期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Forecasting Foreign Direct Investment to Zambia: A Time Series Analysis 被引量:1
1
作者 Stanley Jere Bornwell Kasense Obvious Chilyabanyama 《Open Journal of Statistics》 2017年第1期122-131,共10页
Three methods are considered in this paper: Simple exponential smoothing (SES), Holt-Winters exponential smoothing (HWES) and autoregressive integrated moving average (ARIMA). The best fit model was then used to forec... Three methods are considered in this paper: Simple exponential smoothing (SES), Holt-Winters exponential smoothing (HWES) and autoregressive integrated moving average (ARIMA). The best fit model was then used to forecast Zambia’s annual net foreign direct investment (FDI) inflows from 1970 to 2014. Foreign direct investment is foreign capital investment to Zambia. Throughout the paper the methods are illustrated using Zambia’s annual Net FDI inflows. A comparison of the three methods shows that the ARIMA (1, 1, 5) is the best fit model because it has the minimum error. Forecasting results give a gradual increase in annual net FDI inflows of about 44.36% by 2024. Forecasting results plays a vital role to policy makers. Decision making, coming up with good policies and suitable strategic plans, depends on accurate forecasts. Zambian FDI policy makers can use the results obtained in this study and create suitable strategic plans to promote FDI. 展开更多
关键词 Foreign Direct INVESTMENT Simple exponential smoothing holt-winters exponential smoothing AUTOREGRESSIVE Integrated Moving AVERAGE Forecasting
下载PDF
Oil-Price Forecasting Based on Various Univariate Time-Series Models 被引量:3
2
作者 Gurudeo Anand Tularam Tareq Saeed 《American Journal of Operations Research》 2016年第3期226-235,共10页
Time-series-based forecasting is essential to determine how past events affect future events. This paper compares the performance accuracy of different time-series models for oil prices. Three types of univariate mode... Time-series-based forecasting is essential to determine how past events affect future events. This paper compares the performance accuracy of different time-series models for oil prices. Three types of univariate models are discussed: the exponential smoothing (ES), Holt-Winters (HW) and autoregressive intergrade moving average (ARIMA) models. To determine the best model, six different strategies were applied as selection criteria to quantify these models’ prediction accuracies. This comparison should help policy makers and industry marketing strategists select the best forecasting method in oil market. The three models were compared by applying them to the time series of regular oil prices for West Texas Intermediate (WTI) crude. The comparison indicated that the HW model performed better than the ES model for a prediction with a confidence interval of 95%. However, the ARIMA (2, 1, 2) model yielded the best results, leading us to conclude that this sophisticated and robust model outperformed other simple yet flexible models in oil market. 展开更多
关键词 Oil Price Univariate Time Series exponential smoothing holt-winters ARIMA Models Model Selection Criteria
下载PDF
Comparing practice-ready forecast models for weekly and monthly fluctuations of average daily traffic and enhancing accuracy by weighting methods 被引量:2
3
作者 Andrea Pompigna Federico Rupi 《Journal of Traffic and Transportation Engineering(English Edition)》 2018年第4期239-253,共15页
Knowing daily traffic for the current year is recognized as being essential in many fields of transport analysis and practice, and short-term forecasting models offer a set of tools to meet these needs. This paper exa... Knowing daily traffic for the current year is recognized as being essential in many fields of transport analysis and practice, and short-term forecasting models offer a set of tools to meet these needs. This paper examines and compares the accuracy of three representative parametric and non-parametric prediction models, selected by the analysis of the numerous methods proposed in the literature for their good combi- nation of forecast accuracy and ease of calibration, using real-life data on Italian motorway stretches. Non-parametric K-NN regression model, Gaussian maximum likelihood model and double seasonality Holt-Winters exponential smoothing model confirm their goodness to predict the weekly and monthly fluctuations of average daily traffic with varying degrees of performance, while maintaining an easy use in professional practice, i.e. requiring ordinary professional skills and conventional analysis tools. Since combining several prediction models can give, on average, more accuracy than that of the individual models, the paper compares two weighting methods of easy implementation and susceptible to a direct use, namely the widely used information entropy method and the less widespread Shapley value method. Despite being less common than the information entropy method, the Shapley value method proves to be more capable in better combining single forecasts and produces improvements in the predictions for test data. With these remarks, the paper might be of interest to traffic technicians or analysts, in various and not uncommon tasks they might find in their work. 展开更多
关键词 Short-term traffic forecasting Non-parametric regression Gaussian maximum likelihood Double seasonal holt-winters exponential smoothing Entropy weighting method Shapley value weighting method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部