Formamidine lead triiodide(FAPbI_(3))perovskites have become the most promising photovoltaic materials for perovskite solar cells with record power conversion efficiency(PCE).However,random nucleation,phase transition...Formamidine lead triiodide(FAPbI_(3))perovskites have become the most promising photovoltaic materials for perovskite solar cells with record power conversion efficiency(PCE).However,random nucleation,phase transition,and lattice defects are still the key challenges limiting the quality of FAPbI_(3) films.Previous studies show that the introduction or adding of seeds in the precursor is effective to promote the nucleation and crystallization of perovskite films.Nevertheless,the seed-assisted approach focuses on heterogeneous seeds or hetero-composites,which inevitably induce a lattice-mismatch,the genera-tion of strain or defects,and the phase segregation in the perovskite films.Herein,we first demonstrate that high-quality perovskite films are controllably prepared using α-and δ-phases mixed FAPbI_(3) micro-crystal as the homogeneous seeds with the one-step antisolvent method.The partially dissolved seeds with suitable sizes improve the crystallinity of the perovskite flm with preferable orientation,improved carrier lifetime,and increased carrier mobility.More importantly,the α-phase-containing seeds promote the formation of α-phase FAPbI_(3) films,leading to the reduction of residual lattice strain and the suppres-sion of I-ion migration.Besides,the adding of dimethyl 2,6-pyridine dicarboxylate(DPD)into the pre-cursor further suppresses the generation of defects,contributing to the PCE of devices prepared in air ambient being significantly improved to 23.75%,among the highest PCEs for fully air-processed FAPbI_(3) solar cells.The unpackaged target devices possess a high stability,maintaining 80%of the initial PCE under simulated solar illumination exceeding 800 h.展开更多
Determining homogeneous domains statistically is helpful for engineering geological modeling and rock mass stability evaluation.In this text,a technique that can integrate lithology,geotechnical and structural informa...Determining homogeneous domains statistically is helpful for engineering geological modeling and rock mass stability evaluation.In this text,a technique that can integrate lithology,geotechnical and structural information is proposed to delineate homogeneous domains.This technique is then applied to a high and steep slope along a road.First,geological and geotechnical domains were described based on lithology,faults,and shear zones.Next,topological manifolds were used to eliminate the incompatibility between orientations and other parameters(i.e.trace length and roughness)so that the data concerning various properties of each discontinuity can be matched and characterized in the same Euclidean space.Thus,the influence of implicit combined effect in between parameter sequences on the homogeneous domains could be considered.Deep learning technique was employed to quantify abstract features of the characterization images of discontinuity properties,and to assess the similarity of rock mass structures.The results show that the technique can effectively distinguish structural variations and outperform conventional methods.It can handle multisource engineering geological information and multiple discontinuity parameters.This technique can also minimize the interference of human factors and delineate homogeneous domains based on orientations or multi-parameter with arbitrary distributions to satisfy different engineering requirements.展开更多
Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two line...Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two linearly independent subspaces with deterministic but unknown coordinates.Relying on the two-step criteria,two adaptive detectors based on Gradient tests are proposed,in homogeneous and partially homogeneous clutter plus subspace interference,respectively.Both of the proposed detectors exhibit theoretically constant false alarm rate property against unknown clutter covariance matrix as well as the power level.Numerical results show that,the proposed detectors have better performance than their existing counterparts,especially for mismatches in the signal steering vectors.展开更多
The article synthesizes and presents the results regarding the stability of positive homogeneous systems that have been researched and published in recent years. Next, we provide a sufficient condition for global expo...The article synthesizes and presents the results regarding the stability of positive homogeneous systems that have been researched and published in recent years. Next, we provide a sufficient condition for global exponential stability in the case of discrete-time positive homogeneous systems with an order less than one with time-varying delays.展开更多
Homogeneous binary function products are frequently encountered in the sub-universes modeled by databases,spanning from genealogical trees and sports to education and healthcare,etc.Their properties must be discovered...Homogeneous binary function products are frequently encountered in the sub-universes modeled by databases,spanning from genealogical trees and sports to education and healthcare,etc.Their properties must be discovered and enforced by the software applications managing such data to guarantee plausibility.The(Elementary)Mathematical Data Model provides 17 types of dyadic-based homogeneous binary function product constraint categories.MatBase,an intelligent data and knowledge base management system prototype,allows database designers to simply declare them by only clicking corresponding checkboxes and automatically generates code for enforcing them.This paper describes the algorithms that MatBase uses for enforcing all 17 types of homogeneous binary function product constraint,which may also be employed by developers without access to MatBase.展开更多
Natural minerals-based energy materials have attracted enormous attention because of the advantages of good materials consistency,high production,environmental friendliness,and low cost.The uniform distribution of gra...Natural minerals-based energy materials have attracted enormous attention because of the advantages of good materials consistency,high production,environmental friendliness,and low cost.The uniform distribution of grains can effectively inhibit the aggregation of active materials,improving lithium storage performance.In this work,natural graphite is modified by polyvinylpyrrolidone to obtain modified graphite with reduced size and better dispersion.Natural pyrite composite polyvinylpyrrolidone-modified graphite(pyrite/PG)material with uniform particle distribution is obtained by the ball milling process.The subsequent calcination process converts pyrite/PG into Fe_(1-x)Scompounded with polyvinylpyrrolidone-modified graphite(Fe_(1-x)S/PG).The homogeneous grain distributions of active material can facilitate the faster transfer of electrons and promote the efficient utilization of active materials.The as-prepared Fe_(1-x)S/PG electrode exhibits a remarkably reversible specific capacity of 613.0 mAh·g^(-1)at 0.2 A·g^(-1)after 80 cycles and an excellent rate capability of 523.0 mAh·g^(-1)at 5 A·g^(-1).Even at a higher current density of 10 A·g^(-1),it can deliver a specific capacity of 348.0 mAh·g^(-1).Moreover,the dominant pseudocapacitance in redox reactions accounts for the impressive rate and cycling stability.This work provides a low-cost and facile method to fabricate natural mineral-based anode materials and apprise readers about the impact of uniform particle distribution on lithium storage performance.展开更多
Generation of atmospheric pressure homogeneous air plasma in a large gap(>4 mm)is a challenge.In this study,an atmospheric pressure homogeneous air plasma generated in a gap up to 10 mm is reported,which is based o...Generation of atmospheric pressure homogeneous air plasma in a large gap(>4 mm)is a challenge.In this study,an atmospheric pressure homogeneous air plasma generated in a gap up to 10 mm is reported,which is based on a three-electrode configuration,where a high-voltage(HV)electrode and a middle electrode form a surface dielectric barrier discharge(S-DBD),and together with the ground electrode form the main volume discharge.High-speed photographs confirm that the discharge in the main gap is homogeneous.The gas temperature of the plasma estimated from the N_(2)(C^(3)∏_(u)-B^(3)∏_(g))(Δv=-2)emission is about 320 K,which is close to room temperature.A detailed analysis shows that the discharge ignited between the HV electrode and the middle electrode is serving as an electron source,and the electrons deposited on the dielectric plate are due to the S-DBD along with the applied voltage generating a driving force,which results in a high concentration of seed electrons in the main gap and induces the homogeneous plasma.Further analysis shows that the electric field in the main gap is only about18.45 k V·cm^(-1),which is much lower than the typical breakdown electric field of 30 k V·cm^(-1)for atmospheric pressure air discharge.展开更多
This paper describes the realization of a homogeneous dielectric barrier discharge(DBD)in argon at atmospheric pressure.The effect of the morphology of the dielectric surface(especially the dielectric surface covered ...This paper describes the realization of a homogeneous dielectric barrier discharge(DBD)in argon at atmospheric pressure.The effect of the morphology of the dielectric surface(especially the dielectric surface covered by hollow ceramic beads(99%Al_(2)O_(3))with different diameters)on discharge is investigated.With different dielectrics,the argon DBD presents two discharge modes:a filamentary mode and a homogeneous mode.Fast photography shows that the filamentary mode operates in a streamer discharge,and the homogeneous mode operates in a Townsend discharge regime.It is found that a homogeneous discharge can be generated within a certain voltage range.The voltage amplitude range decreases,and the breakdown voltage increases with the increase in the mean diameter of the ceramic beads.Waveforms of the total current and optical emission signal present stochastic pulses per half voltage cycle for the filamentary mode,whereas there is one single hump per half voltage cycle for the homogeneous mode.In the homogeneous mode,the intensity of the optical emission decreases with the mean diameter of the ceramic beads.The optical emission spectrum is mainly composed of atomic lines of argon and the second positive system of molecular nitrogen.It reveals that the electron density decreases with the increasing mean diameter of the ceramic beads.The vibrational temperature increases with the increasing mean diameter of the ceramic beads.It is believed that a large number of microdischarges are formed,and smaller ceramic beads have a larger activation surface area and more point discharge.Electrons liberated in the shallow well and electrons generated from microdischarges can increase the secondary electron emission coefficient of the cathode and provide initial electrons for discharge continuously.Therefore,the breakdown electric field is reduced,which contributes to easier generation of homogeneous discharge.This is confirmed by the simulation results.展开更多
In this article,we study Kahler metrics on a certain line bundle over some compact Kahler manifolds to find complete Kahler metrics with positive holomorphic sectional(or bisectional)curvatures.Thus,we apply a strateg...In this article,we study Kahler metrics on a certain line bundle over some compact Kahler manifolds to find complete Kahler metrics with positive holomorphic sectional(or bisectional)curvatures.Thus,we apply a strategy to a famous Yau conjecture with a co-homogeneity one geometry.展开更多
Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-elec...Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-electron,multi-step redox reaction associated with sluggish conversion kinetics,subsequently giving rise to a cascade of parasitic issues.In order to smooth reaction kinetics,catalysts are widely introduced to accelerate reaction rate via modulating the energy barrier.Over past decades,a large amount of research has been devoted to the catalyst design and catalytic mechanism exploration,and thus the great progress in electrochemical performance has been realized.Therefore,it is necessary to make a comprehensive review toward key progress in catalyst design and future development pathway.In this review,the basic mechanism of lithium metal batteries is provided along with corresponding advantages and existing challenges detailly described.The main catalysts employed to accelerate cathode reaction with emphasis on their catalytic mechanism are summarized as well.Finally,the rational design and innovative direction toward efficient catalysts are suggested for future application in metal-sulfur/gas battery and beyond.This review is expected to drive and benefit future research on rational catalyst design with multi-parameter synergistic impacts on the activity and stability of next-generation metal battery,thus opening new avenue for sustainable solution to climate change,energy and environmental issues,and the potential industrial economy.展开更多
In this study,the damping responses of uniform soil,equi-proportional fly ash,and local soil as a single unit were investigated.The large-strain cyclic triaxial tests were performed for the specimen compacted at the d...In this study,the damping responses of uniform soil,equi-proportional fly ash,and local soil as a single unit were investigated.The large-strain cyclic triaxial tests were performed for the specimen compacted at the desired density(95%e99%of maximum dry density).The compacted specimens were tested under the loading frequency of 0.3e1 Hz with medium confinement of 70e100 kPa.Also,the unsymmetrical behavior of the hysteresis loop was analyzed using three different damping estimation approaches,i.e.symmetric hysteresis loop(SHL),asymmetric hysteresis loop(ASHL),and the modified American Society for Testing and Materials(ASTM)method.The outcome of the study shows for fly ash,local soil,and layered soil-ash,the ASHL technique has the highest damping value,followed by ASTM and then the SHL approach.The specimens prepared under high density and subjected to high confinement show low damping values.However,the specimens tested at high frequency exhibits high damping behavior.Similarly,the damping value of fly ash determined using the SHL and ASHL methods has a similar profile and reaches a maximum at 1%shear strain value before decreasing.The composite stratified deposit exhibits more dependency on relative compaction,confining pressure,and less on loading frequency.Based on the results,it is highly recommended to use the ASHL approach,especially under large strain conditions irrespective of soil type.The maximum damping ratio of stratified deposits is always in between the damping ratio of local soil and fly ash.The damping ratio of stratified soil and local soil is slightly larger than that of the other soils,although the damping ratio of fly ash is equivalent to that of the sand and clayey soil.These results may be helpful in the accurate determination of the damping properties of the layered soil-ash system that is required in the seismic response analysis.展开更多
In this work, we prove the existence and uniqueness of the solution of the generalized Schrödinger type homogeneous model in the periodic distributional space P’. Furthermore, we prove that the solution depends ...In this work, we prove the existence and uniqueness of the solution of the generalized Schrödinger type homogeneous model in the periodic distributional space P’. Furthermore, we prove that the solution depends continuously respect to the initial data in P’. Introducing a family of weakly continuous operators, we prove that this family is a group of operators in P’. Then, with this family of operators, we get a fine version of the existence and dependency continuous theorem obtained. Finally, we give some remarks derived from this study.展开更多
This paper investigates the homogeneity of United States aircraft reconnaissance data and the impact of these data on the homogeneity of the tropical cyclone(TC)best track data for the seasons 1949-1987 generated by t...This paper investigates the homogeneity of United States aircraft reconnaissance data and the impact of these data on the homogeneity of the tropical cyclone(TC)best track data for the seasons 1949-1987 generated by the China Meteorological Administration(CMA).The evaluation of the reconnaissance data shows that the minimum central sea level pressure(MCP)data are relatively homogeneous,whereas the maximum sustained wind(MSW)data show both overestimations and spurious abrupt changes.Statistical comparisons suggest that both the reconnaissance MCP and MSW were well incorporated into the CMA TC best track dataset.Although no spurious abrupt changes were evident in the reconnaissance-related best track MCP data,two spurious changepoints were identified in the remainder of the best-track MCP data.Furthermore,the influence of the reconnaissance MSWs seems to extend to the best track MSWs unrelated to reconnaissance,which might reflect the optimistic confidence in making higher estimates due to the overestimated extreme wind“observations”.In addition,the overestimation of either the reconnaissance MSWs or the best track MSWs was greater during the early decades compared to later decades,which reflects the important influence of reconnaissance data on the CMA TC best track dataset.The wind-pressure relationship(WPR)used in the CMA TC best track dataset is also evaluated and is found to overestimate the MSW,which may lead to inhomogeneity within the dataset between the aircraft reconnaissance era and the satellite era.展开更多
Laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of welding parameters on weld formation,microstructure homogeneity and mechanical properties were investigated.The results showed that lase...Laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of welding parameters on weld formation,microstructure homogeneity and mechanical properties were investigated.The results showed that laser-arc hybrid welding was beneficial to improve the weld formation of magnesium alloy by inhibiting the defect of undercut and pores.The weld microstructure was mainly columnar grains neighboring the fusion line and equiaxed grains at the weld center.It was interesting that the grain size at the upper arc zone was smaller than that at the lower laser zone,with the difference mainly affected by laser power rather than welding current and welding speed.The welding parameters were optimized as laser power of 3.5 kW,welding current of 100 A and welding speed of 1.5 m/min.In this case,the weld was free of undercut and pores,and the tensile strength and elongation rate reached 252 MPa and 11.2%,respectively.Finally,the microstructure homogeneity was illustrated according to the heat distribution,and the evolution law of tensile properties was discussed basing on the weld formation and microstructure characteristics.展开更多
This article proposes a modeling method for C/C-ZrC composite materials.According to the superposition of Gaussian random field,the original gray model is obtained,and the threshold segmentation method is used to gene...This article proposes a modeling method for C/C-ZrC composite materials.According to the superposition of Gaussian random field,the original gray model is obtained,and the threshold segmentation method is used to generate the C-ZrC inclusion model.Finally,the fiber structure is added to construct the microstructure of the three-phase plain weave composite.The reconstructed inclusions can meet the randomness of the shape and have a uniform distribution.Using an algorithm based on asymptotic homogenization and finite element method,the equivalent thermal conductivity prediction of the microstructure finite element model was carried out,and the influence of component volume fraction on material thermal properties was explored.The sensitivity of model parameters was studied,including the size,mesh sensitivity,Gaussian complexity,and correlation length of the RVE model,and the optimal calculation model was selected.The results indicate that the volume fraction of the inclusion phase has a significant impact on the equivalent thermal conductivity of the material.As the volume fraction of carbon fiber and ZrC increases,the equivalent thermal conductivity tensor gradually decreases.This model can be used to explore the impact of materialmicrostructure on the results,and numerical simulations have studied the relationship between structure and performance,providing the possibility of designing microstructure based on performance.展开更多
Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting app...Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting applications.With respect to epoxy-impregnated REBCO composite magnets that comprise multilayer components,the thermomechanical characteristics of each component differ considerably under extremely low temperatures and strong electromagnetic fields.Traditional numerical models include homogenized orthotropic models,which simplify overall field calculation but miss detailed multi-physics aspects,and full refinement(FR)ones that are thorough but computationally demanding.Herein,we propose an extended multi-scale approach for analyzing the multi-field characteristics of an epoxy-impregnated composite magnet assembled by HTS pancake coils.This approach combines a global homogenization(GH)scheme based on the homogenized electromagnetic T-A model,a method for solving Maxwell's equations for superconducting materials based on the current vector potential T and the magnetic field vector potential A,and a homogenized orthotropic thermoelastic model to assess the electromagnetic and thermoelastic properties at the macroscopic scale.We then identify“dangerous regions”at the macroscopic scale and obtain finer details using a local refinement(LR)scheme to capture the responses of each component material in the HTS composite tapes at the mesoscopic scale.The results of the present GH-LR multi-scale approach agree well with those of the FR scheme and the experimental data in the literature,indicating that the present approach is accurate and efficient.The proposed GH-LR multi-scale approach can serve as a valuable tool for evaluating the risk of failure in large-scale HTS composite magnets.展开更多
With the continuous expansion of medical student enrollment,the number of clinical teaching bases is gradually increasing.However,there are significant differences in clinical teaching management models and teaching l...With the continuous expansion of medical student enrollment,the number of clinical teaching bases is gradually increasing.However,there are significant differences in clinical teaching management models and teaching levels among different bases.Most clinical teaching bases have incomplete teaching management systems,inadequate teaching management institutions,insufficient teaching personnel,and inadequate implementation of teaching rules and regulations.This article combines the construction practice of three-level clinical teaching base of the General Medicine College and the First Affiliated Hospital of Xi’an Medical University.We establish a standardized management system for the three-level clinical teaching base;implement a teaching supervision system and strengthen the monitoring of teaching quality;adopt multiple evaluations to test the effectiveness of clinical teaching implementation;explore the path of homogenization construction of teaching bases in terms of unified teacher training,promoting the development of teacher teaching abilities with equal quality and excellence,and providing a reference for improving the quality of medical talent training.展开更多
The delayed S-shaped software reliability growth model (SRGM) is one of the non-homogeneous Poisson process (NHPP) models which have been proposed for software reliability assessment. The model is distinctive because ...The delayed S-shaped software reliability growth model (SRGM) is one of the non-homogeneous Poisson process (NHPP) models which have been proposed for software reliability assessment. The model is distinctive because it has a mean value function that reflects the delay in failure reporting: there is a delay between failure detection and reporting time. The model captures error detection, isolation, and removal processes, thus is appropriate for software reliability analysis. Predictive analysis in software testing is useful in modifying, debugging, and determining when to terminate software development testing processes. However, Bayesian predictive analyses on the delayed S-shaped model have not been extensively explored. This paper uses the delayed S-shaped SRGM to address four issues in one-sample prediction associated with the software development testing process. Bayesian approach based on non-informative priors was used to derive explicit solutions for the four issues, and the developed methodologies were illustrated using real data.展开更多
Degradation of cellulose to chemicals is one of major routes for biomass conversion. Here, a new simple and two-step method has been developed to convert cellulose in its homogeneously alkaline solution to organic aci...Degradation of cellulose to chemicals is one of major routes for biomass conversion. Here, a new simple and two-step method has been developed to convert cellulose in its homogeneously alkaline solution to organic acids under atmospheric pressure at mild temperature. At first, cellulose was degraded to smM1 molecular intermediates at 110 ℃ for 3 h under atmospheric pressure, and then it was oxidized with H202 at 50 ℃ for 4 h. Under the optimal condition, 73.5% conversion of cellulose could be achieved, and the yield of organic acids was 32.8% (formic acid), 11.6% (lactic acid), and 2.3% (oxalic acid), respectively. It is noteworthy that the new strategy reduces energy consumption in the process of reaction, unlike the hydrothermal reaction under high temperature and high pressure.展开更多
基金supported by the National Natural Science Foundation of China (61604131,62025403)the Natural Science Foundation of Zhejiang Province (LY19F040009)+1 种基金the Fundamental Research Funds of Zhejiang SciTech University (23062120-Y)the Open Project of Key Laboratory of Solar Energy Utilization and Energy Saving Technology of Zhejiang Province (ZJS-OP-2020-07)
文摘Formamidine lead triiodide(FAPbI_(3))perovskites have become the most promising photovoltaic materials for perovskite solar cells with record power conversion efficiency(PCE).However,random nucleation,phase transition,and lattice defects are still the key challenges limiting the quality of FAPbI_(3) films.Previous studies show that the introduction or adding of seeds in the precursor is effective to promote the nucleation and crystallization of perovskite films.Nevertheless,the seed-assisted approach focuses on heterogeneous seeds or hetero-composites,which inevitably induce a lattice-mismatch,the genera-tion of strain or defects,and the phase segregation in the perovskite films.Herein,we first demonstrate that high-quality perovskite films are controllably prepared using α-and δ-phases mixed FAPbI_(3) micro-crystal as the homogeneous seeds with the one-step antisolvent method.The partially dissolved seeds with suitable sizes improve the crystallinity of the perovskite flm with preferable orientation,improved carrier lifetime,and increased carrier mobility.More importantly,the α-phase-containing seeds promote the formation of α-phase FAPbI_(3) films,leading to the reduction of residual lattice strain and the suppres-sion of I-ion migration.Besides,the adding of dimethyl 2,6-pyridine dicarboxylate(DPD)into the pre-cursor further suppresses the generation of defects,contributing to the PCE of devices prepared in air ambient being significantly improved to 23.75%,among the highest PCEs for fully air-processed FAPbI_(3) solar cells.The unpackaged target devices possess a high stability,maintaining 80%of the initial PCE under simulated solar illumination exceeding 800 h.
基金the National Natural Science Foundation of China(Grant Nos.41941017 and U1702241).
文摘Determining homogeneous domains statistically is helpful for engineering geological modeling and rock mass stability evaluation.In this text,a technique that can integrate lithology,geotechnical and structural information is proposed to delineate homogeneous domains.This technique is then applied to a high and steep slope along a road.First,geological and geotechnical domains were described based on lithology,faults,and shear zones.Next,topological manifolds were used to eliminate the incompatibility between orientations and other parameters(i.e.trace length and roughness)so that the data concerning various properties of each discontinuity can be matched and characterized in the same Euclidean space.Thus,the influence of implicit combined effect in between parameter sequences on the homogeneous domains could be considered.Deep learning technique was employed to quantify abstract features of the characterization images of discontinuity properties,and to assess the similarity of rock mass structures.The results show that the technique can effectively distinguish structural variations and outperform conventional methods.It can handle multisource engineering geological information and multiple discontinuity parameters.This technique can also minimize the interference of human factors and delineate homogeneous domains based on orientations or multi-parameter with arbitrary distributions to satisfy different engineering requirements.
基金supported by the National Natural Science Foundation of China(61971432)Taishan Scholar Project of Shandong Province(tsqn201909156)the Outstanding Youth Innovation Team Program of University in Shandong Province(2019KJN031)。
文摘Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two linearly independent subspaces with deterministic but unknown coordinates.Relying on the two-step criteria,two adaptive detectors based on Gradient tests are proposed,in homogeneous and partially homogeneous clutter plus subspace interference,respectively.Both of the proposed detectors exhibit theoretically constant false alarm rate property against unknown clutter covariance matrix as well as the power level.Numerical results show that,the proposed detectors have better performance than their existing counterparts,especially for mismatches in the signal steering vectors.
文摘The article synthesizes and presents the results regarding the stability of positive homogeneous systems that have been researched and published in recent years. Next, we provide a sufficient condition for global exponential stability in the case of discrete-time positive homogeneous systems with an order less than one with time-varying delays.
文摘Homogeneous binary function products are frequently encountered in the sub-universes modeled by databases,spanning from genealogical trees and sports to education and healthcare,etc.Their properties must be discovered and enforced by the software applications managing such data to guarantee plausibility.The(Elementary)Mathematical Data Model provides 17 types of dyadic-based homogeneous binary function product constraint categories.MatBase,an intelligent data and knowledge base management system prototype,allows database designers to simply declare them by only clicking corresponding checkboxes and automatically generates code for enforcing them.This paper describes the algorithms that MatBase uses for enforcing all 17 types of homogeneous binary function product constraint,which may also be employed by developers without access to MatBase.
基金financially supported by the National Natural Science Foundation of China (Nos.51974222 and 52034011)。
文摘Natural minerals-based energy materials have attracted enormous attention because of the advantages of good materials consistency,high production,environmental friendliness,and low cost.The uniform distribution of grains can effectively inhibit the aggregation of active materials,improving lithium storage performance.In this work,natural graphite is modified by polyvinylpyrrolidone to obtain modified graphite with reduced size and better dispersion.Natural pyrite composite polyvinylpyrrolidone-modified graphite(pyrite/PG)material with uniform particle distribution is obtained by the ball milling process.The subsequent calcination process converts pyrite/PG into Fe_(1-x)Scompounded with polyvinylpyrrolidone-modified graphite(Fe_(1-x)S/PG).The homogeneous grain distributions of active material can facilitate the faster transfer of electrons and promote the efficient utilization of active materials.The as-prepared Fe_(1-x)S/PG electrode exhibits a remarkably reversible specific capacity of 613.0 mAh·g^(-1)at 0.2 A·g^(-1)after 80 cycles and an excellent rate capability of 523.0 mAh·g^(-1)at 5 A·g^(-1).Even at a higher current density of 10 A·g^(-1),it can deliver a specific capacity of 348.0 mAh·g^(-1).Moreover,the dominant pseudocapacitance in redox reactions accounts for the impressive rate and cycling stability.This work provides a low-cost and facile method to fabricate natural mineral-based anode materials and apprise readers about the impact of uniform particle distribution on lithium storage performance.
基金supported by National Natural Science Foundation of China(Nos.52130701,51977096,52277150,and12005076)the National Key Research and Development Program of China(No.2021YFE0114700)。
文摘Generation of atmospheric pressure homogeneous air plasma in a large gap(>4 mm)is a challenge.In this study,an atmospheric pressure homogeneous air plasma generated in a gap up to 10 mm is reported,which is based on a three-electrode configuration,where a high-voltage(HV)electrode and a middle electrode form a surface dielectric barrier discharge(S-DBD),and together with the ground electrode form the main volume discharge.High-speed photographs confirm that the discharge in the main gap is homogeneous.The gas temperature of the plasma estimated from the N_(2)(C^(3)∏_(u)-B^(3)∏_(g))(Δv=-2)emission is about 320 K,which is close to room temperature.A detailed analysis shows that the discharge ignited between the HV electrode and the middle electrode is serving as an electron source,and the electrons deposited on the dielectric plate are due to the S-DBD along with the applied voltage generating a driving force,which results in a high concentration of seed electrons in the main gap and induces the homogeneous plasma.Further analysis shows that the electric field in the main gap is only about18.45 k V·cm^(-1),which is much lower than the typical breakdown electric field of 30 k V·cm^(-1)for atmospheric pressure air discharge.
基金supported by National Natural Science Foundation of China(Nos.11875121,51977057,11575050,11875014)the Hebei Province Natural Science Foundation(No.A2022201036)。
文摘This paper describes the realization of a homogeneous dielectric barrier discharge(DBD)in argon at atmospheric pressure.The effect of the morphology of the dielectric surface(especially the dielectric surface covered by hollow ceramic beads(99%Al_(2)O_(3))with different diameters)on discharge is investigated.With different dielectrics,the argon DBD presents two discharge modes:a filamentary mode and a homogeneous mode.Fast photography shows that the filamentary mode operates in a streamer discharge,and the homogeneous mode operates in a Townsend discharge regime.It is found that a homogeneous discharge can be generated within a certain voltage range.The voltage amplitude range decreases,and the breakdown voltage increases with the increase in the mean diameter of the ceramic beads.Waveforms of the total current and optical emission signal present stochastic pulses per half voltage cycle for the filamentary mode,whereas there is one single hump per half voltage cycle for the homogeneous mode.In the homogeneous mode,the intensity of the optical emission decreases with the mean diameter of the ceramic beads.The optical emission spectrum is mainly composed of atomic lines of argon and the second positive system of molecular nitrogen.It reveals that the electron density decreases with the increasing mean diameter of the ceramic beads.The vibrational temperature increases with the increasing mean diameter of the ceramic beads.It is believed that a large number of microdischarges are formed,and smaller ceramic beads have a larger activation surface area and more point discharge.Electrons liberated in the shallow well and electrons generated from microdischarges can increase the secondary electron emission coefficient of the cathode and provide initial electrons for discharge continuously.Therefore,the breakdown electric field is reduced,which contributes to easier generation of homogeneous discharge.This is confirmed by the simulation results.
文摘In this article,we study Kahler metrics on a certain line bundle over some compact Kahler manifolds to find complete Kahler metrics with positive holomorphic sectional(or bisectional)curvatures.Thus,we apply a strategy to a famous Yau conjecture with a co-homogeneity one geometry.
基金supported by the National Natural Science Foundation of China(52272194)Liaoning Revitalization Talents Program(XLYC2007155)。
文摘Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-electron,multi-step redox reaction associated with sluggish conversion kinetics,subsequently giving rise to a cascade of parasitic issues.In order to smooth reaction kinetics,catalysts are widely introduced to accelerate reaction rate via modulating the energy barrier.Over past decades,a large amount of research has been devoted to the catalyst design and catalytic mechanism exploration,and thus the great progress in electrochemical performance has been realized.Therefore,it is necessary to make a comprehensive review toward key progress in catalyst design and future development pathway.In this review,the basic mechanism of lithium metal batteries is provided along with corresponding advantages and existing challenges detailly described.The main catalysts employed to accelerate cathode reaction with emphasis on their catalytic mechanism are summarized as well.Finally,the rational design and innovative direction toward efficient catalysts are suggested for future application in metal-sulfur/gas battery and beyond.This review is expected to drive and benefit future research on rational catalyst design with multi-parameter synergistic impacts on the activity and stability of next-generation metal battery,thus opening new avenue for sustainable solution to climate change,energy and environmental issues,and the potential industrial economy.
文摘In this study,the damping responses of uniform soil,equi-proportional fly ash,and local soil as a single unit were investigated.The large-strain cyclic triaxial tests were performed for the specimen compacted at the desired density(95%e99%of maximum dry density).The compacted specimens were tested under the loading frequency of 0.3e1 Hz with medium confinement of 70e100 kPa.Also,the unsymmetrical behavior of the hysteresis loop was analyzed using three different damping estimation approaches,i.e.symmetric hysteresis loop(SHL),asymmetric hysteresis loop(ASHL),and the modified American Society for Testing and Materials(ASTM)method.The outcome of the study shows for fly ash,local soil,and layered soil-ash,the ASHL technique has the highest damping value,followed by ASTM and then the SHL approach.The specimens prepared under high density and subjected to high confinement show low damping values.However,the specimens tested at high frequency exhibits high damping behavior.Similarly,the damping value of fly ash determined using the SHL and ASHL methods has a similar profile and reaches a maximum at 1%shear strain value before decreasing.The composite stratified deposit exhibits more dependency on relative compaction,confining pressure,and less on loading frequency.Based on the results,it is highly recommended to use the ASHL approach,especially under large strain conditions irrespective of soil type.The maximum damping ratio of stratified deposits is always in between the damping ratio of local soil and fly ash.The damping ratio of stratified soil and local soil is slightly larger than that of the other soils,although the damping ratio of fly ash is equivalent to that of the sand and clayey soil.These results may be helpful in the accurate determination of the damping properties of the layered soil-ash system that is required in the seismic response analysis.
文摘In this work, we prove the existence and uniqueness of the solution of the generalized Schrödinger type homogeneous model in the periodic distributional space P’. Furthermore, we prove that the solution depends continuously respect to the initial data in P’. Introducing a family of weakly continuous operators, we prove that this family is a group of operators in P’. Then, with this family of operators, we get a fine version of the existence and dependency continuous theorem obtained. Finally, we give some remarks derived from this study.
文摘This paper investigates the homogeneity of United States aircraft reconnaissance data and the impact of these data on the homogeneity of the tropical cyclone(TC)best track data for the seasons 1949-1987 generated by the China Meteorological Administration(CMA).The evaluation of the reconnaissance data shows that the minimum central sea level pressure(MCP)data are relatively homogeneous,whereas the maximum sustained wind(MSW)data show both overestimations and spurious abrupt changes.Statistical comparisons suggest that both the reconnaissance MCP and MSW were well incorporated into the CMA TC best track dataset.Although no spurious abrupt changes were evident in the reconnaissance-related best track MCP data,two spurious changepoints were identified in the remainder of the best-track MCP data.Furthermore,the influence of the reconnaissance MSWs seems to extend to the best track MSWs unrelated to reconnaissance,which might reflect the optimistic confidence in making higher estimates due to the overestimated extreme wind“observations”.In addition,the overestimation of either the reconnaissance MSWs or the best track MSWs was greater during the early decades compared to later decades,which reflects the important influence of reconnaissance data on the CMA TC best track dataset.The wind-pressure relationship(WPR)used in the CMA TC best track dataset is also evaluated and is found to overestimate the MSW,which may lead to inhomogeneity within the dataset between the aircraft reconnaissance era and the satellite era.
基金financially supported by the National Natural Science Foundation of China(grant nos.51905391,52025052 and 51975405)。
文摘Laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of welding parameters on weld formation,microstructure homogeneity and mechanical properties were investigated.The results showed that laser-arc hybrid welding was beneficial to improve the weld formation of magnesium alloy by inhibiting the defect of undercut and pores.The weld microstructure was mainly columnar grains neighboring the fusion line and equiaxed grains at the weld center.It was interesting that the grain size at the upper arc zone was smaller than that at the lower laser zone,with the difference mainly affected by laser power rather than welding current and welding speed.The welding parameters were optimized as laser power of 3.5 kW,welding current of 100 A and welding speed of 1.5 m/min.In this case,the weld was free of undercut and pores,and the tensile strength and elongation rate reached 252 MPa and 11.2%,respectively.Finally,the microstructure homogeneity was illustrated according to the heat distribution,and the evolution law of tensile properties was discussed basing on the weld formation and microstructure characteristics.
基金Lisheng Liu acknowledges the support from the National Natural Science Foundation of China(No.11972267).
文摘This article proposes a modeling method for C/C-ZrC composite materials.According to the superposition of Gaussian random field,the original gray model is obtained,and the threshold segmentation method is used to generate the C-ZrC inclusion model.Finally,the fiber structure is added to construct the microstructure of the three-phase plain weave composite.The reconstructed inclusions can meet the randomness of the shape and have a uniform distribution.Using an algorithm based on asymptotic homogenization and finite element method,the equivalent thermal conductivity prediction of the microstructure finite element model was carried out,and the influence of component volume fraction on material thermal properties was explored.The sensitivity of model parameters was studied,including the size,mesh sensitivity,Gaussian complexity,and correlation length of the RVE model,and the optimal calculation model was selected.The results indicate that the volume fraction of the inclusion phase has a significant impact on the equivalent thermal conductivity of the material.As the volume fraction of carbon fiber and ZrC increases,the equivalent thermal conductivity tensor gradually decreases.This model can be used to explore the impact of materialmicrostructure on the results,and numerical simulations have studied the relationship between structure and performance,providing the possibility of designing microstructure based on performance.
基金Project supported by the National Natural Science Foundation of China(Nos.11932008 and 12272156)the Fundamental Research Funds for the Central Universities(No.lzujbky-2022-kb06)+1 种基金the Gansu Science and Technology ProgramLanzhou City’s Scientific Research Funding Subsidy to Lanzhou University of China。
文摘Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting applications.With respect to epoxy-impregnated REBCO composite magnets that comprise multilayer components,the thermomechanical characteristics of each component differ considerably under extremely low temperatures and strong electromagnetic fields.Traditional numerical models include homogenized orthotropic models,which simplify overall field calculation but miss detailed multi-physics aspects,and full refinement(FR)ones that are thorough but computationally demanding.Herein,we propose an extended multi-scale approach for analyzing the multi-field characteristics of an epoxy-impregnated composite magnet assembled by HTS pancake coils.This approach combines a global homogenization(GH)scheme based on the homogenized electromagnetic T-A model,a method for solving Maxwell's equations for superconducting materials based on the current vector potential T and the magnetic field vector potential A,and a homogenized orthotropic thermoelastic model to assess the electromagnetic and thermoelastic properties at the macroscopic scale.We then identify“dangerous regions”at the macroscopic scale and obtain finer details using a local refinement(LR)scheme to capture the responses of each component material in the HTS composite tapes at the mesoscopic scale.The results of the present GH-LR multi-scale approach agree well with those of the FR scheme and the experimental data in the literature,indicating that the present approach is accurate and efficient.The proposed GH-LR multi-scale approach can serve as a valuable tool for evaluating the risk of failure in large-scale HTS composite magnets.
基金2022 Education and Teaching Reform Research Project of Xi’an Medical University“Construction and Practice of the Teaching Quality Assurance System in the Three-Level Teaching Base of General Practice Medicine Under the Internet+Model”(Project number:2022JG-05)。
文摘With the continuous expansion of medical student enrollment,the number of clinical teaching bases is gradually increasing.However,there are significant differences in clinical teaching management models and teaching levels among different bases.Most clinical teaching bases have incomplete teaching management systems,inadequate teaching management institutions,insufficient teaching personnel,and inadequate implementation of teaching rules and regulations.This article combines the construction practice of three-level clinical teaching base of the General Medicine College and the First Affiliated Hospital of Xi’an Medical University.We establish a standardized management system for the three-level clinical teaching base;implement a teaching supervision system and strengthen the monitoring of teaching quality;adopt multiple evaluations to test the effectiveness of clinical teaching implementation;explore the path of homogenization construction of teaching bases in terms of unified teacher training,promoting the development of teacher teaching abilities with equal quality and excellence,and providing a reference for improving the quality of medical talent training.
文摘The delayed S-shaped software reliability growth model (SRGM) is one of the non-homogeneous Poisson process (NHPP) models which have been proposed for software reliability assessment. The model is distinctive because it has a mean value function that reflects the delay in failure reporting: there is a delay between failure detection and reporting time. The model captures error detection, isolation, and removal processes, thus is appropriate for software reliability analysis. Predictive analysis in software testing is useful in modifying, debugging, and determining when to terminate software development testing processes. However, Bayesian predictive analyses on the delayed S-shaped model have not been extensively explored. This paper uses the delayed S-shaped SRGM to address four issues in one-sample prediction associated with the software development testing process. Bayesian approach based on non-informative priors was used to derive explicit solutions for the four issues, and the developed methodologies were illustrated using real data.
基金This work was supported by the National Natural Science Foundation of China (No.51373162), and the Natural Science Foundation of Anhui Province (No.1408085MKL03).
文摘Degradation of cellulose to chemicals is one of major routes for biomass conversion. Here, a new simple and two-step method has been developed to convert cellulose in its homogeneously alkaline solution to organic acids under atmospheric pressure at mild temperature. At first, cellulose was degraded to smM1 molecular intermediates at 110 ℃ for 3 h under atmospheric pressure, and then it was oxidized with H202 at 50 ℃ for 4 h. Under the optimal condition, 73.5% conversion of cellulose could be achieved, and the yield of organic acids was 32.8% (formic acid), 11.6% (lactic acid), and 2.3% (oxalic acid), respectively. It is noteworthy that the new strategy reduces energy consumption in the process of reaction, unlike the hydrothermal reaction under high temperature and high pressure.