is faster than that of Fe:LiNbO 3 crystals.The diffractive efficiency was measured to be high er than 80% and with a broad angle range.Fe:LiNbO 3 crystals were oxidized in air in order to make the storage time longer and strength the diffractive effici ency.So it is a good kind of Volume Holographic memory materials.And it is shown in our experiment that Ce:Fe:LiNbO 3 crystals is more sensitive to 633nm than Fe:LiNbO 3 crystals,it is more fit for He Ne laser and is a better materials o f Volume Holographic Storge.展开更多
In LiNbO3:Fe, anomalous behaviour of grating erasure is observed with different wavelengths, i.e. rapid grating erasure in the short wavelength range, which deviates from the results predicted by the electron transpo...In LiNbO3:Fe, anomalous behaviour of grating erasure is observed with different wavelengths, i.e. rapid grating erasure in the short wavelength range, which deviates from the results predicted by the electron transport band model. The deviation is related to the coexistence of electrons and holes in photorefraction, and charge-transfer process including electrons and hole has been proposed. The electron and hole contributions to photoconductivity have been identified by experiments. We also give the theoretical dependence of electron photo-excitation coefficient S of the Fe centre on the wavelength.展开更多
Light amplification due to two-beam coupling is realized in doped polymethyl methacrylate (PMMA) glasses. A coupling gain as large as 14 cm^-1 is obtained. The dynamic behaviour of absorption and light-induced scatt...Light amplification due to two-beam coupling is realized in doped polymethyl methacrylate (PMMA) glasses. A coupling gain as large as 14 cm^-1 is obtained. The dynamic behaviour of absorption and light-induced scattering due to the process of photopolymerization are also studied. The results show that the amplification and its dynamic process enable possible applications of PMMA in optical devices.展开更多
Holographic data storage system (HDSS) has been a good candidate for a volumetric recording technology, due to their large storage capacities and high transfer rates, and have been researched for tens of years after...Holographic data storage system (HDSS) has been a good candidate for a volumetric recording technology, due to their large storage capacities and high transfer rates, and have been researched for tens of years after the principle of holography was first proposed. However, these systems, called conventional 2-axis holography, still have essential issues for commercialization of products. Collinear HDSS, in which the information and reference beams are modulated co-axially by the same spatial light modulator (SLM), as a new read/write method for HDSS are very promising. With this unique configuration, the optical pickup can be designed as small as DVDs, and can be placed on one side of the recording media (disc). In the disc structure, the preformatted reflective layer is used for the focus/tracking servo and reading address information, and a dichroic mirror layer is used for detecting holographic recording information without interfering with the preformatted information. A 2-dimensional digital page data format is used and the shift-multiplexing method is employed to increase recording density. As servo technologies are being introduced to control the objective lens to be maintained precisely to the disc in the recording and reconstructing process, a vibration isolator is no longer necessary. Collinear holography can produce a small, practical HDSS more easily than conventional 2-axis holography. In this paper, we introduced the principle of the collinear holography and its media structure of disc. Some results of experimental and theoretical studies suggest that it is a very effective method. We also discussed some methods to increase the recording density and data transfer rates of collinear holography.展开更多
In order to simplify the threshold determination,reduce the inter-pixel cross-talk,and improve the storage density for high-density volume holographic data storage,a two-dimensional constant-weight sparse modulation c...In order to simplify the threshold determination,reduce the inter-pixel cross-talk,and improve the storage density for high-density volume holographic data storage,a two-dimensional constant-weight sparse modulation code is proposed.The evaluation criteria and design rules are investigated based on the page-oriented optical data storage system.Coding parameters are optimized to achieve large channel capacities.An 8:16 modulation code is designed to reduce the raw bit error rate and its performances are experimentally evaluated.A raw bit error rate of the magnitude of 10 4 is obtained with a single-data-page storage and 10 3 with multiplexing.展开更多
Based on the two path metrics being equal at a merged node in the trellis employed to describe a Viterbi detector for the detection of data encoded with a rate 6:8 balanced binary code in page-oriented optical memorie...Based on the two path metrics being equal at a merged node in the trellis employed to describe a Viterbi detector for the detection of data encoded with a rate 6:8 balanced binary code in page-oriented optical memories, the combined Viterbi detector scheme is proposed to improve raw biterror rate performance by mitigating the occurrence of a twobit reversing error event in an estimated codeword for the balanced code. The effectiveness of the detection scheme is verified for different data quantizations using Monte Carlo simulations. Key words holographic data storage - balanced code - modulation code - Viterbi algorithm - path metric CLC number TN 911. 21 Foundation item: Supported by National 973 Research Program of China (G1999033006)Biography: Chen Duan-rong (1960-), male, Lecturer, Ph. D candidate, research direction: coding and signal processing for the recording channel of holographic data storage.展开更多
Embedded data are used to retrieve phases quicker with high accuracy in phase-modulated holographic data storage(HDS).We propose a method to design an embedded data distribution using iterations to enhance the intensi...Embedded data are used to retrieve phases quicker with high accuracy in phase-modulated holographic data storage(HDS).We propose a method to design an embedded data distribution using iterations to enhance the intensity of the high-frequency signal in the Fourier spectrum.The proposed method increases the antinoise performance and signal-to-noise ratio(SNR)of the Fourier spectrum distribution,realizing a more efficient phase retrieval.Experiments indicate that the bit error rate(BER)of this method can be reduced by a factor of one after 10 iterations.展开更多
Nowadays, big-data centers still rely on hard drives. However, there is strong evidence that these surface-storage technologies are approaching fundamental limits that may be difficult to overcome, as ever-smaller bit...Nowadays, big-data centers still rely on hard drives. However, there is strong evidence that these surface-storage technologies are approaching fundamental limits that may be difficult to overcome, as ever-smaller bits become less thermally stable and harder to access. An intriguing approach for next generation data-storage is to use light to store information throughout the three- dimensional (3D) volume of a material. Holographic data storage (HDS) is poised to change the way we write and retrieve data forever. After many years of developing appropriate recording media and optical read-write architectures, this promising technology is now moving industriously to the market. In this paper, a review of the major achievements of HDS in the past ten years is presented and the key technique details are discussed. The author concludes that HDS technology is an attractive candidate for big data centers in the future. On the other hand, there are many challenges ahead for HDS technology to overcome in the years to come.展开更多
基金Project supported by Natural Science Foundation of Heilongjiang Province (E200512)
文摘The holographic storage properties of Fe (0.03% (mass fraction) Fe2O3):LiNbO3 doped with Sc at different levels (0, 1%, 2%, 3%) were investigated. The Sc threshold concentration in Fe:LiNbO3 was implied to be about 3% (mole fraction) because O-H vibration absorption peak of Sc (3%):Fe:LiNbO3 was at 3508 cm^-1, compared with 3484 cm^-1 of crystals with lower Sc doping level. Sc(3%):Fe:LiNbO3 exhibited higher optical damage resistance ability. The threshold intensity (wavelength 488 nm) of Sc (3%):Fe:LiNbO3 was 2.2 ×10^2 W ·cm^-2, two orders of masnitude higher than that of Fe:LiNbO3. Holographic storage properties of the crystals were determined in an extraordinary polarized laser of wavelength 632.8 nm by a two-wave coupling method. It was found that in terms of holographic storage properties, the optimal doping concentration of Sc was 2% (mole fraction) among this crystal series.
基金Harbin Science and Technology Project (No. 2005AA5CG058)Natural Science Foundation of Heilongjiang Province (No. A0203)
文摘In:Fe:Mn:LiNbO3(LN) crystals were grown in air atmosphere by Czochralski method with different concentration of In (0, 1, 2, 3 mol%) in the melts, while the contents of Fe2O3 and MnO were 0.1 and 0.5 mol%, respectively. The location of doping ions was analyzed by Ultravioletvisible absorption spectra and differential thermal analysis. The diffraction efficiency (η), writing time (τw) and erasure time (τe) of the crystals were measured by two-beam coupling experiment. The dynamic range and photorefractive sensitivity have also been calculated. The results showed that with the increase of In ions in the melt, the absorption edge of In:Fe:Mn:LN crystal shifts to the violet firstly and then makes the Einstein shift, the Curie temperature of crystal increases firstly and then decreases, the storage ratio speeds up, diffraction efficiency decreases, and dynamic range and photorefractive sensitivity increase. The mechanism of holographic storage properties of In:Fe: Mn:LN crystal with different doping concentration of In^3+ was investigated, suggesting the In: Fe:Mn:LN crystals are excellent holographic storage materiel with better synthetical properties than Fe:Mn:LN crystals.
文摘Using Si Mo bar as heater and doping Fe 2O 3 in LiTaO 3, Fe∶LiTaO 3 crystal was grown by Czochralski method. The curie temperature of the crystal was measured by thermal analyze method. The lattice constants of the crystal were calculated by measuring of X ray spectra. The response time, exponential gain coefficient and diffraction efficiency of Fe∶LiTaO 3 were obtained by two wave coupled technique. Compared with Fe∶LiNbO 3, the response time of Fe∶LiTaO 3 is six times shorter, the storage time of Fe∶LiTaO 3 is ten times longer and the photo scattering resistance ability of Fe∶LiTaO 3 is four times higher. Fe∶LiTaO 3 is an excellent holographic storage material.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474194,11004037,and 61101176)the Natural Science Foundation of Shanghai,China(Grant No.14ZR1415500)
文摘We present holographic storage of three-dimensional(3D) images and data in a photopolymer film without any applied electric field.Its absorption and diffraction efficiency are measured,and reflective analog hologram of real object and image of digital information are recorded in the films.The photopolymer is compared with polymer dispersed liquid crystals as holographic materials.Besides holographic diffraction efficiency of the former is little lower than that of the latter,this work demonstrates that the photopolymer is more suitable for analog hologram and big data permanent storage because of its high definition and no need of high voltage electric field.Therefore,our study proposes a potential holographic storage material to apply in large size static 3D holographic displays,including analog hologram displays,digital hologram prints,and holographic disks.
基金We are grateful for financial supports from National Key Research and Development Program of China(2018YFA0701800)Project of Fujian Province Major Science and Technology(2020HZ01012)+1 种基金Natural Science Foundation of Fujian Province(2021J01160)National Natural Science Foundation of China(62061136005).
文摘To increase the storage capacity in holographic data storage(HDS),the information to be stored is encoded into a complex amplitude.Fast and accurate retrieval of amplitude and phase from the reconstructed beam is necessary during data readout in HDS.In this study,we proposed a complex amplitude demodulation method based on deep learning from a single-shot diffraction intensity image and verified it by a non-interferometric lensless experiment demodulating four-level amplitude and four-level phase.By analyzing the correlation between the diffraction intensity features and the amplitude and phase encoding data pages,the inverse problem was decomposed into two backward operators denoted by two convolutional neural networks(CNNs)to demodulate amplitude and phase respectively.The experimental system is simple,stable,and robust,and it only needs a single diffraction image to realize the direct demodulation of both amplitude and phase.To our investigation,this is the first time in HDS that multilevel complex amplitude demodulation is achieved experimentally from one diffraction intensity image without iterations.
基金This work was supported by the National fuud for Fundamental Key Project(No.973G19990330) and theNational Natural Science Foundation of China(No.69977005).
文摘In this paper, a holographic storage scheme for multimedia data storage and retrieval based on the digital signal processing (DSP) is designed. A communication model for holographic storage system is obtained on the analogy of traditional communication system. Many characteristics of holographic storage are embodied in the communication model. Then some new methods of DSP including two-dimensional (2-D) shifting interleaving, encoding and decoding of modulation-array (MA) code and method of soft-decision, etc. are proposed and employed in the system. From the results of experiments it can be seen that those measures can effectively reduce the influence of noise. A segment of multimedia data, including video and audio data, is retrieved successfully after holographic storage by using those techniques.
文摘A new polyvinylalcohol-based photopolymeric holographic recording material has been developed. The recording is obtained by the copolymerization of acrylamide and N-hydroxymethyl acrylamide. Diffraction efficiencies near 50% are obtained with energetic exposure of 80mJ/cm^2. N-hydroxymethyl acrylamide can improve the optical quality of the film. With the increase of the concentration of N-hydroxymethyl acrylamide, the flatness of the film increases, scattering reduces and the straight image is clearer with a small distortion. The postexposure effect on the grating is also studied. The diffraction efficiency of grating increases further during postexposure, gradient of monomer exists after exposure.
文摘The fundamental optical storage mechanism of the laser light eddressable azobenzene moiety is briefly introduced.A modular and flexible synthesis design furnishes polyester matrices covalently integrating cyanoazobenzene in regularlyspaced side chains. Thin films of these materials are particularly well suited for holographic storape. Notable figures of meritsof liquid crystalline polyesters are response time to blue-green laser light of the order of nanoseconds, storage capacityexpressed as 5000 lines/mm, and high, permanent (almost nine years) diffraction efficiency of the order of 50% or greater,and erasability, The implications of the main chain nature for polyester morphology and for the permanency of the inducedanisotropy are discussed, The design and methods of preparation of other significantly different polymer scaffolds supportingcyanoazobenzene are elaborated. Oligopeptides always result in amorphous materials, whereas copolymethacrylates anddendritic or hyperbranched polyesters provide some materials that exhibit liquid crystallinity. However, none of these scaffolds affords materials that result in permanent anisotropy when exposed to interfering laser light.
文摘In this paper,the Fe:LiNbO 3,Ce:Fe:LiNbO 3 and Ce:Mn:LiNbO 3 crystals with n o defect,were grown from melt by Czochraski technique.The two doped LiNbO 3 cry stals were treated by heating reduction in Li 2O 3 powder,and Fe:LiNbO 3 crys tals were oxidized in air. The measurments on lattic constants and the absorption spectrum show that the doped crystals’ structure are regular and the optical pr operties are good.The absorption spectra,diffractive efficency,response time,sen sitivity,and photoconduction were measured.The properties of Ce:Fe:LiNbO 3 crys tals are η sat =0.25, Sη -1 =16.2mJ/mm 2, τ E/ τ W=6 .5, σ =2.99×10 -17 ;and the properties of Ce:Fe:LiNbO 3 crystals are η sat =0.70, Sη -1 =4.6mJ/mm 2, τ E/ τ W=7.2, σ =5. 42×10 -17 . The response speed of two doped LiNbO 3 crystals is faster than that of Fe:LiNbO 3 crystals.The diffractive efficiency was measured to be high er than 80% and with a broad angle range.Fe:LiNbO 3 crystals were oxidized in air in order to make the storage time longer and strength the diffractive effici ency.So it is a good kind of Volume Holographic memory materials.And it is shown in our experiment that Ce:Fe:LiNbO 3 crystals is more sensitive to 633nm than Fe:LiNbO 3 crystals,it is more fit for He Ne laser and is a better materials o f Volume Holographic Storge.
基金Supported by the Important Pre-research Project of the Ministry of Science and Technology of China under Grant No 2002CCA03500, and the National Natural Science Foundation of China under Grant No 60177016.
文摘In LiNbO3:Fe, anomalous behaviour of grating erasure is observed with different wavelengths, i.e. rapid grating erasure in the short wavelength range, which deviates from the results predicted by the electron transport band model. The deviation is related to the coexistence of electrons and holes in photorefraction, and charge-transfer process including electrons and hole has been proposed. The electron and hole contributions to photoconductivity have been identified by experiments. We also give the theoretical dependence of electron photo-excitation coefficient S of the Fe centre on the wavelength.
基金Supported by the Ministry of Education of China under Grant Nos 105048 and 704012, the National Natural Science Foundation of China under Grant Nos 10604033 and 10334010, the Cultivation Fund of the Key Scientific and Technical Innovation Project, the Key International S&T Cooperation Project (2005DFA10170), the Programme for Changjiang Scholars and Innovative Research Team in University (PCSIRT), the National Basic Research Programme of China under Grant No 2007CB307002), the 111 Project the Ministry of Education of China under Grant No B07013, and the Scientific-Technical Cooperation Project of (DAD (VII-B-7).
文摘Light amplification due to two-beam coupling is realized in doped polymethyl methacrylate (PMMA) glasses. A coupling gain as large as 14 cm^-1 is obtained. The dynamic behaviour of absorption and light-induced scattering due to the process of photopolymerization are also studied. The results show that the amplification and its dynamic process enable possible applications of PMMA in optical devices.
文摘Holographic data storage system (HDSS) has been a good candidate for a volumetric recording technology, due to their large storage capacities and high transfer rates, and have been researched for tens of years after the principle of holography was first proposed. However, these systems, called conventional 2-axis holography, still have essential issues for commercialization of products. Collinear HDSS, in which the information and reference beams are modulated co-axially by the same spatial light modulator (SLM), as a new read/write method for HDSS are very promising. With this unique configuration, the optical pickup can be designed as small as DVDs, and can be placed on one side of the recording media (disc). In the disc structure, the preformatted reflective layer is used for the focus/tracking servo and reading address information, and a dichroic mirror layer is used for detecting holographic recording information without interfering with the preformatted information. A 2-dimensional digital page data format is used and the shift-multiplexing method is employed to increase recording density. As servo technologies are being introduced to control the objective lens to be maintained precisely to the disc in the recording and reconstructing process, a vibration isolator is no longer necessary. Collinear holography can produce a small, practical HDSS more easily than conventional 2-axis holography. In this paper, we introduced the principle of the collinear holography and its media structure of disc. Some results of experimental and theoretical studies suggest that it is a very effective method. We also discussed some methods to increase the recording density and data transfer rates of collinear holography.
基金supported by the National Basic Research Program of China (No.2009CB724007)the National High-Tech R & D Program (863) of China (No.2009AA01Z112)the National Natural Science Foundation of China (No.60807005)
文摘In order to simplify the threshold determination,reduce the inter-pixel cross-talk,and improve the storage density for high-density volume holographic data storage,a two-dimensional constant-weight sparse modulation code is proposed.The evaluation criteria and design rules are investigated based on the page-oriented optical data storage system.Coding parameters are optimized to achieve large channel capacities.An 8:16 modulation code is designed to reduce the raw bit error rate and its performances are experimentally evaluated.A raw bit error rate of the magnitude of 10 4 is obtained with a single-data-page storage and 10 3 with multiplexing.
基金SupportedbyNational973ResearchProgramofChi na (G1 9990 330 0 6)
文摘Based on the two path metrics being equal at a merged node in the trellis employed to describe a Viterbi detector for the detection of data encoded with a rate 6:8 balanced binary code in page-oriented optical memories, the combined Viterbi detector scheme is proposed to improve raw biterror rate performance by mitigating the occurrence of a twobit reversing error event in an estimated codeword for the balanced code. The effectiveness of the detection scheme is verified for different data quantizations using Monte Carlo simulations. Key words holographic data storage - balanced code - modulation code - Viterbi algorithm - path metric CLC number TN 911. 21 Foundation item: Supported by National 973 Research Program of China (G1999033006)Biography: Chen Duan-rong (1960-), male, Lecturer, Ph. D candidate, research direction: coding and signal processing for the recording channel of holographic data storage.
基金the Open Project Program of Wuhan National Laboratory for Optoelectronics(No.2019WNLOKF007)the National Key R&D Program of China(No.2018YFA0701800).
文摘Embedded data are used to retrieve phases quicker with high accuracy in phase-modulated holographic data storage(HDS).We propose a method to design an embedded data distribution using iterations to enhance the intensity of the high-frequency signal in the Fourier spectrum.The proposed method increases the antinoise performance and signal-to-noise ratio(SNR)of the Fourier spectrum distribution,realizing a more efficient phase retrieval.Experiments indicate that the bit error rate(BER)of this method can be reduced by a factor of one after 10 iterations.
文摘Nowadays, big-data centers still rely on hard drives. However, there is strong evidence that these surface-storage technologies are approaching fundamental limits that may be difficult to overcome, as ever-smaller bits become less thermally stable and harder to access. An intriguing approach for next generation data-storage is to use light to store information throughout the three- dimensional (3D) volume of a material. Holographic data storage (HDS) is poised to change the way we write and retrieve data forever. After many years of developing appropriate recording media and optical read-write architectures, this promising technology is now moving industriously to the market. In this paper, a review of the major achievements of HDS in the past ten years is presented and the key technique details are discussed. The author concludes that HDS technology is an attractive candidate for big data centers in the future. On the other hand, there are many challenges ahead for HDS technology to overcome in the years to come.