Objectives Regular consumption of moderate amounts of Chinese yellow wine is associated with a reduced risk of coronary disease. Matrix metalloproteinases (MMPs) that participate in extracellular matrix degradation ha...Objectives Regular consumption of moderate amounts of Chinese yellow wine is associated with a reduced risk of coronary disease. Matrix metalloproteinases (MMPs) that participate in extracellular matrix degradation have been involved in atherosclerotic plaque growth and instability. The present research aimed to study the effects of Chinese yellow wine on the production of homocysteine-induced extracellular MMP-2 in cultured rats’ vascular smooth muscle cells. Methods The effects of different homocysteine levels (0-1000 ?滋mol/l) on MMP-2 production, and the effects of Chinese yellow wine with low alcohol concentrations (12-19%) on homocysteine-induced MMP-2 in cultured rat vascular smooth muscle cells (VSMCs) were examined using gelatin zymography and western blotting. The changes of MMP-2 under various treatments for 12 h, 24 h and 48 h were further compared. Results Homocysteine (50-1000 ?滋mol/l) increased the production of MMP-2 significantly in a dose-dependent manner. Increased production of MMP-2 induced by homocysteine was reduced by extracellularly added Chinese yellow wine. Production of MMP-2 under various treatments for 48 h increased more than 12 h and 24 h. Conclusions Extracellularly added Chinese yellow wine decreased homocysteine-induced MMP-2 secretion. The inhibitory effect of yellow wine on the activation of MMP-2 might contribute to their beneficial effects on the cardiovascular system.展开更多
The homocysteine (Hcy)-induced tissue factor (TF) expression in human vascular smooth muscle cells (VSMCs) and the effect of Hcy on the activity of nuclear factor-kappaB (NF-кB) and the expression of inducibl...The homocysteine (Hcy)-induced tissue factor (TF) expression in human vascular smooth muscle cells (VSMCs) and the effect of Hcy on the activity of nuclear factor-kappaB (NF-кB) and the expression of inducible nitric oxide synthase (iNOS) were investigated. Human umbilical artery VSMCs were cultured by tissue explanting method, identified by α-actin immunohistochemistry, and incubated with different concentrations of Hcy/PTDC (NF-кB inhibitor). Semi-quantitative RT-PCR was performed to detect the expression of TF mRNA in VSMCs. Flow cytometry was used to assay the expression of TF protein on the surface of VSMCs and the expression of iNOS in VSMCs. Western blot was carried out to detect the expression of NF-кB protein in nuclei. The results showed that Hcy could induce VSMCs expressing TF mRNA significantly after the VSMCs were incubated with Hcy at concentrations of 10, 100, 500 μmol/L respectively. There was low expression level of TF protein on the surface of the resting VSMCs and Hcy could also induce VSMCs expressing TF pro- tein on the cell surface in different concentrations. Additionally, Hcy could rapidly induce the activation of NF-кB and this effect could be significantly inhibited by PDTC. Hcy alone could not induce the expression of iNOS in VSMCs. It was concluded that Hcy could significantly induce the expression of TF in VSMCs and enhance the activation of NF-ΚB, subsequently mediate TF gene expression and protein synthesis. NF-кB-mediated expression of TF in VSMCs might be the important mechanism of atherosclerosis and thrombosis induced by Hcy.展开更多
Atherosclerosis is a chronic artery disease that causes various types of cardiovascular dysfunction.Vascular smooth muscle cells(VSMCs),the main components of atherosclerotic plaque,switch from contractile to syntheti...Atherosclerosis is a chronic artery disease that causes various types of cardiovascular dysfunction.Vascular smooth muscle cells(VSMCs),the main components of atherosclerotic plaque,switch from contractile to synthetic phenotypes during atherogenesis.Ubiquitylation is crucial in regulating VSMC phenotypes in atherosclerosis,and it can be reversely regulated by deubiquitinases.However,the specific effects of deubiquitinases on atherosclerosis have not been thoroughly elucidated.In this study,RNAi screening in human aortic smooth muscle cells was performed to explore the effects of OTU family deubiquitinases,which revealed that silencing OTUB1 inhibited PDGF-BB-stimulated VSMC phenotype switch.Further in vivo studies using Apoe−/−mice revealed that knockdown of OTUB1 in VSMCs alleviated atherosclerosis plaque burden in the advanced stage and led to a stable plaque phenotype.Moreover,VSMC proliferation and migration upon PDGF-BB stimulation could be inhibited by silencing OTUB1 in vitro.Unbiased RNA-sequencing data indicated that knocking down OTUB1 influenced VSMC differentiation,adhesion,and proliferation.Mass spectrometry of ubiquitinated protein confirmed that proteins related to cell growth and migration were differentially ubiquitylated.Mechanistically,we found that OTUB1 recognized the K707 residue ubiquitylation of PDGFRβwith its catalytic triad,thereby reducing the K48-linked ubiquitylation of PDGFRβ.Inhibiting OTUB1 in VSMCs could promote PDGFRβdegradation via the ubiquitin–proteasome pathway,so it was beneficial in preventing VSMCs’phenotype switch.These findings revealed that knocking down OTUB1 ameliorated VSMCs’phenotype switch and atherosclerosis progression,indicating that OTUB1 could be a valuable translational therapeutic target in the future.展开更多
Objective: To test the influence of homocysteine on the production and activation of matrix metalloproteinase-2 (MMP-2) and tissue inhibitors of matrix metalloproteinase-2 (TIMP-2) and on cell migration of cultur...Objective: To test the influence of homocysteine on the production and activation of matrix metalloproteinase-2 (MMP-2) and tissue inhibitors of matrix metalloproteinase-2 (TIMP-2) and on cell migration of cultured rat vascular smooth muscle cells (VSMCs). Also, to explore whether rosuvastatin can alter the abnormal secretion and activation of MMP-2 and TIMP-2 and migration of VSMCs induced by homocysteine. Methods: Rat VSMCs were incubated with different concentrations of homocysteine (50-5000 μmol/L). Western blotting and gelatin zymography were used to investigate the expressions and activities of MMP-2 and TIMP-2 in VSMCs in culture medium when induced with homocysteine for 24, 48, and 72 h. Transwell chambers were employed to test the migratory ability of VSMCs when incubated with homocysteine for 48 h. Different concentrations of rosuvastatin (10^-9-10^-5 mol/L) were added when VSMCs were induced with 1 000 pmol/L homocysteine. The expressions and activities of MMP-2 and TIMP-2 were examined after incubating for 24, 48, and 72 h, and the migration of VSMCs was also examined after incubating for 48 h. Results: Homocysteine (50-1000 μmol/L) increased the production and activation of MMP-2 and expression of TIMP-2 in a dose-dependent manner. However, when incubated with 5000 pmol/L homocysteine, the expression of MMP-2 was up-regulated, but its activity was down-regulated. Increased homocysteine-induced production and ac- tivation of MMP-2 were reduced by rosuvastatin in a dose-dependent manner whereas secretion of TIMP-2 was not significantly altered by rosuvastatin. Homocysteine (50-5000 μmol/L) stimulated the migration of VSMCs in a dose-dependent manner, but this effect was eliminated by rosuvastatin. Conclusions: Homocysteine (50-1000 μmol/L) significantly increased the production and activation of MMP-2, the expression of TIMP-2, and the migration of VSMCs in a dose-dependent manner. Additional extracellular rosuvastatin can decrease the excessive expression and acti- vation of MMP-2 and abnormal migration of VSMCs induced by homocysteine.展开更多
Impairment of vascular smooth muscle cells (VSMC) is recognized as a predisposition factor for atherosclerosis development. We hypothesize that the metabolic syndrome has a direct impact on VSMC migration and phenotyp...Impairment of vascular smooth muscle cells (VSMC) is recognized as a predisposition factor for atherosclerosis development. We hypothesize that the metabolic syndrome has a direct impact on VSMC migration and phenotypic switching, which may increase the incidence of atherosclerotic events. Aortic VSMC were extracted from 10 weeks old C57BL6 mice and incubated for 24 hr in adipocytes conditioned cell culture medium. Adipocytes were extracted from diabetic C57BL6 male mice fed with either a vegetal or an animal High-Fat-Diet (HFD) for 20 weeks. Migration of VSMC in response to conditioned media stimulations was significantly modulated compared to control. The most extended effects on VSMC were triggered by adipocytes from mice fed with animal HFD. These effects were concurrent with increased leptin concentrations and decreased adiponectin levels in conditioned media. A significant up-regulation of CD36 mRNA level was found in VSMC treated with adipocytes from HFD-fed mice. In conclusion, we have shown that the development of adipocyte-induced VSMC alterations is linked to diet fatty acid composition and the degree of metabolic alterations. The modulation of adipokine secretions in the adipose tissue that is linked to metabolic alterations may alter the physiology of VSMC and thus accelerate the development of metabolic-related vascular diseases.展开更多
Atherosclerosis is a chronic inflammatory disease that is characterized by the build-up of lipid-rich plaques in the arterial walls. The standard treatment for patients with atherosclerosis is statin therapy aimed to ...Atherosclerosis is a chronic inflammatory disease that is characterized by the build-up of lipid-rich plaques in the arterial walls. The standard treatment for patients with atherosclerosis is statin therapy aimed to lower serum lipid levels. Despite its widespread use, many patients taking statins continue to experience acute events. Thus, to develop improved and alternative therapies, we previously reported on microRNA-145 (miR-145 micelles) and its ability to inhibit atherosclerosis by targeting vascular smooth muscle cells (VSMCs). Importantly, one dose of miR-145 micelles significantly abrogated disease progression when evaluated two weeks post-administration. Thus, in this study, to evaluate how long the sustained effects of miR-145 micelles can be maintained and towards identifying a dosing regimen that is practical for patients with chronic disease, the therapeutic effects of a single dose of miR-145 micelles were evaluated for up to two months in vivo. After one and two months post-treatment, miR-145 micelles were found to reduce plaque size and overall lesion area compared to all other controls including statins without causing adverse effects. Furthermore, a single dose of miR-145 micelle treatment inhibited VSMC transdifferentiation into pathogenic macrophage-like and osteogenic cells in plaques. Together, our data shows the long-term efficacy and sustained effects of miR-145 micelles that is amenable using a dosing frequency relevant to chronic disease patients.展开更多
Coronary atherosclerosis is a major complication of chronic kidney disease. This condition contributes to the increased mortality in dialysis patients.p-Cresyl sulfate (PCS) is a prototype of protein-bound uremic to...Coronary atherosclerosis is a major complication of chronic kidney disease. This condition contributes to the increased mortality in dialysis patients.p-Cresyl sulfate (PCS) is a prototype of protein-bound uremic toxins that cannot be efficiently removed through routine dialysis procedures. In the present study, ApoE/- mice that underwent 5/6 nephrectomy were randomly divided into two groups, namely, vehicle-treated group (n = 20) and PCS-treated group (n = 20). Mice were sacrificed for en face and immunohistological analyses after 8 or 24 weeks of high-fat diet. Rat aortic vascular smooth muscle cells (VSMCs) were treated with phosphate buffer solution or 500 ltmol/L PCS for in vitro evaluation. PCS-treated mice were observed to suffer increased atherosclerotic lesions after eight weeks of PCS administration. Moreover, 24 weeks of PCS administration also markedly increased the vulnerability index of aortic plaques. PCS was also observed to facilitate the migration and proliferation of VSMCs during the progression of the disease. Moreover, PCS disturbed the balance between matrix metalloproteinases and tissue inhibitor of metalloproteinases within the plaques. Thus, PCS played a vital role in promoting atherogenesis and disturbing the stability of formed plaques probably by targeting VSMCs.展开更多
文摘Objectives Regular consumption of moderate amounts of Chinese yellow wine is associated with a reduced risk of coronary disease. Matrix metalloproteinases (MMPs) that participate in extracellular matrix degradation have been involved in atherosclerotic plaque growth and instability. The present research aimed to study the effects of Chinese yellow wine on the production of homocysteine-induced extracellular MMP-2 in cultured rats’ vascular smooth muscle cells. Methods The effects of different homocysteine levels (0-1000 ?滋mol/l) on MMP-2 production, and the effects of Chinese yellow wine with low alcohol concentrations (12-19%) on homocysteine-induced MMP-2 in cultured rat vascular smooth muscle cells (VSMCs) were examined using gelatin zymography and western blotting. The changes of MMP-2 under various treatments for 12 h, 24 h and 48 h were further compared. Results Homocysteine (50-1000 ?滋mol/l) increased the production of MMP-2 significantly in a dose-dependent manner. Increased production of MMP-2 induced by homocysteine was reduced by extracellularly added Chinese yellow wine. Production of MMP-2 under various treatments for 48 h increased more than 12 h and 24 h. Conclusions Extracellularly added Chinese yellow wine decreased homocysteine-induced MMP-2 secretion. The inhibitory effect of yellow wine on the activation of MMP-2 might contribute to their beneficial effects on the cardiovascular system.
文摘The homocysteine (Hcy)-induced tissue factor (TF) expression in human vascular smooth muscle cells (VSMCs) and the effect of Hcy on the activity of nuclear factor-kappaB (NF-кB) and the expression of inducible nitric oxide synthase (iNOS) were investigated. Human umbilical artery VSMCs were cultured by tissue explanting method, identified by α-actin immunohistochemistry, and incubated with different concentrations of Hcy/PTDC (NF-кB inhibitor). Semi-quantitative RT-PCR was performed to detect the expression of TF mRNA in VSMCs. Flow cytometry was used to assay the expression of TF protein on the surface of VSMCs and the expression of iNOS in VSMCs. Western blot was carried out to detect the expression of NF-кB protein in nuclei. The results showed that Hcy could induce VSMCs expressing TF mRNA significantly after the VSMCs were incubated with Hcy at concentrations of 10, 100, 500 μmol/L respectively. There was low expression level of TF protein on the surface of the resting VSMCs and Hcy could also induce VSMCs expressing TF pro- tein on the cell surface in different concentrations. Additionally, Hcy could rapidly induce the activation of NF-кB and this effect could be significantly inhibited by PDTC. Hcy alone could not induce the expression of iNOS in VSMCs. It was concluded that Hcy could significantly induce the expression of TF in VSMCs and enhance the activation of NF-ΚB, subsequently mediate TF gene expression and protein synthesis. NF-кB-mediated expression of TF in VSMCs might be the important mechanism of atherosclerosis and thrombosis induced by Hcy.
基金supported by grants from the National Key R&D Program of China(No.2021YFC2500500)the National Natural Science Foundation of China(Nos.T2288101 and 82170342)+1 种基金Shanghai Engineering Research Center of Interventional Medicine(No.19DZ2250300)Shanghai Clinical Research Center for Interventional Medicine(No.19MC1910300).
文摘Atherosclerosis is a chronic artery disease that causes various types of cardiovascular dysfunction.Vascular smooth muscle cells(VSMCs),the main components of atherosclerotic plaque,switch from contractile to synthetic phenotypes during atherogenesis.Ubiquitylation is crucial in regulating VSMC phenotypes in atherosclerosis,and it can be reversely regulated by deubiquitinases.However,the specific effects of deubiquitinases on atherosclerosis have not been thoroughly elucidated.In this study,RNAi screening in human aortic smooth muscle cells was performed to explore the effects of OTU family deubiquitinases,which revealed that silencing OTUB1 inhibited PDGF-BB-stimulated VSMC phenotype switch.Further in vivo studies using Apoe−/−mice revealed that knockdown of OTUB1 in VSMCs alleviated atherosclerosis plaque burden in the advanced stage and led to a stable plaque phenotype.Moreover,VSMC proliferation and migration upon PDGF-BB stimulation could be inhibited by silencing OTUB1 in vitro.Unbiased RNA-sequencing data indicated that knocking down OTUB1 influenced VSMC differentiation,adhesion,and proliferation.Mass spectrometry of ubiquitinated protein confirmed that proteins related to cell growth and migration were differentially ubiquitylated.Mechanistically,we found that OTUB1 recognized the K707 residue ubiquitylation of PDGFRβwith its catalytic triad,thereby reducing the K48-linked ubiquitylation of PDGFRβ.Inhibiting OTUB1 in VSMCs could promote PDGFRβdegradation via the ubiquitin–proteasome pathway,so it was beneficial in preventing VSMCs’phenotype switch.These findings revealed that knocking down OTUB1 ameliorated VSMCs’phenotype switch and atherosclerosis progression,indicating that OTUB1 could be a valuable translational therapeutic target in the future.
基金Project supported by the Health Ministry Scientific Research Fund of China (No. WKJ2011-2-018)the Zhejiang Provincial Natural Science Foundation of China (No. Y2100535)+3 种基金the Key Social Development Project of Zhejiang Province (No. 2010A23010)the Science and Technology Projects of Shaoxing (No. 2011A23011)the Science and Technology Plan Project of Zhejiang Province (No. 2012C33040)the Zhejiang Provincial Program for the Cultivation of High-Level Innovative Health Talents, China
文摘Objective: To test the influence of homocysteine on the production and activation of matrix metalloproteinase-2 (MMP-2) and tissue inhibitors of matrix metalloproteinase-2 (TIMP-2) and on cell migration of cultured rat vascular smooth muscle cells (VSMCs). Also, to explore whether rosuvastatin can alter the abnormal secretion and activation of MMP-2 and TIMP-2 and migration of VSMCs induced by homocysteine. Methods: Rat VSMCs were incubated with different concentrations of homocysteine (50-5000 μmol/L). Western blotting and gelatin zymography were used to investigate the expressions and activities of MMP-2 and TIMP-2 in VSMCs in culture medium when induced with homocysteine for 24, 48, and 72 h. Transwell chambers were employed to test the migratory ability of VSMCs when incubated with homocysteine for 48 h. Different concentrations of rosuvastatin (10^-9-10^-5 mol/L) were added when VSMCs were induced with 1 000 pmol/L homocysteine. The expressions and activities of MMP-2 and TIMP-2 were examined after incubating for 24, 48, and 72 h, and the migration of VSMCs was also examined after incubating for 48 h. Results: Homocysteine (50-1000 μmol/L) increased the production and activation of MMP-2 and expression of TIMP-2 in a dose-dependent manner. However, when incubated with 5000 pmol/L homocysteine, the expression of MMP-2 was up-regulated, but its activity was down-regulated. Increased homocysteine-induced production and ac- tivation of MMP-2 were reduced by rosuvastatin in a dose-dependent manner whereas secretion of TIMP-2 was not significantly altered by rosuvastatin. Homocysteine (50-5000 μmol/L) stimulated the migration of VSMCs in a dose-dependent manner, but this effect was eliminated by rosuvastatin. Conclusions: Homocysteine (50-1000 μmol/L) significantly increased the production and activation of MMP-2, the expression of TIMP-2, and the migration of VSMCs in a dose-dependent manner. Additional extracellular rosuvastatin can decrease the excessive expression and acti- vation of MMP-2 and abnormal migration of VSMCs induced by homocysteine.
文摘Impairment of vascular smooth muscle cells (VSMC) is recognized as a predisposition factor for atherosclerosis development. We hypothesize that the metabolic syndrome has a direct impact on VSMC migration and phenotypic switching, which may increase the incidence of atherosclerotic events. Aortic VSMC were extracted from 10 weeks old C57BL6 mice and incubated for 24 hr in adipocytes conditioned cell culture medium. Adipocytes were extracted from diabetic C57BL6 male mice fed with either a vegetal or an animal High-Fat-Diet (HFD) for 20 weeks. Migration of VSMC in response to conditioned media stimulations was significantly modulated compared to control. The most extended effects on VSMC were triggered by adipocytes from mice fed with animal HFD. These effects were concurrent with increased leptin concentrations and decreased adiponectin levels in conditioned media. A significant up-regulation of CD36 mRNA level was found in VSMC treated with adipocytes from HFD-fed mice. In conclusion, we have shown that the development of adipocyte-induced VSMC alterations is linked to diet fatty acid composition and the degree of metabolic alterations. The modulation of adipokine secretions in the adipose tissue that is linked to metabolic alterations may alter the physiology of VSMC and thus accelerate the development of metabolic-related vascular diseases.
基金support by the University of Southern California,the NSF Graduate Research Fellowship Program awarded to N.P.,and the American Heart Association Transformational Project Award(968730)the National Heart,Lung,and Blood Institute(R00HL124279)New Innovator Award(DP2-DK121328)granted to E.J.C.We would also like to thank Dr.Gary Owens for his generosity in providing the SMClin mice used for these studies.
文摘Atherosclerosis is a chronic inflammatory disease that is characterized by the build-up of lipid-rich plaques in the arterial walls. The standard treatment for patients with atherosclerosis is statin therapy aimed to lower serum lipid levels. Despite its widespread use, many patients taking statins continue to experience acute events. Thus, to develop improved and alternative therapies, we previously reported on microRNA-145 (miR-145 micelles) and its ability to inhibit atherosclerosis by targeting vascular smooth muscle cells (VSMCs). Importantly, one dose of miR-145 micelles significantly abrogated disease progression when evaluated two weeks post-administration. Thus, in this study, to evaluate how long the sustained effects of miR-145 micelles can be maintained and towards identifying a dosing regimen that is practical for patients with chronic disease, the therapeutic effects of a single dose of miR-145 micelles were evaluated for up to two months in vivo. After one and two months post-treatment, miR-145 micelles were found to reduce plaque size and overall lesion area compared to all other controls including statins without causing adverse effects. Furthermore, a single dose of miR-145 micelle treatment inhibited VSMC transdifferentiation into pathogenic macrophage-like and osteogenic cells in plaques. Together, our data shows the long-term efficacy and sustained effects of miR-145 micelles that is amenable using a dosing frequency relevant to chronic disease patients.
基金This study was supported by grants from the National Natural Science Foundation of China (Nos. 81370401, 81370397, 81570316, and 81500196).
文摘Coronary atherosclerosis is a major complication of chronic kidney disease. This condition contributes to the increased mortality in dialysis patients.p-Cresyl sulfate (PCS) is a prototype of protein-bound uremic toxins that cannot be efficiently removed through routine dialysis procedures. In the present study, ApoE/- mice that underwent 5/6 nephrectomy were randomly divided into two groups, namely, vehicle-treated group (n = 20) and PCS-treated group (n = 20). Mice were sacrificed for en face and immunohistological analyses after 8 or 24 weeks of high-fat diet. Rat aortic vascular smooth muscle cells (VSMCs) were treated with phosphate buffer solution or 500 ltmol/L PCS for in vitro evaluation. PCS-treated mice were observed to suffer increased atherosclerotic lesions after eight weeks of PCS administration. Moreover, 24 weeks of PCS administration also markedly increased the vulnerability index of aortic plaques. PCS was also observed to facilitate the migration and proliferation of VSMCs during the progression of the disease. Moreover, PCS disturbed the balance between matrix metalloproteinases and tissue inhibitor of metalloproteinases within the plaques. Thus, PCS played a vital role in promoting atherogenesis and disturbing the stability of formed plaques probably by targeting VSMCs.