In this article,time fractional Fornberg-Whitham equation of He’s fractional derivative is studied.To transform the fractional model into its equivalent differential equation,the fractional complex transform is used ...In this article,time fractional Fornberg-Whitham equation of He’s fractional derivative is studied.To transform the fractional model into its equivalent differential equation,the fractional complex transform is used and He’s homotopy perturbation method is implemented to get the approximate analytical solutions of the fractional-order problems.The graphs are plotted to analysis the fractional-order mathematical modeling.展开更多
This study considers an MHD Jeffery-Hamel nanofluid flow with distinct nanoparticles such as copper,Al_(2)O_(3)and SiO_(2)between two rigid non-parallel plane walls with the fuzzy extension of the generalized dual par...This study considers an MHD Jeffery-Hamel nanofluid flow with distinct nanoparticles such as copper,Al_(2)O_(3)and SiO_(2)between two rigid non-parallel plane walls with the fuzzy extension of the generalized dual parametric homotopy algorithm.The nanofluids have been formulated to enhance the thermophysical characteristics of fluids,including thermal diffusivity,conductivity,convective heat transfer coefficients and viscosity.Due to the presence of distinct nanofluids,a change in the value of volume fraction occurs that influences the velocity profiles of the flow.The short value of nanoparticles volume fraction is considered an uncertain parameter and represented in a triangular fuzzy number range among[0.0,0.1,0.2].A novel generalized dual parametric homotopy algorithm with fuzzy extension is used here to study the fuzzy velocities at various channel positions.Finally,the effectiveness of the proposed approach has been demonstrated through a comparison with the available results in the crisp case.展开更多
In this paper, the asymmetric laminar flow in a porous channel with expanding or contracting walls is investigated. The governing equations are reduced to ordinary ones by using suitable similar transformations. Homot...In this paper, the asymmetric laminar flow in a porous channel with expanding or contracting walls is investigated. The governing equations are reduced to ordinary ones by using suitable similar transformations. Homotopy analysis method (HAM) is employed to obtain the expres- sions for velocity fields. Graphs are sketched for values of parameters and associated dynamic characteristics, especially the expansion ratio, are analyzed in detail.展开更多
A ratio approach based on the simple ratio test associated with the terms of homotopy series was proposed by the author in the previous publications.It was shown in the latter through various comparative physical mode...A ratio approach based on the simple ratio test associated with the terms of homotopy series was proposed by the author in the previous publications.It was shown in the latter through various comparative physical models that the ratio approach of identifying the range of the convergence control parameter and also an optimal value for it in the homotopy analysis method is a promising alternative to the classically used h-level curves or to the minimizing the residual(squared)error.A mathematical analysis is targeted here to prove the equivalence of both the ratio approach and the traditional residual approach,especially regarding the root-finding problems via the homotopy analysis method.Examples are provided to further justify this.Moreover,it is conjectured that every nonlinear differential equation can be considered as a root-finding problem by plugging a parameter in it from a physical viewpoint.Two examples from the boundary and initial and value problems are provided to verify this assertion.Hence,besides the advantages as deciphered in the previous publications,the feasibility of the ratio approach over the traditional residual approach is made clearer in this paper.展开更多
In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomi...In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomials [1]. The analytical results of examples are calculated in terms of convergent series with easily computed components [2].展开更多
The main aim of the paper is to examine the concentration of the longitudinal dispersion phenomenon arising in fluid flow through porous media. These phenomenon yields a partial differential equation namely Burger’s ...The main aim of the paper is to examine the concentration of the longitudinal dispersion phenomenon arising in fluid flow through porous media. These phenomenon yields a partial differential equation namely Burger’s equation, which is solved by mixture of the new integral transform and the homotopy perturbation method under suitable conditions and the standard assumption. This method provides an analytical approximation in a rapidly convergent sequence with in exclusive manner computed terms. Its rapid convergence shows that the method is trustworthy and introduces a significant improvement in solving nonlinear partial differential equations over existing methods. It is concluded that the behaviour of concentration in longitudinal dispersion phenomenon is decreases as distance x is increasing with fixed time t > 0 and slightly increases with time t.展开更多
The flow of a micropolar fluid through a porous channel with expanding or contracting walls of different permeabilities is investigated. Two cases are considered, in which opposing walls undergo either uniform or non-...The flow of a micropolar fluid through a porous channel with expanding or contracting walls of different permeabilities is investigated. Two cases are considered, in which opposing walls undergo either uniform or non-uniform motion. In the first case, the homotopy analysis method (HAM) is used'to obtain the expressions for the velocity and micro-rotation fields. Graphs are sketched for some parameters. The results show that the expansion ratio and the different permeabilities have important effects on the dynamic characteristics of the fluid. Following Xu's model, in the second case which is more general, the wall expansion ratio varies with time. Under this assumption, the governing equations axe transformed into nonlinear partial differential equations that can also be solved analytically by the HAM. In the process, both algebraic and exponential models are considered to describe the evolution of α(t) from the initial state α0 to the final state al. As a result, the time-dependent solutions are found to approach the steady state very rapidly. The results show that the time-dependent variation of the wall expansion ratio can be ignored because of its limited effects.展开更多
In this paper Homotopy Analysis Method(HAM) is implemented for obtaining approximate solutions of(2+1)-dimensional Navier-Stokes equations with perturbation terms. The initial approximations are obtained using linear ...In this paper Homotopy Analysis Method(HAM) is implemented for obtaining approximate solutions of(2+1)-dimensional Navier-Stokes equations with perturbation terms. The initial approximations are obtained using linear systems of the Navier-Stokes equations; by the iterations formula of HAM, the first approximation solutions and the second approximation solutions are successively obtained and Homotopy Perturbation Method(HPM) is also used to solve these equations; finally,approximate solutions by HAM of(2+1)-dimensional Navier-Stokes equations without perturbation terms and with perturbation terms are compared. Because of the freedom of choice the auxiliary parameter of HAM, the results demonstrate that the rapid convergence and the high accuracy of the HAM in solving Navier-Stokes equations; due to the effects of perturbation terms, the 3 rd-order approximation solutions by HAM and HPM have great fluctuation.展开更多
In this paper, we present a comparative study between the modified Sumudu decomposition method (MSDM) and homotopy perturbation method (HPM). The study outlines the important features of the two methods. The analysis ...In this paper, we present a comparative study between the modified Sumudu decomposition method (MSDM) and homotopy perturbation method (HPM). The study outlines the important features of the two methods. The analysis will be explained by discussing the nonhomogeneous Kortewege-de Vries (KdV) problems.展开更多
In this paper, homotopy perturbation method is applied to solve moving boundary and isoperimetric problems. This method does not depend upon a small parameter in the equation. homotopy is constructed with an imbedding...In this paper, homotopy perturbation method is applied to solve moving boundary and isoperimetric problems. This method does not depend upon a small parameter in the equation. homotopy is constructed with an imbedding parameter p, which is considered as a “small parameter”. Finally, we use combined homotopy perturbation method and Green’s function method for solving second order problems. Some examples are given to illustrate the effectiveness of methods. The results show that these methods provides a powerful mathematical tools for solving problems.展开更多
In this paper, a powerful analytical method, called He’s homotopy perturbation method is applied to obtaining the approximate periodic solutions for some nonlinear differential equations in mathematical physics via V...In this paper, a powerful analytical method, called He’s homotopy perturbation method is applied to obtaining the approximate periodic solutions for some nonlinear differential equations in mathematical physics via Van der Pol damped non-linear oscillators and heat transfer. Illustrative examples reveal that this method is very effective and convenient for solving nonlinear differential equations. Comparison of the obtained results with those of the exact solution, reveals that homotopy perturbation method leads to accurate solutions.展开更多
In this paper, comparison of homotopy perturbation method (HPM) and homotopy perturbation transform method (HPTM) is made, revealing that homotopy perturbation transform method is very fast convergent to the solution ...In this paper, comparison of homotopy perturbation method (HPM) and homotopy perturbation transform method (HPTM) is made, revealing that homotopy perturbation transform method is very fast convergent to the solution of the partial differential equation. For illustration and more explanation of the idea, some examples are provided.展开更多
This paper presents, an efficient approach for solving Euler-Lagrange Equation which arises from calculus of variations. Homotopy analysis method to find an approximate solution of variational problems is proposed. An...This paper presents, an efficient approach for solving Euler-Lagrange Equation which arises from calculus of variations. Homotopy analysis method to find an approximate solution of variational problems is proposed. An optimal value of the convergence control parameter is given through the square residual error. By minimizing the the square residual error, the optimal convergence-control parameters can be obtained. It is showed that the homotopy analysis method was valid and feasible to the study of variational problems.展开更多
This paper demonstrates the approximate analytical solution to a non-linear singular two-point boundary-value problem which describes oxygen diffusion in a planar cell. The model is based on diffusion equation contain...This paper demonstrates the approximate analytical solution to a non-linear singular two-point boundary-value problem which describes oxygen diffusion in a planar cell. The model is based on diffusion equation containing a non-linear term related to Michaelis-Menten kinetics of enzymatic reaction. Approximate analytical expression of concentration of oxygen is derived using new Homotopy perturbation method for various boundary conditions. The validity of the obtained solutions is verified by the numerical results.展开更多
Homotopy Analysis Method(HAM)is semi-analytic method to solve the linear and nonlinear mathematical models which can be used to obtain the approximate solution.The HAM includes an auxiliary parameter,which is an effic...Homotopy Analysis Method(HAM)is semi-analytic method to solve the linear and nonlinear mathematical models which can be used to obtain the approximate solution.The HAM includes an auxiliary parameter,which is an efficient way to examine and analyze the accuracy of linear and nonlinear problems.The main aim of this work is to explore the approximate solutions of fuzzy Volterra integral equations(both linear and nonlinear)with a separable kernel via HAM.This method provides a reliable way to ensure the convergence of the approximation series.A new general form of HAM is presented and analyzed in the fuzzy domain.A qualitative convergence analysis based on the graphical method of a fuzzy HAM is discussed.The solutions sought by the proposed method show that the HAM is easy to implement and computationally quite attractive.Some solutions of fuzzy second kind Volterra integral equations are solved as numerical examples to show the potential of the method.The results also show that HAM provides an easy way to control and modify the convergence area in order to obtain accurate solutions.展开更多
In this paper, the homoto pyanalysis method (HAM) is presented to solve some of engineering problems. The homotopy analysis method is applied in obtaining exact solutions for equations of the type?Δ2=b(x,y) ...In this paper, the homoto pyanalysis method (HAM) is presented to solve some of engineering problems. The homotopy analysis method is applied in obtaining exact solutions for equations of the type?Δ2=b(x,y) and ?Δ2u=b(x,y,u)? on an elliptical domain. Exact solutions are presented for several examples involving to demon strate the applic ability and efficiency of HAM.展开更多
A two parameter mathematical model was developed to find the concentration for immobilized enzyme systems in porous spherical particles. This model contains a non-linear term related to reversible Michaelies-Menten ki...A two parameter mathematical model was developed to find the concentration for immobilized enzyme systems in porous spherical particles. This model contains a non-linear term related to reversible Michaelies-Menten kinetics. Analytical expression pertaining to the substrate concentration was reported for all possible values of Thiele module φ and α . In this work, we report the theoretically evaluated steady-state effectiveness factor for immobilized enzyme systems in porous spherical particles. These analytical results were found to be in good agreement with numerical results. Moreover, herein we employ new “Homotopy analysis method” (HAM) to solve non-linear reaction/diffusion equation.展开更多
In this study, homotopy perturbation method and parameter expanding method are applied to the motion equations of two nonlinear oscillators. Our results show that both the (HPM) and (PEM) yield the same results for th...In this study, homotopy perturbation method and parameter expanding method are applied to the motion equations of two nonlinear oscillators. Our results show that both the (HPM) and (PEM) yield the same results for the nonlinear problems. In comparison with the exact solution, the results show that these methods are very convenient for solving nonlinear equations and also can be used for strong nonlinear oscillators.展开更多
In this paper, a reliable algorithm based on mixture of new integral transform and homotopy perturbation method is proposed to solve a nonlinear differential-difference equation arising in nanotechnology. Continuum hy...In this paper, a reliable algorithm based on mixture of new integral transform and homotopy perturbation method is proposed to solve a nonlinear differential-difference equation arising in nanotechnology. Continuum hypothesis on nanoscales is invalid, and a differential-difference model is considered as an alternative approach to describing discontinued problems. The technique finds the solution without any discretization or restrictive assumptions and avoids the round-off errors. Comparison of the approximate solution with the exact one reveals that the method is very effective. It provides more realistic series solutions that converge very rapidly for nonlinear real physical problems.展开更多
The mathematical model of bioconvection flow of micropolar fluid through a vertical surface containing nanoparticles and gyrotactic microorganisms is presented in this study. In the study, weak and strong concentratio...The mathematical model of bioconvection flow of micropolar fluid through a vertical surface containing nanoparticles and gyrotactic microorganisms is presented in this study. In the study, weak and strong concentrations of microstructures are explored. In the energy and concentration equations, the Catteneo-Christov diffusion models are used to explain temperature and concentration diffusions with thermal and solutal relaxation durations, respectively. The governing equations describing the fluid flow are transformed and parameterized through similarity variables. The approximate analytical solution is obtained by using Homotopy Analysis Method (HAM). The impacts of relevant parameters on the various distributions are investigated and illustrated. It is discovered that increasing the value of the micropolar parameter results in an increase in the microrotation distribution for strong concentrations of microstructures while decreasing the microrotation distribution for weak concentrations of microstructures.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.11561051。
文摘In this article,time fractional Fornberg-Whitham equation of He’s fractional derivative is studied.To transform the fractional model into its equivalent differential equation,the fractional complex transform is used and He’s homotopy perturbation method is implemented to get the approximate analytical solutions of the fractional-order problems.The graphs are plotted to analysis the fractional-order mathematical modeling.
文摘This study considers an MHD Jeffery-Hamel nanofluid flow with distinct nanoparticles such as copper,Al_(2)O_(3)and SiO_(2)between two rigid non-parallel plane walls with the fuzzy extension of the generalized dual parametric homotopy algorithm.The nanofluids have been formulated to enhance the thermophysical characteristics of fluids,including thermal diffusivity,conductivity,convective heat transfer coefficients and viscosity.Due to the presence of distinct nanofluids,a change in the value of volume fraction occurs that influences the velocity profiles of the flow.The short value of nanoparticles volume fraction is considered an uncertain parameter and represented in a triangular fuzzy number range among[0.0,0.1,0.2].A novel generalized dual parametric homotopy algorithm with fuzzy extension is used here to study the fuzzy velocities at various channel positions.Finally,the effectiveness of the proposed approach has been demonstrated through a comparison with the available results in the crisp case.
基金supported by the National Natural Science Foundations of China (50936003, 50905013)The Open Project of State Key Lab. for Adv. Matals and Materials (2009Z-02)Research Foundation of Engineering Research Institute of USTB
文摘In this paper, the asymmetric laminar flow in a porous channel with expanding or contracting walls is investigated. The governing equations are reduced to ordinary ones by using suitable similar transformations. Homotopy analysis method (HAM) is employed to obtain the expres- sions for velocity fields. Graphs are sketched for values of parameters and associated dynamic characteristics, especially the expansion ratio, are analyzed in detail.
文摘A ratio approach based on the simple ratio test associated with the terms of homotopy series was proposed by the author in the previous publications.It was shown in the latter through various comparative physical models that the ratio approach of identifying the range of the convergence control parameter and also an optimal value for it in the homotopy analysis method is a promising alternative to the classically used h-level curves or to the minimizing the residual(squared)error.A mathematical analysis is targeted here to prove the equivalence of both the ratio approach and the traditional residual approach,especially regarding the root-finding problems via the homotopy analysis method.Examples are provided to further justify this.Moreover,it is conjectured that every nonlinear differential equation can be considered as a root-finding problem by plugging a parameter in it from a physical viewpoint.Two examples from the boundary and initial and value problems are provided to verify this assertion.Hence,besides the advantages as deciphered in the previous publications,the feasibility of the ratio approach over the traditional residual approach is made clearer in this paper.
文摘In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomials [1]. The analytical results of examples are calculated in terms of convergent series with easily computed components [2].
文摘The main aim of the paper is to examine the concentration of the longitudinal dispersion phenomenon arising in fluid flow through porous media. These phenomenon yields a partial differential equation namely Burger’s equation, which is solved by mixture of the new integral transform and the homotopy perturbation method under suitable conditions and the standard assumption. This method provides an analytical approximation in a rapidly convergent sequence with in exclusive manner computed terms. Its rapid convergence shows that the method is trustworthy and introduces a significant improvement in solving nonlinear partial differential equations over existing methods. It is concluded that the behaviour of concentration in longitudinal dispersion phenomenon is decreases as distance x is increasing with fixed time t > 0 and slightly increases with time t.
基金Project supported by the National Natural Science Foundation of China (Nos. 50936003 and50905013)the Open Project of State Key Laboratory for Advanced Materials (No. 2009z-02)
文摘The flow of a micropolar fluid through a porous channel with expanding or contracting walls of different permeabilities is investigated. Two cases are considered, in which opposing walls undergo either uniform or non-uniform motion. In the first case, the homotopy analysis method (HAM) is used'to obtain the expressions for the velocity and micro-rotation fields. Graphs are sketched for some parameters. The results show that the expansion ratio and the different permeabilities have important effects on the dynamic characteristics of the fluid. Following Xu's model, in the second case which is more general, the wall expansion ratio varies with time. Under this assumption, the governing equations axe transformed into nonlinear partial differential equations that can also be solved analytically by the HAM. In the process, both algebraic and exponential models are considered to describe the evolution of α(t) from the initial state α0 to the final state al. As a result, the time-dependent solutions are found to approach the steady state very rapidly. The results show that the time-dependent variation of the wall expansion ratio can be ignored because of its limited effects.
文摘In this paper Homotopy Analysis Method(HAM) is implemented for obtaining approximate solutions of(2+1)-dimensional Navier-Stokes equations with perturbation terms. The initial approximations are obtained using linear systems of the Navier-Stokes equations; by the iterations formula of HAM, the first approximation solutions and the second approximation solutions are successively obtained and Homotopy Perturbation Method(HPM) is also used to solve these equations; finally,approximate solutions by HAM of(2+1)-dimensional Navier-Stokes equations without perturbation terms and with perturbation terms are compared. Because of the freedom of choice the auxiliary parameter of HAM, the results demonstrate that the rapid convergence and the high accuracy of the HAM in solving Navier-Stokes equations; due to the effects of perturbation terms, the 3 rd-order approximation solutions by HAM and HPM have great fluctuation.
文摘In this paper, we present a comparative study between the modified Sumudu decomposition method (MSDM) and homotopy perturbation method (HPM). The study outlines the important features of the two methods. The analysis will be explained by discussing the nonhomogeneous Kortewege-de Vries (KdV) problems.
文摘In this paper, homotopy perturbation method is applied to solve moving boundary and isoperimetric problems. This method does not depend upon a small parameter in the equation. homotopy is constructed with an imbedding parameter p, which is considered as a “small parameter”. Finally, we use combined homotopy perturbation method and Green’s function method for solving second order problems. Some examples are given to illustrate the effectiveness of methods. The results show that these methods provides a powerful mathematical tools for solving problems.
文摘In this paper, a powerful analytical method, called He’s homotopy perturbation method is applied to obtaining the approximate periodic solutions for some nonlinear differential equations in mathematical physics via Van der Pol damped non-linear oscillators and heat transfer. Illustrative examples reveal that this method is very effective and convenient for solving nonlinear differential equations. Comparison of the obtained results with those of the exact solution, reveals that homotopy perturbation method leads to accurate solutions.
文摘In this paper, comparison of homotopy perturbation method (HPM) and homotopy perturbation transform method (HPTM) is made, revealing that homotopy perturbation transform method is very fast convergent to the solution of the partial differential equation. For illustration and more explanation of the idea, some examples are provided.
文摘This paper presents, an efficient approach for solving Euler-Lagrange Equation which arises from calculus of variations. Homotopy analysis method to find an approximate solution of variational problems is proposed. An optimal value of the convergence control parameter is given through the square residual error. By minimizing the the square residual error, the optimal convergence-control parameters can be obtained. It is showed that the homotopy analysis method was valid and feasible to the study of variational problems.
文摘This paper demonstrates the approximate analytical solution to a non-linear singular two-point boundary-value problem which describes oxygen diffusion in a planar cell. The model is based on diffusion equation containing a non-linear term related to Michaelis-Menten kinetics of enzymatic reaction. Approximate analytical expression of concentration of oxygen is derived using new Homotopy perturbation method for various boundary conditions. The validity of the obtained solutions is verified by the numerical results.
基金Dr.Ali Jameel and Noraziah Man are very grateful to the Ministry of Higher Education of Malaysia for providing them with the Fundamental Research Grant Scheme(FRGS)S/O No.14188 that supported this research.
文摘Homotopy Analysis Method(HAM)is semi-analytic method to solve the linear and nonlinear mathematical models which can be used to obtain the approximate solution.The HAM includes an auxiliary parameter,which is an efficient way to examine and analyze the accuracy of linear and nonlinear problems.The main aim of this work is to explore the approximate solutions of fuzzy Volterra integral equations(both linear and nonlinear)with a separable kernel via HAM.This method provides a reliable way to ensure the convergence of the approximation series.A new general form of HAM is presented and analyzed in the fuzzy domain.A qualitative convergence analysis based on the graphical method of a fuzzy HAM is discussed.The solutions sought by the proposed method show that the HAM is easy to implement and computationally quite attractive.Some solutions of fuzzy second kind Volterra integral equations are solved as numerical examples to show the potential of the method.The results also show that HAM provides an easy way to control and modify the convergence area in order to obtain accurate solutions.
文摘In this paper, the homoto pyanalysis method (HAM) is presented to solve some of engineering problems. The homotopy analysis method is applied in obtaining exact solutions for equations of the type?Δ2=b(x,y) and ?Δ2u=b(x,y,u)? on an elliptical domain. Exact solutions are presented for several examples involving to demon strate the applic ability and efficiency of HAM.
文摘A two parameter mathematical model was developed to find the concentration for immobilized enzyme systems in porous spherical particles. This model contains a non-linear term related to reversible Michaelies-Menten kinetics. Analytical expression pertaining to the substrate concentration was reported for all possible values of Thiele module φ and α . In this work, we report the theoretically evaluated steady-state effectiveness factor for immobilized enzyme systems in porous spherical particles. These analytical results were found to be in good agreement with numerical results. Moreover, herein we employ new “Homotopy analysis method” (HAM) to solve non-linear reaction/diffusion equation.
文摘In this study, homotopy perturbation method and parameter expanding method are applied to the motion equations of two nonlinear oscillators. Our results show that both the (HPM) and (PEM) yield the same results for the nonlinear problems. In comparison with the exact solution, the results show that these methods are very convenient for solving nonlinear equations and also can be used for strong nonlinear oscillators.
文摘In this paper, a reliable algorithm based on mixture of new integral transform and homotopy perturbation method is proposed to solve a nonlinear differential-difference equation arising in nanotechnology. Continuum hypothesis on nanoscales is invalid, and a differential-difference model is considered as an alternative approach to describing discontinued problems. The technique finds the solution without any discretization or restrictive assumptions and avoids the round-off errors. Comparison of the approximate solution with the exact one reveals that the method is very effective. It provides more realistic series solutions that converge very rapidly for nonlinear real physical problems.
文摘The mathematical model of bioconvection flow of micropolar fluid through a vertical surface containing nanoparticles and gyrotactic microorganisms is presented in this study. In the study, weak and strong concentrations of microstructures are explored. In the energy and concentration equations, the Catteneo-Christov diffusion models are used to explain temperature and concentration diffusions with thermal and solutal relaxation durations, respectively. The governing equations describing the fluid flow are transformed and parameterized through similarity variables. The approximate analytical solution is obtained by using Homotopy Analysis Method (HAM). The impacts of relevant parameters on the various distributions are investigated and illustrated. It is discovered that increasing the value of the micropolar parameter results in an increase in the microrotation distribution for strong concentrations of microstructures while decreasing the microrotation distribution for weak concentrations of microstructures.