In this note, we consider a holomorphic mapping f from the unit disk C in C to p-ball B^p = {z∈C^n;i=1∑n|zi|p〈1,1〈p〈+∞. It is proved that for such f,| | |f||(z)|≤1-||f(z)||^2/1-|z|^2,z∈D. Th...In this note, we consider a holomorphic mapping f from the unit disk C in C to p-ball B^p = {z∈C^n;i=1∑n|zi|p〈1,1〈p〈+∞. It is proved that for such f,| | |f||(z)|≤1-||f(z)||^2/1-|z|^2,z∈D. The extremal problem is also discussed when p is an even number. This result extends some related results on Schwarz lemma.展开更多
In this paper we prove a Schwarz-Pick lemma for the modulus of holomorphic mappings from the polydisk into the unit ball. This result extends some related results.
In this paper,we derive some∂∂^(-)-Bochner formulas for holomorphic maps between Hermitian manifolds.As applications,we prove some Schwarz lemma type estimates,and some rigidity and degeneracy theorems.For instance,we...In this paper,we derive some∂∂^(-)-Bochner formulas for holomorphic maps between Hermitian manifolds.As applications,we prove some Schwarz lemma type estimates,and some rigidity and degeneracy theorems.For instance,we show that there is no non-constant holomorphic map from a compact Hermitian manifold with positive(resp.non-negative)ℓ-second Ricci curvature to a Hermitian manifold with non-positive(resp.negative)real bisectional curvature.These theorems generalize the results[5,6]proved recently by L.Ni on Kähler manifolds to Hermitian manifolds.We also derive an integral inequality for a holomorphic map between Hermitian manifolds.展开更多
This note addresses monotonic growths and logarithmic convexities of the weighted ((1-t2)αdt2, -∞〈α〈∞, 0〈t〈1) integral means Aα,β( f ,·) and Lα,β( f ,·) of the mixed area (πr2)-βA( f...This note addresses monotonic growths and logarithmic convexities of the weighted ((1-t2)αdt2, -∞〈α〈∞, 0〈t〈1) integral means Aα,β( f ,·) and Lα,β( f ,·) of the mixed area (πr2)-βA( f ,r) and the mixed length (2πr)-βL( f ,r) (0≤β≤1 and 0〈r〈1) of f (rD) and?f (rD) under a holomorphic map f from the unit disk D into the finite complex plane C.展开更多
In this paper,we study a family of Hartogs domains fibred over Hermitian symmetric manifolds being a unit ball in C^(m).The aim of the present study is to establish the rigidity results about proper holomorphic mappin...In this paper,we study a family of Hartogs domains fibred over Hermitian symmetric manifolds being a unit ball in C^(m).The aim of the present study is to establish the rigidity results about proper holomorphic mappings between two equidimensional Hartogs domains over Hermitian symmetric manifolds.In particular,we can fully determine its biholomorphic equivalence and automorphism group.展开更多
In this paper, the authors establish distortion theorems for various subfamilies Hk(B) of holomorphic mappings defined in the unit ball in C^n with critical points, where k is any positive integer. In particular, th...In this paper, the authors establish distortion theorems for various subfamilies Hk(B) of holomorphic mappings defined in the unit ball in C^n with critical points, where k is any positive integer. In particular, the distortion theorem for locally biholomorphic mappings is obtained when k tends to -∞. These distortion theorems give lower bounds on [det f′(z)[ and Re det f′(z). As an application of these distortion theorems, the authors give lower and upper bounds of Bloch constants for the subfamilies βk(M) of holomorphic mappings. Moreover, these distortion theorems are sharp. When B is the unit disk in C, these theorems reduce to the results of Liu and Minda. A new distortion result of Re det f′(z) for locally biholomorphic mappings is also obtained.展开更多
The authors discuss the proper holomorphic mappings between special Hartogs triangles of different dimensions and obtain a corresponding classification theorem.
This paper is mainly about holomorphic mappings associated with conic regions which are closely connected with k-ST(α).We introduce new subclasses of starlike(spirallike)functions,namely,S^(p)_(c)(k,α)(S^(p)_(c)(k,...This paper is mainly about holomorphic mappings associated with conic regions which are closely connected with k-ST(α).We introduce new subclasses of starlike(spirallike)functions,namely,S^(p)_(c)(k,α)(S^(p)_(c)(k,α,β)),and discuss their coefficient estimates and the Fekete–Szego–Goluzin’s problem.Then we generalize S^(p)_(c)(k,α,β)on the unit ball B^(n) in C^(n),that is,k-conic spirallike mappings of typeβand orderα.We obtain the growth,covering and distortion theorems of the generalized mappings.Besides that,we construct k-conic spirallike mappings of typeβand orderαon B^(n) through S_(c)(k,α,β)by the generalized Roper-Suffridge extension operators.展开更多
The Hartogs domain over homogeneous Siegel domain D_(N,s)(s>0)is defined by the inequality■,where D is a homogeneous Siegel domain of typeⅡ,(z,ζ)∈D×C~N and KD(z,z)is the Bergman kernel of D.Recently,Seo ob...The Hartogs domain over homogeneous Siegel domain D_(N,s)(s>0)is defined by the inequality■,where D is a homogeneous Siegel domain of typeⅡ,(z,ζ)∈D×C~N and KD(z,z)is the Bergman kernel of D.Recently,Seo obtained the rigidity result that proper holomorphic mappings between two equidimensional domains D_(N,s)and D'_(N',s')are biholomorphisms for N≥2.In this article,we find a counter-example to show that the rigidity result is not true for D_(1,s)and obtain a classification of proper holomorphic mappings between D_(1,s)and D'_(1,s').展开更多
In this paper,we first introduce the notion of n-generalized Hartogs triangles.Then,we characterize proper holomorphic mappings between some of these domains,and describe their automorphism groups.
This article proves the existence of Julia directions of value distribution of holomorphic mapping f from the unit disk into the n-dimensional complex projective spacePn(C) under the assumption limsupT(r,f)/log 1/...This article proves the existence of Julia directions of value distribution of holomorphic mapping f from the unit disk into the n-dimensional complex projective spacePn(C) under the assumption limsupT(r,f)/log 1/1-r = +∞ for hypersurfaces in general position. A heuristic principle concerning the existence of Julia directions of holomorphic mappings from the unit disk into Pn(C) is given also.展开更多
This article proves the existence of singular directions of value distribution theory for some transcendental holomorphic curves in the n-dimensional complex projective space P^n(C).. An example is given to compleme...This article proves the existence of singular directions of value distribution theory for some transcendental holomorphic curves in the n-dimensional complex projective space P^n(C).. An example is given to complement these results.展开更多
In this paper,we prove that a proper μ holomorphic mapping f:D 1→D 2 between bounded domains with some convexity,such that f satisfies some growth condition,extends smoothly to bD 1-{z:U(z)=0}.
In this article, we establish distortion theorems for some various subfamilies of Bloch mappings defined in the unit polydisc Dn with critical points, which extend the results of Liu and Minda to higher dimensions. We...In this article, we establish distortion theorems for some various subfamilies of Bloch mappings defined in the unit polydisc Dn with critical points, which extend the results of Liu and Minda to higher dimensions. We obtain lower bounds of | det(f'(z))|and Rdet(f'(z)) for Bloch mapping f. As an application, some lower and upper bounds of Bloch constants for the subfamilies of holomorphic mappings are given.展开更多
This article gives a normal criterion for families of holomorphic mappings of several complex variables into P N(C)for moving hypersurfaces in pointwise general position,related to an Eremenko’s theorem.
In this paper,we extend the concept of holomorphic curves sharing hyperplanes and introduce definitions of restricted hyperplanes and partial shared hypersurfaces.Then,we prove several normal criteria of the family of...In this paper,we extend the concept of holomorphic curves sharing hyperplanes and introduce definitions of restricted hyperplanes and partial shared hypersurfaces.Then,we prove several normal criteria of the family of holomorphic curves and holomorphic mappings that concern restricted hyperplanes and partial shared hypersurfaces.These results generalize the Montel-type normal criterion of holomorphic curves.展开更多
Let/(z) be a holomorph.self-map on C.-G-(0) with essential singularities 0 and It is proved that f(z) has a completdy invariant domain.D.F(f),then D is doubly connected and D contains all the singularities of the inv...Let/(z) be a holomorph.self-map on C.-G-(0) with essential singularities 0 and It is proved that f(z) has a completdy invariant domain.D.F(f),then D is doubly connected and D contains all the singularities of the inverse of f(z),moreover,if f is of the finite type, then D=F(f). This result implies that f(z) has at most one completely invariant domain in F(f).展开更多
In [1],they generalized R.Nevanlinna’s results to Y,where Y is a parabolic Riemann Surface.In this paper,following their method,we develop some further results for holomorphic maps on Y,including the maps into Pn(C),...In [1],they generalized R.Nevanlinna’s results to Y,where Y is a parabolic Riemann Surface.In this paper,following their method,we develop some further results for holomorphic maps on Y,including the maps into Pn(C),the complex projective varieties,and Abelian varieties.展开更多
基金supported by National Natural Science Foundations of China(11011373,11201199,11271333)Zhejiang Provincial Natural Science Foundation of China(LY14A010008)
文摘In this note, we consider a holomorphic mapping f from the unit disk C in C to p-ball B^p = {z∈C^n;i=1∑n|zi|p〈1,1〈p〈+∞. It is proved that for such f,| | |f||(z)|≤1-||f(z)||^2/1-|z|^2,z∈D. The extremal problem is also discussed when p is an even number. This result extends some related results on Schwarz lemma.
基金supported by the National Natural Science Foundation of China(11201199)the Scientific Research Foundation of Jinling Institute of Technology(Jit-b-201221)Qing Lan Project
文摘In this paper we prove a Schwarz-Pick lemma for the modulus of holomorphic mappings from the polydisk into the unit ball. This result extends some related results.
基金supported by National Natural Science Foundation of China(12001490)Natural Science Foundation of Zhejiang Province(LQ20A010005).
文摘In this paper,we derive some∂∂^(-)-Bochner formulas for holomorphic maps between Hermitian manifolds.As applications,we prove some Schwarz lemma type estimates,and some rigidity and degeneracy theorems.For instance,we show that there is no non-constant holomorphic map from a compact Hermitian manifold with positive(resp.non-negative)ℓ-second Ricci curvature to a Hermitian manifold with non-positive(resp.negative)real bisectional curvature.These theorems generalize the results[5,6]proved recently by L.Ni on Kähler manifolds to Hermitian manifolds.We also derive an integral inequality for a holomorphic map between Hermitian manifolds.
基金in part supported by NSERC of Canada and the Finnish Cultural Foundation
文摘This note addresses monotonic growths and logarithmic convexities of the weighted ((1-t2)αdt2, -∞〈α〈∞, 0〈t〈1) integral means Aα,β( f ,·) and Lα,β( f ,·) of the mixed area (πr2)-βA( f ,r) and the mixed length (2πr)-βL( f ,r) (0≤β≤1 and 0〈r〈1) of f (rD) and?f (rD) under a holomorphic map f from the unit disk D into the finite complex plane C.
基金Supported by the National Natural Science Foundation of China(Grant Nos.12271411,11901327)。
文摘In this paper,we study a family of Hartogs domains fibred over Hermitian symmetric manifolds being a unit ball in C^(m).The aim of the present study is to establish the rigidity results about proper holomorphic mappings between two equidimensional Hartogs domains over Hermitian symmetric manifolds.In particular,we can fully determine its biholomorphic equivalence and automorphism group.
基金Project supported by the National Natural Science Foundation of China(No.10571164)Specialized Research Fund for the Doctoral Program of Higher Education(No.20050358052)the Zhejiang Provincial Natural Science Foundation of China(No.Y606197).
文摘In this paper, the authors establish distortion theorems for various subfamilies Hk(B) of holomorphic mappings defined in the unit ball in C^n with critical points, where k is any positive integer. In particular, the distortion theorem for locally biholomorphic mappings is obtained when k tends to -∞. These distortion theorems give lower bounds on [det f′(z)[ and Re det f′(z). As an application of these distortion theorems, the authors give lower and upper bounds of Bloch constants for the subfamilies βk(M) of holomorphic mappings. Moreover, these distortion theorems are sharp. When B is the unit disk in C, these theorems reduce to the results of Liu and Minda. A new distortion result of Re det f′(z) for locally biholomorphic mappings is also obtained.
基金the National Natural Science Foundation of China (No. 10571135)the Doctoral Program Foundation of the Ministry of Education of China (No. 20050240711)
文摘The authors discuss the proper holomorphic mappings between special Hartogs triangles of different dimensions and obtain a corresponding classification theorem.
基金Supported by NSF of China(Grant Nos.11571089,11871191)Science and Technology Research Projects of He’nan Provincial Education Department(Grant No.17A110041)+1 种基金the key Foundation of Hebei Normal University(Grant No.L2018Z01)Scientific Research Fund of High Level Talents of Zhoukou Normal University(Grant No.ZKNUC2019004)。
文摘This paper is mainly about holomorphic mappings associated with conic regions which are closely connected with k-ST(α).We introduce new subclasses of starlike(spirallike)functions,namely,S^(p)_(c)(k,α)(S^(p)_(c)(k,α,β)),and discuss their coefficient estimates and the Fekete–Szego–Goluzin’s problem.Then we generalize S^(p)_(c)(k,α,β)on the unit ball B^(n) in C^(n),that is,k-conic spirallike mappings of typeβand orderα.We obtain the growth,covering and distortion theorems of the generalized mappings.Besides that,we construct k-conic spirallike mappings of typeβand orderαon B^(n) through S_(c)(k,α,β)by the generalized Roper-Suffridge extension operators.
基金the National Natural Science Foundation of China(Grant Nos.11801187,11871233 and 11871380)。
文摘The Hartogs domain over homogeneous Siegel domain D_(N,s)(s>0)is defined by the inequality■,where D is a homogeneous Siegel domain of typeⅡ,(z,ζ)∈D×C~N and KD(z,z)is the Bergman kernel of D.Recently,Seo obtained the rigidity result that proper holomorphic mappings between two equidimensional domains D_(N,s)and D'_(N',s')are biholomorphisms for N≥2.In this article,we find a counter-example to show that the rigidity result is not true for D_(1,s)and obtain a classification of proper holomorphic mappings between D_(1,s)and D'_(1,s').
基金supported by the National Natural Science Foundation of China(Grant No.11871333)。
文摘In this paper,we first introduce the notion of n-generalized Hartogs triangles.Then,we characterize proper holomorphic mappings between some of these domains,and describe their automorphism groups.
基金project supported in part by the National Natural Science Foundation of China(10971156)
文摘This article proves the existence of Julia directions of value distribution of holomorphic mapping f from the unit disk into the n-dimensional complex projective spacePn(C) under the assumption limsupT(r,f)/log 1/1-r = +∞ for hypersurfaces in general position. A heuristic principle concerning the existence of Julia directions of holomorphic mappings from the unit disk into Pn(C) is given also.
基金The project supported in part by the National Natural Science Foundation of China (10371091)
文摘This article proves the existence of singular directions of value distribution theory for some transcendental holomorphic curves in the n-dimensional complex projective space P^n(C).. An example is given to complement these results.
文摘In this paper,we prove that a proper μ holomorphic mapping f:D 1→D 2 between bounded domains with some convexity,such that f satisfies some growth condition,extends smoothly to bD 1-{z:U(z)=0}.
基金partly supported by the National Natural Science Foundation of China(10826083,10971063)NSF of Zhejiang Province (D7080080, Y606197,Y6090694)Scientific Research Fund of Zhejiang Provincial Education Department (Y200805520)
文摘In this article, we establish distortion theorems for some various subfamilies of Bloch mappings defined in the unit polydisc Dn with critical points, which extend the results of Liu and Minda to higher dimensions. We obtain lower bounds of | det(f'(z))|and Rdet(f'(z)) for Bloch mapping f. As an application, some lower and upper bounds of Bloch constants for the subfamilies of holomorphic mappings are given.
基金supported in part by the National Natural Science Foundation of China(10371091)
文摘This article gives a normal criterion for families of holomorphic mappings of several complex variables into P N(C)for moving hypersurfaces in pointwise general position,related to an Eremenko’s theorem.
基金The second author was supported by the National Natural Science Foundation of China(11501127)Foundation for Distinguished Young Talents in Higher Education of Guangdong Province(2014KQNCX068)The third author was supported by the Foundation of Guangzhou Civil Aviation College(18X0428).
文摘In this paper,we extend the concept of holomorphic curves sharing hyperplanes and introduce definitions of restricted hyperplanes and partial shared hypersurfaces.Then,we prove several normal criteria of the family of holomorphic curves and holomorphic mappings that concern restricted hyperplanes and partial shared hypersurfaces.These results generalize the Montel-type normal criterion of holomorphic curves.
文摘Let/(z) be a holomorph.self-map on C.-G-(0) with essential singularities 0 and It is proved that f(z) has a completdy invariant domain.D.F(f),then D is doubly connected and D contains all the singularities of the inverse of f(z),moreover,if f is of the finite type, then D=F(f). This result implies that f(z) has at most one completely invariant domain in F(f).
文摘In [1],they generalized R.Nevanlinna’s results to Y,where Y is a parabolic Riemann Surface.In this paper,following their method,we develop some further results for holomorphic maps on Y,including the maps into Pn(C),the complex projective varieties,and Abelian varieties.